Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Biochem Mol Toxicol ; 38(10): e23853, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39291656

RESUMO

Eph receptor B2 (EPHB2) is overexpressed in some tumors and relevant to unfavorable outcomes of tumor patients. By searching Gene Expression Profiling Interactive Analysis and KM Plot websites, we discovered that EPHB2 was highly expressed in patients with esophageal cancer, leading to poor prognosis. However, the role and molecular mechanism of EPHB2 in esophagus cancer is unknown. Our study aims to unveil the underlying mechanism by which EPHB2 modulates the biological properties of esophagus cancer cells. After si-EPHB2 transfection, the malignant biological properties of esophagus cancer cells were determined by several biological experiments. IWP-4 was applied to block Wnt/ß-catenin signaling pathway. The expressions of autophagy and Wnt/ß-catenin signaling pathway relevant molecules were tested by western blot assay. An increased expression of EPHB2 was happened in esophagus cancer samples and loss of EPHB2 diminished esophagus cancer cells proliferation, migration, and invasion. Moreover, our data showed that depletion of EPHB2 blocked the autophagy and in-activated Wnt/ß-catenin signaling pathway in esophagus cancer cells. While, IWP-4 treatment inhibited the autophagy and limited esophagus cancer cells proliferation, migration, and invasion. Moreover, EPHB2 knocked down strengthened the effect of IWP-4 treatment in regulating esophagus cancer cells proliferation, migration, and invasion. Finally, we illustrated that EPHB2 regulated the biological properties of esophagus cancer cells by modulating autophagy and Wnt/ß-catenin signaling pathway. Our study illustrated that EPHB2 might be a worthwhile target considering for the treatment of esophagus cancer.


Assuntos
Autofagia , Neoplasias Esofágicas , Receptor EphB2 , Via de Sinalização Wnt , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Receptor EphB2/metabolismo , Receptor EphB2/genética , Autofagia/genética , Linhagem Celular Tumoral , Inativação Gênica , Movimento Celular , Proliferação de Células , beta Catenina/metabolismo , beta Catenina/genética , Regulação Neoplásica da Expressão Gênica
2.
Cell Death Dis ; 15(8): 602, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164267

RESUMO

Sulfenylation is a reversible oxidative posttranslational modification (PTM) of proteins on cysteine residues. Despite the dissection of various biological functions of cysteine sulfenylation, its roles in hepatic fibrosis remain elusive. Here, we report that EphB2, a receptor tyrosine kinase previously implicated in liver fibrosis, is regulated by cysteine sulfenylation during the fibrotic progression of liver. Specifically, EphB2 is sulfenylated at the residues of Cys636 and Cys862 in activated hepatic stellate cells (HSCs), leading to the elevation of tyrosine kinase activity and protein stability of EphB2 and stronger interactions with focal adhesion kinase for the activation of downstream mitogen-activated protein kinase signaling. The inhibitions of both EphB2 kinase activity and cysteine sulfenylation by idebenone (IDE), a marketed drug with potent antioxidant activity, can markedly suppress the activation of HSCs and ameliorate hepatic injury in two well-recognized mouse models of liver fibrosis. Collectively, this study reveals cysteine sulfenylation as a new type of PTM for EphB2 and sheds a light on the therapeutic potential of IDE for the treatment of liver fibrosis.


Assuntos
Cisteína , Células Estreladas do Fígado , Cirrose Hepática , Receptor EphB2 , Transdução de Sinais , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cisteína/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor EphB2/metabolismo , Receptor EphB2/genética , Humanos , Camundongos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Camundongos Endogâmicos C57BL , Masculino , Processamento de Proteína Pós-Traducional , Modelos Animais de Doenças
3.
BMC Cancer ; 24(1): 1064, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198775

RESUMO

PURPOSE: Recent studies have increasingly linked Ephrin receptor B2 (EPHB2) to cancer progression. However, comprehensive investigations into the immunological roles and prognostic significance of EPHB2 across various cancers remain lacking. METHODS: We employed various databases and bioinformatics tools to investigate the impact of EPHB2 on prognosis, immune infiltration, genome instability, and response to immunotherapy. Validation of the correlation between EPHB2 expression and M2 macrophages included analyses using bulk and single-cell transcriptomic datasets, spatial transcriptomics, and multi-fluorescence staining. Moreover, we performed cMap web tool to screen for EPHB2-targeted compounds and assessed their potential through molecular docking and dynamics simulations. Additionally, in vitro validation using lung adenocarcinoma (LUAD) cell lines was conducted to confirm the bioinformatics predictions about EPHB2. RESULTS: EPHB2 dysregulation was observed across multiple cancer types, where it demonstrated significant diagnostic and prognostic value. Gene Set Enrichment Analysis (GSEA) indicated that EPHB2 is involved in enhancing cellular proliferation, invasiveness of cancer cells, and modulation of the anti-cancer immune response. Furthermore, it is emerged as a pan-cancer marker for M2 macrophage infiltration, supported by integrated analyses of transcriptomics and multiple fluorescence staining. In LUAD cells, knockdown of EPHB2 expression led to a decrease in both cell proliferation and migratory activity. CONCLUSION: EPHB2 expression may serve as a pivotal indicator of M2 macrophage infiltration, offering vital insights into tumor dynamics and progression across various cancers, including lung adenocarcinoma, highlighting its significant prognostic and therapeutic potential for further exploration.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Receptor EphB2 , Humanos , Receptor EphB2/genética , Receptor EphB2/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Perfilação da Expressão Gênica , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/terapia , Movimento Celular , Simulação de Acoplamento Molecular
4.
J Bone Miner Res ; 39(7): 1008-1024, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739682

RESUMO

Bone homeostasis is a complex process in which some Eph kinase receptors and their ephrin ligands appear to be involved. In the present study, we address this issue by examining, both in vitro and in vivo, the role of EphB2 and EphB3 in mesenchymal stromal/stem cell (MSC) differentiation into bone tissue. This was first evaluated by quantitative reverse transcription PCR (RT-qPCR) and histological staining in MSCs cultured in specific mediums revealing that although EphB2-/- MSCs mainly expressed pro-adipogenic transcription factors, EphB3-/- MSCs showed abundant osteogenic transcripts, such as Runx2, Msx2, and Sp7. To clarify the underlying molecular mechanisms, we found that the lack of EphB3 signaling alters the genetic profile of differentiating MSCs, reducing the expression of many inhibitory molecules and antagonists of the BMP signaling pathway, and increasing Bmp7 expression, a robust bone inductor. Then, to confirm the osteogenic role of EphB3 in vivo, we studied the condition of 2 mouse models of induced bone loss (ovariectomy or long-term glucocorticoid treatment). Interestingly, in both models, both WT and EphB2-/- mice equally developed the disease but EphB3-/- mice did not exhibit the typical bone loss, nor an increase in urine Ca2+ or blood serum CTX-1. This phenotype in EphB3-KO mice could be due to their significantly higher proportions of osteoprogenitor cells and preosteoblasts, and their lower number of osteoclasts, as compared with WT and EphB2-KO mice. Thus, we conclude that EphB3 acts as a negative regulator of the osteogenic differentiation, and its absence prevents bone loss in mice subjected to ovariectomy or dexamethasone treatment.


Osteoporosis affects more than 200 million people, mostly women. Our work shows that the EphB3 receptor restricts bone formation, and its absence prevents bone loss in osteoporotic mice. The bone protection observed in EphB3-deficient mice is due to the presence of more bone-forming cells and fewer bone-degrading cells. Molecularly, we found that when there's no EphB3 in mesenchymal stem cells, some bone-promoting genes are increased while many inhibitors are reduced. Therefore, this receptor could become a key target for new therapies that would help to improve the quality of life for those suffering from bone diseases. We're really excited to share our findings with a broad audience, including patients, healthcare professionals, researchers, and the life sciences industry.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Receptor EphB3 , Animais , Osteoporose/metabolismo , Osteoporose/patologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Receptor EphB3/metabolismo , Camundongos , Feminino , Camundongos Knockout , Receptor EphB2/metabolismo , Receptor EphB2/genética , Transdução de Sinais , Reabsorção Óssea/patologia , Reabsorção Óssea/metabolismo , Camundongos Endogâmicos C57BL
5.
Int J Biol Macromol ; 258(Pt 1): 128848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114003

RESUMO

The survival benefit for patients with gastric cancer (GC) is modest due to its high transfer potential. Targeted therapy for metastasis-related genes in GC may be a viable approach, however, inhibitors specifically targeting GC are limited. In this study, GC patient-derived xenografts (PDX) with metastatic burden were established via orthotopic transplantation. PCR-Array analysis of primary and metastatic tumors revealed EPH receptor B2 (EPHB2) as the most significantly upregulated gene. The interaction between the EPHB2 receptor and its cognate-specific EFNB1 ligands was high in GC and correlated with a poor prognosis. Fc-EFNB1 treatment increased the invasion and migration abilities of GC cells and induced a high EPHB2 expression. EPHB2 knockdown in GC cells completely abolished the ephrin ligand-induced effects on invasion and migration abilities. Signal transduction analysis revealed Wnt/ß-catenin and FAK as downstream signaling mediators potentially inducing the EPHB2 phenotype. In conclusion, the observed deregulation of EPHB2/EFNB1 expression in GC enhances the invasive phenotype, suggesting a potential role of EPHB2/EFNB1 compound in local tumor cell invasion and the formation of metastasis.


Assuntos
Receptor EphB2 , Neoplasias Gástricas , Humanos , Receptor EphB2/genética , Receptor EphB2/metabolismo , Neoplasias Gástricas/patologia , Efrina-B1/genética , Efrina-B1/metabolismo , beta Catenina/metabolismo , Ligantes , Via de Sinalização Wnt , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
6.
Cell Mol Neurobiol ; 44(1): 12, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150042

RESUMO

Intracranial vascular malformations manifest on a continuum ranging from predominantly arterial to predominantly venous in pathology. Cerebral cavernous malformations (CCMs) are capillary malformations that exist at the midpoint of this continuum. The axon guidance factor Ephrin B2 and its receptor EphB4 are critical regulators of vasculogenesis in the developing central nervous system. Ephrin B2/EphB4 dysregulation has been implicated in the pathogenesis of arterial-derived arteriovenous malformations and vein-based vein of Galen malformations. Increasing evidence supports the hypothesis that aberrant Ephrin B2/EphB4 signaling may contribute to developing vascular malformations, but their role in CCMs remains largely uncharacterized. Evidence of Ephrin dysregulation in CCMs would be important to establish a common link in the pathogenic spectrum of EphrinB2/Ephb4 dysregulation. By studying patient-derived primary CCM endothelial cells (CCMECs), we established that CCMECs are functionally distinct from healthy endothelial cell controls; CCMECs demonstrated altered patterns of migration, motility, and impaired tube formation. In addition to the altered phenotype, the CCMECs also displayed an increased ratio of EphrinB2/EphB4 compared to the healthy endothelial control cells. Furthermore, whole exome sequencing identified mutations in both EphrinB2 and EphB4 in the CCMECs. These findings identify functional alterations in the EphrinB2/EphB4 ratio as a feature linking pathophysiology across the spectrum of arterial, capillary, and venous structural malformations in the central nervous system while revealing a putative therapeutic target.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Receptor EphB2 , Receptor EphB4 , Humanos , Receptor EphB4/genética , Receptor EphB2/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais/patologia , Cultura Primária de Células , Sequenciamento do Exoma , Masculino , Feminino , Pré-Escolar , Criança , Adolescente
7.
Stress ; 25(1): 166-178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435121

RESUMO

Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.


Assuntos
Hiperalgesia , Dor Visceral , Animais , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphB2/genética , Receptor EphB2/metabolismo , Medula Espinal/metabolismo , Estresse Psicológico , Dor Visceral/genética , Dor Visceral/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638814

RESUMO

The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell-cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph-ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph-Eph interfaces. One Eph-Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor-receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.


Assuntos
Receptor EphB2/química , Receptor EphB2/metabolismo , Transdução de Sinais , Animais , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Receptor EphB2/genética , Relação Estrutura-Atividade
9.
Yonsei Med J ; 62(8): 679-690, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34296545

RESUMO

PURPOSE: Eph receptors are differentially expressed in numerous malignant tumors. This study intended to analyze the roles of EphB receptors (EphB2, B3, and B4) in urinary bladder cancer. MATERIALS AND METHODS: Tissue microarray-based immunohistochemical analysis was used to investigate the expression patterns of EphB2, EphB3, and EphB4 in 154 bladder cancer specimens. Immunohistochemical staining was conducted examining the extent of stained cells and staining intensity. EphB was considered to be highly expressed when the intensity of staining was more than moderate in >25% of cells in the tissue section. Small interfering RNA (siRNA) was used to knock down EphB expression in bladder cancer cell lines (T24, 5637) to determine the effects of EphB on tumor cell invasion, proliferation, and migration. RESULTS: EphB receptors (B2, B3, and B4) were detected in 40.9% (EphB2, 63/154), 71.4% (EphB3, 110/154), and 53.2% (EphB4, 82/154) of bladder cancer specimens. Low expression of EphB2, B3, and B4 receptors were significantly associated with higher tumor grade (EphB2, p<0.001; EphB3, p=0.032; EphB4, p<0.001) and muscular invasion (EphB2, p=0.002; EphB3, p=0.009; EphB4, p<0.001). No obvious correlation was observed with other clinicopathological variables, such as age, sex, recurrence, lymph node involvement, metastasis, and overall survival. Inactivation of EphB receptors by siRNA transfection increased cell viability, tumor cell invasion, proliferation, and migration in comparison with untransfected cancer cells. CONCLUSION: Low expression of EphB receptors (B2, B3, and B4) can be a predictive marker for muscular invasion of bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Efrina-B2 , Humanos , Recidiva Local de Neoplasia , Receptor EphB2/genética , Receptor EphB4/genética , Receptores da Família Eph , Neoplasias da Bexiga Urinária/genética
10.
Lab Invest ; 101(7): 921-934, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824421

RESUMO

Lipid droplet (LD) accumulation in cancer results from aberrant metabolic reprograming due to increased lipid uptake, diminished lipolysis and/or de novo lipid synthesis. Initially implicated in storage and lipid trafficking in adipocytes, LDs are more recently recognized to fuel key functions associated with carcinogenesis and progression of several cancers, including prostate cancer (PCa). However, the mechanisms controlling LD accumulation in cancer are largely unknown. EPHB2, a tyrosine kinase (TKR) ephrin receptor has been proposed to have tumor suppressor functions in PCa, although the mechanisms responsible for these effects are unclear. Given that dysregulation in TRK signaling can result in glutaminolysis we postulated that EPHB2 might have potential effects on lipid metabolism. Knockdown strategies for EPHB2 were performed in prostate cancer cells to analyze the impact on the net lipid balance, proliferation, triacylglycerol-regulating proteins, effect on LD biogenesis, and intracellular localization of LDs. We found that EPHB2 protein expression in a panel of human-derived prostate cancer cell lines was inversely associated with in vivo cell aggressiveness. EPHB2 silencing increased the proliferation of prostate cancer cells and concurrently induced de novo LD accumulation in both cytoplasmic and nuclear compartments as well as a "shift" on LD size distribution in newly formed lipid-rich organelles. Lipid challenge using oleic acid exacerbated the effects on the LD phenotype. Loss of EPHB2 directly regulated key proteins involved in maintaining lipid homeostasis including, increasing lipogenic DGAT1, DGAT2 and PLIN2 and decreasing lipolytic ATGL and PEDF. A DGAT1-specific inhibitor abrogated LD accumulation and proliferative effects induced by EPHB2 loss. In conclusion, we highlight a new anti-tumor function of EPHB2 in lipid metabolism through regulation of DGAT1 and ATGL in prostate cancer. Blockade of DGAT1 in EPHB2-deficient tumors appears to be effective in restoring the lipid balance and reducing tumor growth.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias da Próstata/metabolismo , Receptor EphB2 , Linhagem Celular Tumoral , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Receptor EphB2/genética , Receptor EphB2/metabolismo
11.
Cancer Res ; 81(12): 3229-3240, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33903122

RESUMO

The survival benefit derived from sorafenib treatment for patients with hepatocellular carcinoma (HCC) is modest due to acquired resistance. Targeting cancer stem cells (CSC) is a possible way to reverse drug resistance, however, inhibitors that specifically target liver CSCs are limited. In this study, we established two sorafenib-resistant, patient-derived tumor xenografts (PDX) that mimicked development of acquired resistance to sorafenib in patients with HCC. RNA-sequencing analysis of sorafenib-resistant PDXs and their corresponding mock controls identified EPH receptor B2 (EPHB2) as the most significantly upregulated kinase. EPHB2 expression increased stepwise from normal liver tissue to fibrotic liver tissue to HCC tissue and correlated with poor prognosis. Endogenous EPHB2 knockout showed attenuation of tumor development in mice. EPHB2 regulated the traits of liver CSCs; similarly, sorted EPHB2High HCC cells were endowed with enhanced CSC properties when compared with their EPHB2-Low counterparts. Mechanistically, EPHB2 regulated cancer stemness and drug resistance by driving the SRC/AKT/GSK3ß/ß-catenin signaling cascade, and EPHB2 expression was regulated by TCF1 via promoter activation, forming a positive Wnt/ß-catenin feedback loop. Intravenous administration of rAAV-8-shEPHB2 suppressed HCC tumor growth and significantly sensitized HCC cells to sorafenib in an NRAS/AKT-driven HCC immunocompetent mouse model. Targeting a positive feedback loop involving the EPHB2/ß-catenin axis may be a possible therapeutic strategy to combat acquired drug resistance in HCC. SIGNIFICANCE: This study identifies a EPHB2/ß-catenin/TCF1 positive feedback loop that augments cancer stemness and sorafenib resistance in HCC, revealing a targetable axis to combat acquired drug resistance in HCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3229/F1.large.jpg.


Assuntos
Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Receptor EphB2/metabolismo , Sorafenibe/farmacologia , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Receptor EphB2/genética , Células Tumorais Cultivadas , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
12.
Hum Exp Toxicol ; 40(10): 1746-1754, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33878909

RESUMO

BACKGROUND: Isoflurane, one of the most commonly used inhalational anesthetics, is usually used in surgery patients and often causes long-term learning and memory impairment. The aim of this study was to explore the role of microRNA-204-5p (miR-204-5p) in isoflurane-induced learning and memory impairment in rats. METHODS: The Morris Water Maze (MWM) test was used to estimate the spatial learning and memory abilities of laboratory rats. Enzyme-linked immunosorbent assay (ELISA) was used to determine interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) concentrations in the hippocampal tissues. The expression level of miR-204-5p was determined by using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The potential target genes of miR-204-5p were predicted and verified by the TargetScan and dual-luciferase reporter assay, respectively. RESULTS: Isoflurane-induced rats showed significantly higher neurological function scores, higher escape latency and shorter time spent in the original quadrant. Isoflurane could significantly induce neuroinflammation, and the expression of miR-204-5p was increased in the hippocampal tissue of rats exposed to isoflurane. Moreover, downregulation of miR-204-5p attenuated the effect of isoflurane treatment on the escape latency and the time in the original quadrant, and inflammatory cytokines level was downregulated by inhibiting the expression of miR-204-5p. EphB2 was verified as a direct target gene of miR-204-5p. CONCLUSION: Downregulated miR-204-5p exerts protective effects against isoflurane-induced learning and memory impairment via targeting EphB2 and inhibiting neuroinflammation. MiR-204-5p could serve as a potential therapeutic target for the lightening of cognitive dysfunction induced by isoflurane.


Assuntos
Isoflurano/toxicidade , Memória/efeitos dos fármacos , MicroRNAs/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Receptor EphB2/metabolismo , Anestésicos Inalatórios/toxicidade , Animais , Antagomirs/farmacologia , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , MicroRNAs/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptor EphB2/genética , Regulação para Cima
13.
Pathol Res Pract ; 218: 153336, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33450435

RESUMO

Cancer stem cells (CSCs) are believed to be responsible for tumor growth, invasion, and metastasis. Submucosal invasion, which greatly enhances metastasis risk, is a critical step in gastric cancer (GC) progression. To identify stem cell-related markers associated with submucosal invasion and lymph node (LN) metastasis in GCs, we investigated the expression of candidate CSC markers (CD133, CD44, and ALDH1A) and intestinal stem cell (ISC) markers (EPHB2, OLFM4, and LGR5) in early GCs that manifested submucosal invasion. We discovered that EPHB2 and LGR5 expression was frequently confined to the basal area of the lamina propria (basal pattern) in mucosal cancer, and the proportion of stem cell marker-positive cells substantially increased during submucosal invasion. CD44 expression showed a focal pattern, ALDH1A was predominantly expressed diffusely, and there was no expansion of CD44 or ALDH1A expression in the submucosal cancer cells. Unexpectedly, no CSC markers showed any associations with LN metastasis, and only loss of EPHB2 expression was associated with increased LN metastasis. Treatment of RSPO2, a niche factor, along with Wnt 3a, to GC cells led to increased EPHB2 and LGR5 mRNA levels. RNA in situ hybridization confirmed specific RSPO2 expression in the smooth muscle cells of the muscularis mucosa, suggesting that RSPO2 is responsible for the increased expression of ISC markers in GC cells at the basal areas. In summary, no stem cell markers were associated with increased LN metastasis in early GCs. Conversely, isolated EPHB2 expression was associated with lower LN metastasis. EPHB2 and LGR5 showed a basal distribution pattern along with enhanced expression in submucosal invading cells in early GCs, which was induced by a niche factor, RSPO2, from the muscularis mucosa.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Mucosa Intestinal/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Gástricas/metabolismo , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
14.
Oncogene ; 39(47): 7063-7075, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989254

RESUMO

Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.


Assuntos
Melanoma Experimental/secundário , Receptor EphB2/metabolismo , Receptor EphB4/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias da Coluna Vertebral/secundário , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Adesão Celular , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Linhagem Celular Tumoral/transplante , Células Endoteliais/patologia , Feminino , Microscopia Intravital , Imageamento por Ressonância Magnética , Masculino , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Osteoblastos/patologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor EphB2/genética , Receptor EphB4/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Crânio/patologia , Compressão da Medula Espinal/diagnóstico , Compressão da Medula Espinal/etiologia , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/diagnóstico , Neoplasias da Coluna Vertebral/tratamento farmacológico , Coluna Vertebral/citologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
15.
Dev Dyn ; 249(10): 1243-1258, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32506584

RESUMO

BACKGROUND: The epithelial microenvironment is involved in thymus aging, but the possible role of EphB receptors that govern the thymic epithelium development has not been investigated. Herein, we study the changes undergone by the thymus of EphB-deficient mice throughout their life. RESULTS: Immune alterations occurring throughout life were more severe in mutant than in wild-type (WT) mice. Mutant thymuses exhibit lower cellularity than WT ones, as well as lower proportions of early thymic progenitors cells and double-positive (CD4+ CD8+ ) thymocytes, but higher of double-negative (CD4- CD8- ) and single-positive (CD4+ CD8- , CD4- CD8+ ) cells. Throughout life, CD4+ naïve cells decreased particularly in mutant mice. In correlation, memory T cells, largely CD8+ cells, increased. Aged thymic epithelium undergoes changes including appearance of big epithelial free areas, decrease of K8+ K5- areas, which, however, contain higher proportions of Ly51+ UEA1- cortical epithelial cells, in correlation with reduced Aire+ medullary epithelial cells. Also, aged thymuses particularly those derived from mutant mice exhibited increased collagen IV, fat-storing cells, and connective cells. CONCLUSIONS: The absence of EphB accelerates the alterations undergone throughout life by both thymic epithelium and thymocytes, and the proportions of peripheral naïve and memory T cells, all of which are hallmarks of immune aging.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptor EphB2/genética , Receptor EphB3/genética , Timo/crescimento & desenvolvimento , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Células Epiteliais/imunologia , Sistema Imunitário , Masculino , Camundongos , Mutação , Transdução de Sinais , Timócitos/citologia , Timo/imunologia , Timo/metabolismo
16.
J Biol Chem ; 295(12): 3932-3944, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32060095

RESUMO

Eph receptors are a family of receptor tyrosine kinases that control directional cell movement during various biological processes, including embryogenesis, neuronal pathfinding, and tumor formation. The biochemical pathways of Eph receptors are context-dependent in part because of the varied composition of a heterotypic, oligomeric, active Eph receptor complex. Downstream of the Eph receptors, little is known about the essential phosphorylation events that define the context and instruct cell movement. Here, we define a pathway that is required for Eph receptor B2 (EphB2)-mediated cell sorting and is conserved among multiple Eph receptors. Utilizing a HEK293 model of EphB2+/ephrinB1+ cell segregation, we found that the scaffold adaptor protein SH2 domain-containing adaptor protein B (Shb) is essential for EphB2 functionality. Further characterization revealed that Shb interacts with known modulators of cytoskeletal rearrangement and cell mobility, including Nck adaptor protein (Nck), p120-Ras GTPase-activating protein (RasGAP), and the α- and ß-Chimaerin Rac GAPs. We noted that phosphorylation of Tyr297, Tyr246, and Tyr336 of Shb is required for EphB2-ephrinB1 boundary formation, as well as binding of Nck, RasGAP, and the chimaerins, respectively. Similar complexes were formed in the context of EphA4, EphA8, EphB2, and EphB4 receptor activation. These results indicate that phosphotyrosine-mediated signaling through Shb is essential in EphB2-mediated heterotypic cell segregation and suggest a conserved function for Shb downstream of multiple Eph receptors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quimerinas/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptor EphB2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Separação Celular , Proteínas Quimerinas/química , Efrina-B1/genética , Efrina-B1/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas , Proteínas Oncogênicas/química , Fosforilação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Receptor EphB2/química , Receptor EphB2/genética , Transdução de Sinais , Domínios de Homologia de src
17.
Biol Reprod ; 102(4): 950-962, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836902

RESUMO

Germline stem and progenitor cells can be extracted from the adult mouse testis and maintained long-term in vitro. Yet, the optimal culture conditions for preserving stem cell activity are unknown. Recently, multiple members of the Eph receptor family were detected in murine spermatogonia, but their roles remain obscure. One such gene, Ephb2, is crucial for maintenance of somatic stem cells and was previously found enriched at the level of mRNA in murine spermatogonia. We detected Ephb2 mRNA and protein in primary adult spermatogonial cultures and hypothesized that Ephb2 plays a role in maintenance of stem cells in vitro. We employed CRISPR-Cas9 targeting and generated stable mutant SSC lines with complete loss of Ephb2. The characteristics of Ephb2-KO cells were interrogated using phenotypic and functional assays. Ephb2-KO SSCs exhibited reduced proliferation compared to wild-type cells, while apoptosis was unaffected. Therefore, we examined whether Ephb2 loss correlates with activity of canonical pathways involved in stem cell self-renewal and proliferation. Ephb2-KO cells had reduced ERK MAPK signaling. Using a lentiviral transgene, Ephb2 expression was rescued in Ephb2-KO cells, which partially restored signaling and proliferation. Transplantation analysis revealed that Ephb2-KO SSCs cultures formed significantly fewer colonies than WT, indicating a role for Ephb2 in preserving stem cell activity of cultured cells. Transcriptome analysis of wild-type and Ephb2-KO SSCs identified Dppa4 and Bnc1 as differentially expressed, Ephb2-dependent genes that are potentially involved in stem cell function. These data uncover for the first time a crucial role for Ephb2 signaling in cultured SSCs.


Assuntos
Células-Tronco Adultas/metabolismo , Proliferação de Células/fisiologia , Receptor EphB2/metabolismo , Espermatogônias/metabolismo , Células-Tronco Adultas/citologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , Receptor EphB2/genética , Transdução de Sinais/fisiologia , Espermatogênese/fisiologia , Espermatogônias/citologia
18.
FASEB J ; 33(12): 13644-13659, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31601124

RESUMO

Patients with irritable bowel syndrome (IBS) show pain hypersensitivity and smooth muscle hypercontractility in response to colorectal distension (CRD). Synaptic plasticity, a key process of memory formation, in the enteric nervous system may be a novel explanation. This study aimed to explore the regulatory role of ephrinB2/ephB2 in enteric synaptic plasticity and colonic hyperreactive motility in IBS. Postinfectious (PI)-IBS was induced by Trichinella spiralis infection in rats. Isometric contractions of colonic circular muscle strips, particularly neural-mediated contractions, were recorded ex vivo. Meanwhile, ephrinB2/ephB2-mediated enteric structural and functional synaptic plasticity were assessed in the colonic muscularis, indicating that ephrinB2 and ephB2 were located on enteric nerves and up-regulated in the colonic muscularis of PI-IBS rats. Colonic hypersensitivity to CRD and neural-mediated colonic hypercontractility were present in PI-IBS rats, which were correlated with increased levels of cellular homologous fos protein (c-fos) and activity-regulated cystoskeleton-associated protein (arc), the synaptic plasticity-related immediate early genes, and were ameliorated by ephB2Fc (an ephB2 receptor blocker) or MK801 (an NMDA receptor inhibitor) exposure. EphrinB2/ephB2 facilitated synaptic sprouting and NMDA receptor-mediated synaptic potentiation in the colonic muscularis of PI-IBS rats and in the longitudinal muscle-myenteric plexus cultures, involving the Erk-MAPK and PI3K-protein kinase B pathways. In conclusion, ephrinB2/ephB2 promoted the synaptic sprouting and potentiation of myenteric nerves involved in persistent muscle hypercontractility and pain in PI-IBS. Hence, ephrinB2/ephB2 may be an emerging target for the treatment of IBS.-Zhang, L., Wang, R., Bai, T., Xiang, X., Qian, W., Song, J., Hou, X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS.


Assuntos
Efrina-B2/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Contração Muscular , Músculo Liso/fisiopatologia , Dor/etiologia , Receptor EphB2/metabolismo , Triquinelose/complicações , Animais , Modelos Animais de Doenças , Sistema Nervoso Entérico/fisiopatologia , Efrina-B2/genética , Motilidade Gastrointestinal , Síndrome do Intestino Irritável/parasitologia , Masculino , Plexo Mientérico/fisiopatologia , Plasticidade Neuronal , Dor/metabolismo , Dor/patologia , Ratos , Ratos Sprague-Dawley , Receptor EphB2/genética , Trichinella spiralis/patogenicidade , Triquinelose/parasitologia
19.
J Cell Sci ; 132(11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31076510

RESUMO

Interactions between different cell types can induce distinct contact inhibition of locomotion (CIL) responses that are hypothesised to control population-wide behaviours during embryogenesis. However, our understanding of the signals that lead to cell-type specific repulsion and the precise capacity of heterotypic CIL responses to drive emergent behaviours is lacking. Using a new model of heterotypic CIL, we show that fibrosarcoma cells, but not fibroblasts, are actively repelled by epithelial cells in culture. We show that knocking down EphB2 or ERK in fibrosarcoma cells specifically leads to disruption of the repulsion phase of CIL in response to interactions with epithelial cells. We also examine the population-wide effects when these various cell combinations are allowed to interact in culture. Unlike fibroblasts, fibrosarcoma cells completely segregate from epithelial cells and inhibiting their distinct CIL response by knocking down EphB2 or ERK family proteins also disrupts this emergent sorting behaviour. These data suggest that heterotypic CIL responses, in conjunction with processes such as differential adhesion, may aid the sorting of cell populations.


Assuntos
Comunicação Celular/fisiologia , Inibição de Contato/fisiologia , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células 3T3 , Animais , Linhagem Celular , Movimento Celular/fisiologia , Separação Celular , Desenvolvimento Embrionário/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibrossarcoma/metabolismo , Humanos , Camundongos , Receptor EphB2/genética
20.
Mol Cell Biochem ; 459(1-2): 83-93, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089935

RESUMO

It is well known that Rho family small GTPases (Rho GTPase) has a role of molecular switch in intracellular signal transduction. The switch cycle between GTP-bound and GDP-bound state of Rho GTPase regulates various cell responses such as gene transcription, cytoskeletal rearrangements, and vesicular trafficking. Rho GTPase-specific guanine nucleotide exchange factors (RhoGEFs) are regulated by various extracellular stimuli and activates Rho GTPase such as RhoA, Rac1, and Cdc42. The molecular mechanisms that regulate RhoGEFs are poorly understood. Our studies reveal that Dbl's big sister (DBS), a RhoGEF for Cdc42 and RhoA, is phosphorylated at least on tyrosine residues at 479, 660, 727, and 926 upon stimulation by SRC signaling and that the phosphorylation at Tyr-660 is particularly critical for the serum response factor (SRF)-dependent transcriptional activation of DBS by Ephrin type-B receptor 2 (EPHB2)/SRC signaling. In addition, our studies also reveal that the phosphorylation of Tyr-479 and Tyr-660 on DBS leads to the actin cytoskeletal reorganization by EPHB2/SRC signaling. These findings are thought to be useful for understanding pathological conditions related to DBS such as cancer and non-syndromic autism in future.


Assuntos
Receptor EphB2/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Células HEK293 , Humanos , Receptor EphB2/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA