Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Mol Metab ; 86: 101977, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936659

RESUMO

OBJECTIVE: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise with the increasing obesity epidemic. Rezdiffra as an activator of a thyroid hormone receptor-beta is the only Food and Drug Administration approved therapy. As such, there is a critical need to improve our understanding of gene expression regulation and signaling transduction in MASLD to develop new therapies. Matrin-3 is a DNA- and RNA-binding protein involved in the pathogenesis of human diseases. Here we examined its previously uncharacterized role in limiting hepatic steatosis and stress response via the constitutive androstane receptor (CAR). METHODS: Matrin-3 floxed and liver-specific knockout mice were fed either a chow diet or 60 kcal% high-fat diet (HFD) for up to 16 weeks. The mice were euthanized for different analysis including liver histology, lipid levels, and gene expression. Bulk RNA-seq, bulk ATAC-seq, and single-nucleus Multiome were used to examine changes of transcriptome and chromatin accessibility in the liver. Integrative bioinformatics analysis of our data and publicly available datasets and different biochemical assays were performed to identify underlying the molecular mechanisms mediating matrin-3's effects. Liver-tropic adeno-associated virus was used to restore the expression of CAR for lipid, acute phase genes, and histological analysis. RESULTS: Matrin-3 expression is induced in the steatotic livers of mice. Liver-specific matrin-3 deletion exacerbated HFD-induced steatosis, acute phase response, and inflammation in the liver of female mice. The transcriptome and chromatin accessibility were re-programmed in the liver of these mice with signatures indicating that CAR signaling is dysregulated. Mechanistically, matrin-3 interacts with CAR mRNA, and matrin-3 deficiency promotes CAR mRNA degradation. Consequently, matrin-3 deletion impaired CAR signaling by reducing CAR expression. Matrin-3 levels positively correlate with CAR expression in human livers. Ces2a and Il1r1 were identified as new target genes of CAR. Interestingly, we found that CAR discords with the expression of its target genes including Cyp2b10 and Ces2a in response to HFD, indicating CAR signaling is dysregulated by HFD despite increased CAR expression. Dysregulated CAR signaling upon matrin-3 deficiency reduced Ces2a and de-repressed Il1r1 expression. CAR restoration partially abrogated the dysregulated gene expression, exacerbated hepatic steatosis, acute phase response, and inflammation in liver-specific matrin-3 knockout mice fed a HFD. CONCLUSIONS: Our findings demonstrate that matrin-3 is a key upstream regulator maintaining CAR signaling upon metabolic stress, and the matrin-3-CAR axis limits hepatic steatosis and stress response signaling that may give insights for therapeutic intervention.


Assuntos
Receptor Constitutivo de Androstano , Fígado Gorduroso , Fígado , Camundongos Knockout , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Estresse Fisiológico
2.
Environ Int ; 190: 108821, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885551

RESUMO

BACKGROUND: Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES: In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic ß-cells, which have a central role in the development of diabetes. METHODS: We treated INS-1E pancreatic ß-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS: When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION: By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.


Assuntos
Antioxidantes , Sobrevivência Celular , Células Secretoras de Insulina , Poluentes Orgânicos Persistentes , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Espécies Reativas de Oxigênio , Receptores de Hidrocarboneto Arílico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Antioxidantes/metabolismo , Bifenilos Policlorados/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Dibenzodioxinas Policloradas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptor Constitutivo de Androstano , Insulina/metabolismo , Diclorodifenil Dicloroetileno/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Oxidantes/toxicidade , Linhagem Celular , Humanos , Acetilcisteína/farmacologia , Animais , Ratos , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética
3.
J Biol Chem ; 300(6): 107340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705390

RESUMO

Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.


Assuntos
Fator 4 Ativador da Transcrição , Animais Recém-Nascidos , Bilirrubina , Glucuronosiltransferase , Fígado , PPAR alfa , Triclosan , Animais , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Triclosan/farmacologia , Humanos , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Knockout , Feminino , Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
4.
Toxicology ; 505: 153828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740169

RESUMO

The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 µM fluxapyroxad or 500 µM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid ß-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 µM fluxapyroxad or 500 µM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 µM fluxapyroxad or 500 µM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.


Assuntos
Receptor Constitutivo de Androstano , Fungicidas Industriais , Hepatócitos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares , Animais , Masculino , Feminino , Ratos , Fungicidas Industriais/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Relação Dose-Resposta a Droga , Tamanho do Órgão/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Replicação do DNA/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
5.
Toxicol Sci ; 200(2): 324-345, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710495

RESUMO

Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.


Assuntos
Receptor Constitutivo de Androstano , Progressão da Doença , Fígado Gorduroso , Piridinas , Receptores Citoplasmáticos e Nucleares , Animais , Masculino , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Feminino , Piridinas/toxicidade , Piridinas/farmacologia , Camundongos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
6.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593436

RESUMO

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Assuntos
Fenóis , Humanos , Fenóis/química , Fenóis/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Disruptores Endócrinos/química , Simulação de Dinâmica Molecular
7.
Biochem Pharmacol ; 219: 115951, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036190

RESUMO

BACKGROUND AND PURPOSE: Gut microbiota and their metabolic activity are important regulators of host immunity. However, the role of gut microbiota and their metabolic activity-mediated osteoimmunity in postmenopausal osteoporosis (PMO) remains unknown. This study aimed to explore the role of gut microbiota and their metabolic activity in PMO. EXPERIMENTAL APPROACH: 16S rDNA sequencing was used for analyzing the gut microbiota diversity of patients with PMO and rat models, and a targeted metabolism study was performed for analyzing metabolite levels. Flow cytometry was used for analyzing the frequency of immune cells. Micro-CT was used for analyzing bone damage in rat models. Fecal microbiota transplantation was performed for exploring the therapeutic effect of the gut microbiota on PMO. CD4+ T cells were co-cultured with bone marrow mesenchymal stem cells for evaluating their molecular mechanisms. KEY RESULTS: Patients with PMO exhibited reduced gut microbiota diversity, and fecal glycolithocholic acid (GLCA) levels correlated with the degree of osteoporosis. GLCA levels in the gut were positively correlated with the frequency of circulating Tregs in ovariectomized rats. Restoration of the gut microbiota alleviated osteoporosis in ovariectomized rats. Circulating GLCA augmented CD4+ T cell differentiation into Tregs via constitutive androstane receptors. The increased frequency of Tregs further promoted the osteogenic differentiation of bone marrow mesenchymal stem cells to alleviate osteoporosis. CONCLUSION AND IMPLICATIONS: GLCA alleviated PMO by increasing the frequency of circulating Tregs, acting via the constitutive androstane receptor. This study reveals a new strategy for the treatment of PMO, with GLCA as a potential drug candidate.


Assuntos
Osteoporose Pós-Menopausa , Humanos , Feminino , Ratos , Animais , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/genética , Osteogênese , Receptor Constitutivo de Androstano , Diferenciação Celular
8.
J Biomol Struct Dyn ; 42(2): 960-976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096767

RESUMO

Scoparone (6, 7 dimethylesculetin) is a biologically active compound derived from the herb Artemisia capillaris having anti-inflammatory, anti-lipemic, and anti-allergic roles. Activation of the constitutive androstane receptor (CAR) in primary hepatocytes of both wild-type and humanized CAR mice by scoparone, accelerates bilirubin and cholesterol clearance in vivo. This can prevent gallstones which is a dreaded gastrointestinal disease. To date, surgery is regarded as the gold standard for treating gallstones. The molecular interactions between scoparone and CAR leading to gallstone prevention are not yet explored. In this study, we have analyzed these interactions through an insilico approach. After extracting the CAR structures (mice and human) from the protein databank and 6, 7-dimethylesuletin from PubChem, energy minimization of both the receptors was done to make them stable followed by docking. Next, a simulation was performed to stabilize the docked complexes. Through docking, H-bonds and pi-pi interactions were found in the complexes, which imply a stable interaction, thus activating the CAR. A similarity search for scoparone was performed and the selected compounds were docked with the CAR receptors. Esculentin acetate and scopoletin acetate interacted with human CAR through pi-alkyl and H-bond respectively. While Fraxidin methyl ether, fraxinol methyl ether, and 6, 7 diethoxycoumarin interacted with mice CAR through H-bond and Pi-Pi T-shaped bonds. The selected complexes were simulated further. Our results are in accordance with the hypothesis in the literature. We have also analyzed the drug likeliness, absorption, non-carcinogenicity, and other properties of scoparone which can support further in vivo studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Cumarínicos , Cálculos Biliares , Éteres Metílicos , Camundongos , Humanos , Animais , Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares , Acetatos
9.
Toxicol Sci ; 198(1): 101-112, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38128062

RESUMO

Constitutive androstane receptor (CAR), a nuclear receptor predominantly expressed in the liver, is activated by diverse chemicals and induces hepatocyte proliferation and hepatocarcinogenesis in rodents. However, the underlying mechanism responsible for CAR-dependent hepatocyte proliferation remains unclear. Importantly, this phenomenon has not been observed in the human liver. This study aimed to investigate the molecular mechanism underlying CAR-induced hepatocyte proliferation and to explore the species differences in hepatocyte proliferation between humans and rodents. Treatment of mice with the CAR activator TCPOBOP induced hepatocyte proliferation and nuclear accumulation of yes-associated protein (YAP), a known liver cancer inducer. This induction was abolished in CAR-knockout mice. Exogenously expressed YAP in cultured cells was accumulated in the nucleus by the coexpression with mouse CAR but not human CAR. Pull-down analysis of recombinant proteins revealed that mouse CAR interacted with YAP, whereas human CAR did not. Further investigations using YAP deletion mutants identified the WW domain of YAP as essential for interacting with CAR and showed that the PY motif (PPAY) in mouse CAR was crucial for binding to the WW domain, whereas human CAR with its mutated motif (PPAH) failed to interact with YAP. A mouse model harboring the Y150H mutation (PPAY to PPAH) in CAR displayed drastically attenuated TCPOBOP-induced hepatocyte proliferation and nuclear accumulation of YAP. CAR induces the nuclear accumulation of YAP through the PY motif-WW domain interaction to promote hepatocyte proliferation. The absence of this interaction in human CAR contributes to the lack of CAR-dependent hepatocyte proliferation in human livers.


Assuntos
Receptor Constitutivo de Androstano , Roedores , Animais , Humanos , Camundongos , Proliferação de Células , Hepatócitos/metabolismo , Fígado/metabolismo , Especificidade da Espécie
10.
Cells ; 12(8)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190111

RESUMO

The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Praguicidas , Animais , Camundongos , Receptor Constitutivo de Androstano , Receptores X de Retinoides/metabolismo , Praguicidas/toxicidade , Dieldrin , Receptores Citoplasmáticos e Nucleares , Lipídeos
11.
Drug Metab Dispos ; 51(2): 228-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36116789

RESUMO

Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.


Assuntos
Receptor Constitutivo de Androstano , Receptores de Esteroides , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Ligantes , Receptores Citoplasmáticos e Nucleares , Xenobióticos/metabolismo
12.
Food Chem Toxicol ; 170: 113510, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356836

RESUMO

Constitutive androstane receptor (CAR) is a nuclear receptor that plays a key role in drug metabolism and disposition and in the development of liver tumors in rodents. CAR is activated by ligands and indirect activators, which do not bind to the receptor but activate it through cellular signaling. In this study, we sought to identify direct and indirect activators of rat CAR (rCAR). Assessment of the influence of mutations on the transcriptional activity of rCAR identified a mutant termed rCAR-3A-G354Q that displays low constitutive activity and high ligand responsiveness. Reporter assays using the mutant were performed with compounds that increased the mRNA levels of Cyp2b1, a CAR target gene, in rat primary hepatocytes. Several compounds activated rCAR-3A-G354Q and were implicated as rCAR ligands. Since indirect CAR activators are considered to display little species differences, we then determined CYP2B6 mRNA levels in human hepatocyte-like HepaRG cells after treatment with compounds that increased Cyp2b1 mRNA levels in rat hepatocytes but did not activate rCAR-3A-G354Q. The results demonstrated six compounds as possible rCAR indirect activators. Taken together, the combined measurement of Cyp2b1 mRNA levels in rat primary hepatocytes and rCAR-3A-G354Q activation in reporter assays can be useful for evaluating rCAR activation by chemicals.


Assuntos
Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B1 , Ratos , Humanos , Animais , Citocromo P-450 CYP2B1/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Hepatócitos/metabolismo , Ligantes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Arch Toxicol ; 96(10): 2739-2754, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881160

RESUMO

Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72-144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2'-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.


Assuntos
Fenobarbital , Proteômica , Animais , Receptor Constitutivo de Androstano , Hepatócitos , Humanos , Fígado , Camundongos , Camundongos Endogâmicos , Fenobarbital/toxicidade
16.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889510

RESUMO

BACKGROUND: Unwanted drug-drug interactions (DDIs), as caused by the upregulation of clinically relevant drug metabolizing enzymes and transporter proteins in intestine and liver, have the potential to threaten the therapeutic efficacy and safety of drugs. The molecular mechanism of this undesired but frequently occurring scenario of polypharmacy is based on the activation of nuclear receptors such as the pregnane X receptor (PXR) or the constitutive androstane receptor (CAR) by perpetrator agents such as rifampin, phenytoin or St. John's wort. However, the expression pattern of nuclear receptors in human intestine and liver remains uncertain, which makes it difficult to predict the extent of potential DDIs. Thus, it was the aim of this study to characterize the gene expression and protein abundance of clinically relevant nuclear receptors, i.e., the aryl hydrocarbon receptor (AhR), CAR, farnesoid X receptor (FXR), glucocorticoid receptor (GR), hepatocyte nuclear factor 4 alpha (HNF4α), PXR and small heterodimer partner (SHP), in the aforementioned organs. METHODS: Gene expression analysis was performed by quantitative real-time PCR of jejunal, ileal, colonic and liver samples from eight human subjects. In parallel, a targeted proteomic method was developed and validated in order to determine the respective protein amounts of nuclear receptors in human intestinal and liver samples. The LC-MS/MS method was validated according to the current bioanalytical guidelines and met the criteria regarding linearity (0.1-50 nmol/L), within-day and between-day accuracy and precision, as well as the stability criteria. RESULTS: The developed method was successfully validated and applied to determine the abundance of nuclear receptors in human intestinal and liver samples. Gene expression and protein abundance data demonstrated marked differences in human intestine and liver. On the protein level, only AhR and HNF4α could be detected in gut and liver, which corresponds to their highest gene expression. In transfected cell lines, PXR and CAR could be quantified. CONCLUSIONS: The substantially different expression pattern of nuclear receptors in human intestinal and liver tissue may explain the different extent of unwanted DDIs in the dependence on the administration route of drugs.


Assuntos
Proteômica , Receptores de Esteroides , Cromatografia Líquida , Receptor Constitutivo de Androstano , Expressão Gênica , Hepatócitos/metabolismo , Humanos , Intestinos , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Espectrometria de Massas em Tandem
17.
Br J Pharmacol ; 179(23): 5209-5221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906855

RESUMO

BACKGROUND AND PURPOSE: The constitutive androstane receptor (CAR), a known xenobiotic sensor, plays an important role in drug metabolism by regulating numerous genes. The polycyclic aromatic hydrocarbon pyrene, an environmental pollutant, is a CAR activator and induces mouse hepatotoxicity via CAR. Here, we investigate the molecular mechanisms of the inflammatory response in pyrene-caused mice liver injury. EXPERIMENTAL APPROACH: Effects of pyrene on the liver were investigated in wild-type and CAR knockout (KO) mice. Levels of pyrene and its urinary metabolite were analysed by high performance liquid chromatography (HPLC). Inflammatory responses were measured by qRT-PCR, western blotting, and ELISA for cytokines. KEY RESULTS: Serum amyloid A proteins (SAAs) were markedly increased in the liver and serum of pyrene-exposed wild-type mice. IL-17-producing helper T cells (Th17 cells) and IL-17 levels were increased in the liver of pyrene-exposed wild-type mice. Hepatic mRNA levels of inflammatory cytokines including IL-1ß, IL-6 and TNFα, and serum IL-6 levels were significantly elevated in pyrene-treated wild-type mice. However, these changes were not observed in CAR KO mice. CONCLUSION AND IMPLICATIONS: CAR plays a crucial role in pyrene-caused mice liver inflammatory response with increased SAAs and Th17 cells. Our results suggest that serum SAAs may be a convenient biomarker for early diagnosis of liver inflammatory response caused by polycyclic aromatic hydrocarbons, including pyrene. CAR and Th17 cells may be potential targets for novel therapeutic strategies for xenobiotic-induced liver inflammation.


Assuntos
Receptor Constitutivo de Androstano , Pirenos , Animais , Camundongos , Receptor Constitutivo de Androstano/metabolismo , Interleucina-17 , Interleucina-6 , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pirenos/toxicidade , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Amiloide A Sérica/metabolismo , Células Th17 , Xenobióticos/toxicidade
18.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579950

RESUMO

Cyclophosphamide (CPA) and doxorubicin (DOX) are key components of chemotherapy for triple-negative breast cancer (TNBC), although suboptimal outcomes are commonly associated with drug resistance and/or intolerable side effects. Through an approach combining high-throughput screening and chemical modification, we developed CN06 as a dual activator of the constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2). CN06 enhances CAR-induced bioactivation of CPA (a prodrug) by provoking hepatic expression of CYP2B6, while repressing DOX-induced cytotoxicity in cardiomyocytes in vitro via stimulating Nrf2-antioxidant signaling. Utilizing a multicellular coculture model incorporating human primary hepatocytes, TNBC cells, and cardiomyocytes, we show that CN06 increased CPA/DOX-mediated TNBC cell death via CAR-dependent CYP2B6 induction and subsequent conversion of CPA to its active metabolite 4-hydroxy-CPA, while protecting against DOX-induced cardiotoxicity by selectively activating Nrf2-antioxidant signaling in cardiomyocytes but not in TNBC cells. Furthermore, CN06 preserves the viability and function of human iPSC-derived cardiomyocytes by modulating antioxidant defenses, decreasing apoptosis, and enhancing the kinetics of contraction and relaxation. Collectively, our findings identify CAR and Nrf2 as potentially novel combined therapeutic targets whereby CN06 holds the potential to improve the efficacy/toxicity ratio of CPA/DOX-containing chemotherapy.


Assuntos
Cardiotoxicidade , Neoplasias de Mama Triplo Negativas , Antioxidantes/farmacologia , Cardiotoxicidade/prevenção & controle , Receptor Constitutivo de Androstano , Ciclofosfamida , Citocromo P-450 CYP2B6 , Doxorrubicina/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
19.
J Biol Chem ; 298(5): 101885, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367211

RESUMO

The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Receptor Constitutivo de Androstano/metabolismo , Eritropoetina , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Eritropoetina/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus
20.
Am J Pathol ; 192(6): 887-903, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390317

RESUMO

Activation of constitutive androstane receptor (CAR) transcription factor by xenobiotics promotes hepatocellular proliferation, promotes hypertrophy without liver injury, and induces drug metabolism genes. Previous work demonstrated that lymphocyte-specific protein-1 (LSP1), an F-actin binding protein and gene involved in human hepatocellular carcinoma, suppresses hepatocellular proliferation after partial hepatectomy. The current study investigated the role of LSP1 in liver enlargement induced by chemical mitogens, a regenerative process independent of tissue loss. 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a direct CAR ligand and strong chemical mitogen, was administered to global Lsp1 knockout and hepatocyte-specific Lsp1 transgenic (TG) mice and measured cell proliferation, hypertrophy, and expression of CAR-dependent drug metabolism genes. TG livers displayed a significant decrease in Ki-67 labeling and liver/body weight ratios compared with wild type on day 2. Surprisingly, this was reversed by day 5, due to hepatocyte hypertrophy. There was no difference in CAR-regulated drug metabolism genes between wild type and TG. TG livers displayed increased Yes-associated protein (YAP) phosphorylation, decreased nuclear YAP, and direct interaction between LSP1 and YAP, suggesting LSP1 suppresses TCPOBOP-driven hepatocellular proliferation, but not hepatocyte volume, through YAP. Conversely, loss of LSP1 led to increased hepatocellular proliferation on days 2, 5, and 7. LSP1 selectively suppresses CAR-induced hepatocellular proliferation, but not drug metabolism, through the interaction of LSP1 with YAP, supporting the role of LSP1 as a selective growth suppressor.


Assuntos
Neoplasias Hepáticas , Xenobióticos , Animais , Proliferação de Células , Receptor Constitutivo de Androstano , Hepatócitos/metabolismo , Hipertrofia/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Linfócitos , Camundongos , Proteínas dos Microfilamentos , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA