Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593436

RESUMO

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Assuntos
Fenóis , Humanos , Fenóis/química , Fenóis/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Disruptores Endócrinos/química , Simulação de Dinâmica Molecular
2.
Br J Pharmacol ; 179(23): 5209-5221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906855

RESUMO

BACKGROUND AND PURPOSE: The constitutive androstane receptor (CAR), a known xenobiotic sensor, plays an important role in drug metabolism by regulating numerous genes. The polycyclic aromatic hydrocarbon pyrene, an environmental pollutant, is a CAR activator and induces mouse hepatotoxicity via CAR. Here, we investigate the molecular mechanisms of the inflammatory response in pyrene-caused mice liver injury. EXPERIMENTAL APPROACH: Effects of pyrene on the liver were investigated in wild-type and CAR knockout (KO) mice. Levels of pyrene and its urinary metabolite were analysed by high performance liquid chromatography (HPLC). Inflammatory responses were measured by qRT-PCR, western blotting, and ELISA for cytokines. KEY RESULTS: Serum amyloid A proteins (SAAs) were markedly increased in the liver and serum of pyrene-exposed wild-type mice. IL-17-producing helper T cells (Th17 cells) and IL-17 levels were increased in the liver of pyrene-exposed wild-type mice. Hepatic mRNA levels of inflammatory cytokines including IL-1ß, IL-6 and TNFα, and serum IL-6 levels were significantly elevated in pyrene-treated wild-type mice. However, these changes were not observed in CAR KO mice. CONCLUSION AND IMPLICATIONS: CAR plays a crucial role in pyrene-caused mice liver inflammatory response with increased SAAs and Th17 cells. Our results suggest that serum SAAs may be a convenient biomarker for early diagnosis of liver inflammatory response caused by polycyclic aromatic hydrocarbons, including pyrene. CAR and Th17 cells may be potential targets for novel therapeutic strategies for xenobiotic-induced liver inflammation.


Assuntos
Receptor Constitutivo de Androstano , Pirenos , Animais , Camundongos , Receptor Constitutivo de Androstano/metabolismo , Interleucina-17 , Interleucina-6 , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pirenos/toxicidade , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Amiloide A Sérica/metabolismo , Células Th17 , Xenobióticos/toxicidade
3.
J Biol Chem ; 298(5): 101885, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367211

RESUMO

The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Receptor Constitutivo de Androstano/metabolismo , Eritropoetina , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Eritropoetina/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus
4.
Toxicology ; 465: 153046, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813904

RESUMO

Short-term biomarkers of toxicity have an increasingly important role in the screening and prioritization of new chemicals. In this study, we examined early indicators of liver toxicity for three reference organophosphate (OP) chemicals, which are among the most widely used insecticides in the world. The OP methidathion was previously shown to increase the incidence of liver toxicity, including hepatocellular tumors, in male mice. To provide insights into the adverse outcome pathway (AOP) that underlies these tumors, effects of methidathion in the male mouse liver were examined after 7 and 28 day exposures and compared to those of two other OPs that either do not increase (fenthion) or possibly suppress liver cancer (parathion) in mice. None of the chemicals caused increases in liver weight/body weight or histopathological changes in the liver. Parathion decreased liver cell proliferation after 7 and 28 days while the other chemicals had no effects. There was no evidence for hepatotoxicity in any of the treatment groups. Full-genome microarray analysis of the livers from the 7 and 28 day treatments demonstrated that methidathion and fenthion regulated a large number of overlapping genes, while parathion regulated a unique set of genes. Examination of cytochrome P450 enzyme activities and use of predictive gene expression biomarkers found no consistent evidence for activation of AhR, CAR, PXR, or PPARα. Parathion suppressed the male-specific gene expression pattern through STAT5b, similar to genetic and dietary conditions that decrease liver tumor incidence in mice. Overall, these findings indicate that methidathion causes liver cancer by a mechanism that does not involve common mechanisms of liver cancer induction.


Assuntos
Transformação Celular Neoplásica/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Genômica , Inseticidas/toxicidade , Neoplasias Hepáticas/genética , Fígado/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Receptor Constitutivo de Androstano/agonistas , Receptor Constitutivo de Androstano/genética , Receptor Constitutivo de Androstano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fention/toxicidade , Perfilação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Compostos Organotiofosforados/toxicidade , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Paration/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
5.
J Inorg Biochem ; 227: 111682, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902763

RESUMO

Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.


Assuntos
Anoikis/efeitos dos fármacos , Proteínas Aviárias/metabolismo , Cádmio/toxicidade , Receptor Constitutivo de Androstano/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Rim/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Galinhas , Masculino
6.
Toxicology ; 464: 153023, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34743025

RESUMO

Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.


Assuntos
Receptor Constitutivo de Androstano/metabolismo , Hepatócitos/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Receptor de Pregnano X/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Receptor Constitutivo de Androstano/genética , Dexametasona/farmacologia , Técnicas de Inativação de Genes , Hepatócitos/patologia , Masculino , Fenobarbital/farmacologia , Receptor de Pregnano X/genética , Ratos , Ratos Wistar , Raios Ultravioleta
7.
Drug Metab Dispos ; 49(8): 668-678, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34035124

RESUMO

Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and PXR/CAR knockout (KO) HepaRG cells, as well as a PXR reporter gene assay, were used to investigate the mechanism of CYP3A4 and CYP2B6 induction by prototypical substrates and a group of compounds from the Merck KGaA oncology drug discovery pipeline. The basal and inducible gene expression of CYP3A4 and CYP2B6 of nuclear hormone receptor (NHR) KO HepaRG relative to control HepaRG was characterized. The basal expression of CYP3A4 was markedly higher in the PXR (10-fold) and CAR (11-fold) KO cell lines compared with control HepaRG, whereas inducibility was substantially lower. Inversely, basal expression of CYP3A4 in PXR/CAR double KO (dKO) was low (10-fold reduction). Basal CYP2B6 expression was high in PXR KO (9-fold) cells which showed low inducibility, whereas the basal expression remained unchanged in CAR and dKO cell lines compared with control cells. Most of the test compounds induced CYP3A4 and CYP2B6 via PXR and, to a lesser extent, via CAR. Furthermore, other non-NHR-driven induction mechanisms were implicated, either alone or in addition to NHRs. Notably, 5 of the 16 compounds (31%) that were PXR inducers in HepaRG did not activate PXR in the reporter gene assay, illustrating the limitations of this system. This study indicates that HepaRG is a highly sensitive system fit for early screening of cytochrome P450 (P450) induction in drug discovery. Furthermore, it shows the applicability of HepaRG NHR KO cells as tools to deconvolute mechanisms of P450 induction using novel compounds representative for oncology drug discovery. SIGNIFICANCE STATEMENT: This work describes the identification of induction mechanisms of CYP3A4 and CYP2B6 for an assembly of oncology drug candidates using HepaRG nuclear hormone receptor knockout and displays its advantages compared to a pregnane X receptor reporter gene assay. With this study, risk assessment of drug candidates in early drug development can be improved.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Indução Enzimática/efeitos dos fármacos , Eliminação Hepatobiliar , Hepatócitos , Receptor de Pregnano X/metabolismo , Linhagem Celular , Receptor Constitutivo de Androstano/metabolismo , Interações Medicamentosas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes/métodos , Eliminação Hepatobiliar/efeitos dos fármacos , Eliminação Hepatobiliar/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Farmacocinética , Medição de Risco
8.
Drug Metab Dispos ; 49(1): 12-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33154041

RESUMO

UDP-glucuronosyltransferase (UGT) 1A1 is the only transferase capable of conjugating serum bilirubin. However, temporal delay in the development of the UGT1A1 gene leads to an accumulation of serum bilirubin in newborn children. Neonatal humanized UGT1 (hUGT1) mice, which accumulate severe levels of total serum bilirubin (TSB), were treated by oral gavage with obeticholic acid (OCA), a potent FXR agonist. OCA treatment led to dramatic reduction in TSB levels. Analysis of UGT1A1 expression confirmed that OCA induced intestinal and not hepatic UGT1A1. Interestingly, Cyp2b10, a target gene of the nuclear receptor CAR, was also induced by OCA in intestinal tissue. In neonatal hUGT1/Car -/- mice, OCA was unable to induce CYP2B10 and UGT1A1, confirming that CAR and not FXR is involved in the induction of intestinal UGT1A1. However, OCA did induce FXR target genes, such as Shp, in both intestines and liver with induction of Fgf15 in intestinal tissue. Circulating FGF15 activates hepatic FXR and, together with hepatic Shp, blocks Cyp7a1 and Cyp7b1 gene expression, key enzymes in bile acid metabolism. Importantly, the administration of OCA in neonatal hUGT1 mice accelerates intestinal epithelial cell maturation, which directly impacts on induction of the UGT1A1 gene and the reduction in TSB levels. Accelerated intestinal maturation is directly controlled by CAR, since induction of enterocyte marker genes sucrase-isomaltase, alkaline phosphatase 3, and keratin 20 by OCA does not occur in hUGT1/Car -/- mice. Thus, new findings link an important role for CAR in intestinal UGT1A1 induction and its role in the intestinal maturation pathway. SIGNIFICANCE STATEMENT: Obeticholic acid (OCA) activates FXR target genes in both liver and intestinal tissues while inducing intestinal UGT1A1, which leads to the elimination of serum bilirubin in humanized UGT1 mice. However, the induction of intestinal UGT1A1 and the elimination of bilirubin by OCA is driven entirely by activation of intestinal CAR and not FXR. The elimination of serum bilirubin is based on a CAR-dependent mechanism that facilitates the acceleration of intestinal epithelium cell differentiation, an event that underlies the induction of intestinal UGT1A1.


Assuntos
Bilirrubina/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Receptor Constitutivo de Androstano/metabolismo , Glucuronosiltransferase/metabolismo , Intestinos , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Ácido Quenodesoxicólico/farmacocinética , Fármacos Gastrointestinais/farmacocinética , Humanos , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/fisiologia , Intestinos/crescimento & desenvolvimento , Intestinos/metabolismo , Camundongos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA