Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 17(4): 343-354, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255751

RESUMO

INTRODUCTION: The neurohormone melatonin (N-acetyl-5-methoxytryptamine) regulates circadian rhythms exerting a variety of effects in the central nervous system and in periphery. These activities are mainly mediated by activation of MT1 and MT2 GPCRs. MT1/MT2 agonist compounds are used clinically for insomnia, depression, and circadian rhythm disturbances. AREA COVERED: The following review describes the design strategies that have led to the identification of melatonin receptor ligands, guided by in silico approaches and molecular modeling. Initial ligand-based design, mainly relying on pharmacophore modeling and 3D-QSAR, has been flanked by structure-based virtual screening, given the recent availability of MT1 and MT2 crystal structures. Receptor ligands with different activity profiles, agonist/antagonist and subtype-selective compounds, are available. EXPERT OPINION: An insight on the pharmacological characterization and therapeutic perspectives for relevant ligands is provided. In silico drug discovery has been instrumental in the design of novel ligands targeting melatonin receptors. Ligand-based approaches has led to the construction of a solid framework defining structure-activity relationships to obtain compounds with a tailored pharmacological profile. Structure-based techniques could integrate previous knowledge and provide compounds with novel chemotypes and pharmacological activity as drug candidates for disease conditions in which melatonin receptor ligands are currently being investigated, including cancer and pain.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Descoberta de Drogas , Humanos , Ligantes , Melatonina/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas
2.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G682-G689, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668398

RESUMO

Tissue injury healing is impaired in aging, and this impairment is caused in part by reduced angiogenesis. Melatonin, a neuroendocrine hormone that regulates sleep and circadian rhythm, is also produced in the gastrointestinal tract. The expression of melatonin receptors MT1 and MT2 in gastric endothelial cells and their roles in aging-related impairment of gastric angiogenesis have not been examined. We hypothesized that MT1 and MT2 expression is reduced in gastric endothelial cells of aging rats and that melatonin treatment can upregulate their expression and improve angiogenesis. We examined the expression of MT1 and MT2 in gastric endothelial cells (GECs) isolated from young and aging rats. We also examined the effects of melatonin treatment on angiogenesis, GEC mitochondrial function, expression of vascular endothelial growth factor (VEGF), its signaling receptor (VEGFR-2), and the inhibitor of apoptosis protein, survivin. Young and aging GECs expressed MT1 (in the cytoplasm and mitochondria) and MT2 (in nucleus and mitochondria). In aging GECs, MT1 and MT2 levels, in vitro angiogenesis, and mitochondrial membrane potential were significantly reduced (by 1.5-fold, 1.9-fold, 3.1-fold, and 1.63-fold, respectively) compared with young GECs. Melatonin treatment of aging GECs significantly increased MT1 and MT2 expression compared with the controls, induced nuclear translocation of MT1, and significantly ameliorated the aging-related impairment of angiogenesis and mitochondrial function. Aging GECs have significantly reduced MT1 and MT2 expression, angiogenesis, and mitochondrial membrane potential compared with young GECs. Treatment of aging GECs with melatonin increases expression of VEGF receptor and survivin and ameliorates aging-related impaired angiogenesis and mitochondrial function.NEW & NOTEWORTHY This study showed reduced expression of melatonin receptors MT1 and MT2, angiogenesis, and mitochondrial function in gastric endothelial cells (GECs) isolated from aging rats. Treatment of aging GECs with melatonin increases expression of VEGF receptor and survivin and ameliorates aging-related impaired angiogenesis and mitochondrial function. These studies provide new insight into the mechanisms of the aging-related impairment of angiogenesis and delayed tissue injury healing and provide a rationale for melatonin treatment to reverse these abnormalities.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Mucosa Gástrica/irrigação sanguínea , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Survivina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores Etários , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Ratos Endogâmicos F344 , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais
3.
Reprod Fertil Dev ; 33(3): 198-208, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33524309

RESUMO

Based on our previous study in follicles, the first aim of this work was to evaluate the effect of melatonin in the swine corpus luteum (CL). Luteal cells were exposed to 10 and 20pg mL-1 melatonin. We evaluated the effect on proliferation (bromo-deoxy-uridine uptake), steroidogenesis (progesterone) and redox status by means of Griess test (nitric oxide production), WST-1 test (superoxide anion generation) and FRAP test (non-enzymatic antioxidant power). The results showed a significant increase in antioxidant power, as well as a reduction in the other parameters analysed. These data and the expression of MT2 observed in luteal cells allow us to hypothesise a physiological role of melatonin in the regulation of CL functionality. The reproductive function is dependent on energy reserves stored in adipose tissue. Therefore, we sought to verify the effect of melatonin on adipose stromal cells (ASCs). MT2 receptor expression was detected in ASCs and the presence of gene markers (PPARγ and leptin) before and after adipogenic differentiation was verified. The differentiation was significantly inhibited by melatonin, as well as cell viability. In conclusion, present results suggest that melatonin exerts a potential inhibitory action on luteal function and adipogenesis, possibly mediated by MT2.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Corpo Lúteo/efeitos dos fármacos , Melatonina/farmacologia , Células Estromais/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Corpo Lúteo/citologia , Corpo Lúteo/metabolismo , Feminino , Leptina/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , PPAR gama/metabolismo , Progesterona/biossíntese , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Células Estromais/metabolismo , Sus scrofa
4.
Elife ; 92020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32118583

RESUMO

Melatonin receptors MT1 and MT2 are involved in synchronizing circadian rhythms and are important targets for treating sleep and mood disorders, type-2 diabetes and cancer. Here, we performed large scale structure-based virtual screening for new ligand chemotypes using recently solved high-resolution 3D crystal structures of agonist-bound MT receptors. Experimental testing of 62 screening candidates yielded the discovery of 10 new agonist chemotypes with sub-micromolar potency at MT receptors, with compound 21 reaching EC50 of 0.36 nM. Six of these molecules displayed selectivity for MT2 over MT1. Moreover, two most potent agonists, including 21 and a close derivative of melatonin, 28, had dramatically reduced arrestin recruitment at MT2, while compound 37 was devoid of Gi signaling at MT1, implying biased signaling. This study validates the suitability of the agonist-bound orthosteric pocket in the MT receptor structures for the structure-based discovery of selective agonists.


Assuntos
Descoberta de Drogas/métodos , Receptores de Melatonina/agonistas , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Relação Estrutura-Atividade
5.
Pharmacol Res Perspect ; 8(1): e00539, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31893123

RESUMO

Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT1 and MT2. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited. We chose to fill this gap to better describe a panel of compounds that have been only partially characterized in terms of functionality. First, we characterized HEK cells expressing MT1 or MT2, and several signaling routes with melatonin itself to validate the approach: GTPγS, cAMP production, internalization, ß-arrestin recruitment, and cell morphology changes (CellKey ® ). Second, we chose 21 compounds from our large melatoninergic chemical library and characterized them using this panel of signaling pathways. Notably, antagonists were infrequent, and their functionality depended largely on the pathway studied. This will permit redefining the availability of molecular tools that can be used to better understand the in situ activity and roles of these receptors.


Assuntos
Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células CHO , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , beta-Arrestinas/metabolismo
6.
Bioorg Chem ; 85: 349-356, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658234

RESUMO

A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and ß-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the ß-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.


Assuntos
Melatonina/análogos & derivados , Melatonina/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , AMP Cíclico/metabolismo , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Ligantes , Melatonina/metabolismo , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , beta-Arrestinas/metabolismo
7.
J Formos Med Assoc ; 118(8): 1177-1186, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30316678

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.


Assuntos
Analgésicos/farmacologia , Melatonina/farmacologia , Neuralgia/tratamento farmacológico , Receptor MT2 de Melatonina/agonistas , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Melatonina/fisiologia , Receptor MT2 de Melatonina/fisiologia
8.
Free Radic Biol Med ; 131: 345-355, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553970

RESUMO

Traumatic brain injury (TBI) is a principal cause of death and disability worldwide. Melatonin, a hormone made by the pineal gland, is known to have anti-inflammatory and antioxidant properties. In this study, using a weight-drop model of TBI, we investigated the protective effects of ramelteon, a melatonin MT1/MT2 receptor agonist, and its underlying mechanisms of action. Administration of ramelteon (10 mg/kg) daily at 10:00 a.m. alleviated TBI-induced early brain damage on day 3 and long-term neurobehavioral deficits on day 28 in C57BL/6 mice. Ramelteon also increased the protein levels of interleukin (IL)-10, IL-4, superoxide dismutase (SOD), glutathione, and glutathione peroxidase and reduced the protein levels of IL-1ß, tumor necrosis factor, and malondialdehyde in brain tissue and serum on days 1, 3, and 7 post-TBI. Similarly, ramelteon attenuated microglial and astrocyte activation in the perilesional cortex on day 3. Furthermore, ramelteon decreased Keap 1 expression, promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation, and increased levels of downstream proteins, including SOD-1, heme oxygenase-1, and NQO1 on day 3 post-TBI. However, in Nrf2 knockout mice with TBI, ramelteon did not decrease the lesion volume, neuronal degeneration, or myelin loss on day 3; nor did it mitigate depression-like behavior or most motor behavior deficits on day 28. Thus, timed ramelteon treatment appears to prevent inflammation and oxidative stress via the Nrf2-antioxidant response element pathway and might represent a potential chronotherapeutic strategy for treating TBI.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Indenos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Inflamação , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Biol Pharm Bull ; 41(12): 1778-1790, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504680

RESUMO

Melatonin has been suggested to play important roles in lipid metabolism as well as circadian rhythm; however, very few studies explored the effects of ramelteon, a selective melatonin receptor agonist, on serum lipid profiles. In this study effects of ramelteon on serum lipid profiles were explored, comparing to those of other sleep-promoting drugs including benzodiazepines and non-benzodiazepines, in patients with insomnia. We retrospectively reviewed medical charts of outpatients who were treated with ramelteon (8 mg/d) or other sleep-promoting drugs for no less than 8 weeks during the period between October 1st, 2011 and September 30th, 2014, and compared the changes in serum lipid profiles between the two groups. Patients with regular dialysis or malignant diseases treated with cytotoxic anti-cancer drugs, or whose lipid-lowering drugs were altered during the study period, were excluded. Among 365 or 855 outpatients treated with ramelteon or other sleep-promoting drugs, 35 or 46 patients, respectively, had complete serum low-density lipoprotein cholesterol (LDL-C) or non-high-density lipoprotein cholesterol (non-HDL-C) data. Serum LDL-C was significantly reduced from 103.1±4.4 to 94.6±4.2 mg/dL (8.2% reduction, p<0.05, n=31) in the ramelteon group, and was not significantly changed (p=0.23, n=40) in the other sleep-promoting drug group. Non-HDL-C was significantly decreased from 138.8±6.0 to 130.6±4.9 mg/dL (5.9% reduction, p<0.05, n=32) in the ramelteon group, and was not significantly altered (p=0.29, n=42) in the other sleep-promoting drug group. Ramelteon, but not other sleep-promoting drugs, specifically lowers serum LDL-C and non-HDL-C levels.


Assuntos
Colesterol/sangue , Indenos/farmacologia , Lipoproteínas LDL/sangue , Lipoproteínas/sangue , Medicamentos Indutores do Sono/farmacologia , Idoso , Feminino , Humanos , Masculino , Prontuários Médicos , Pessoa de Meia-Idade , Projetos Piloto , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Estudos Retrospectivos
10.
Aging (Albany NY) ; 10(10): 2954-2972, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30362962

RESUMO

Transplantation of adipose-derived mesenchymal stem cells (ADMSCs) can aid in the treatment of numerous diseases in animals. However, natural aging during in vitro expansion of ADMSCs prior to their use in transplantation restricts their beneficial effects. Melatonin is reported to exert biorhythm regulation, anti-oxidation, and anti-senescence effects in various animal and cell models. Herein, by using a senescent canine ADMSCs (cADMSCs) cell model subjected to multiple passages in vitro, we investigated the effects of melatonin on ADMSCs senescence. We found that melatonin alleviates endoplasmic reticulum stress (ERS) and cell senescence. MT1/MT2 melatonin receptor inhibitor, luzindole, diminished the mRNA expression levels and rhythm expression amplitude of Bmal1 and Nrf2 genes. Nrf2 knockdown blocked the stimulatory effects of melatonin on endoplasmic reticulum-associated degradation (ERAD)-related gene expression and its inhibitory effects on ERS-related gene expression. At the same time, the inhibitory effects of melatonin on the NF-κB signaling pathway and senescence-associated secretory phenotype (SASP) were blocked by Nrf2 knockdown in cADMSCs. Melatonin pretreatment improved the survival of cADMSCs and enhanced the beneficial effects of cADMSCs transplantation in canine acute liver injury. These results indicate that melatonin activates Nrf2 through the MT1/MT2 receptor pathway, stimulates ERAD, inhibits NF-κB and ERS, alleviates cADMSCs senescence, and improves the efficacy of transplanted cADMSCs.


Assuntos
Tecido Adiposo/citologia , Senescência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melatonina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Modelos Animais de Doenças , Cães , Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 18(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644418

RESUMO

The search for melatonin receptor agonists and antagonists specific towards one of the receptor subtypes will extend our understanding of the role of this system in relaying circadian information to the body. A series of compounds derived from a hit compound discovered in a screening process led to powerful agonists specific for one of the isoform of the melatonin receptor namely, MT2. The compounds are based on a poorly explored skeleton in the molecular pharmacology of melatonin. By changing the steric hindrance of one substituent (i.e., from a hydrogen atom to a tributylstannyl group), we identified a possible partial agonist that could lead to antagonist analogues. The functionalities of these compounds were measured with a series of assays, including the binding of GTPγS, the inhibition of the cyclic AMP production, the ß-arrestin recruitment, and the cell shape changes as determined by cellular dielectric spectroscopy (CellKey®). The variations between the compounds are discussed.


Assuntos
Receptor MT2 de Melatonina/agonistas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Descoberta de Drogas , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ligantes , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/metabolismo , beta-Arrestinas/metabolismo
12.
Hum Cell ; 30(3): 209-215, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382516

RESUMO

The incidence of endometrial cancer is increasing, making it the fifth most common cancer worldwide. To date, however, there is no standard therapy for patients with recurrent endometrial cancer. Melatonin, a hormone secreted by the pineal gland, has been shown to have anti-tumor effects in various tumor types. Although melatonin is available as a supplement, it has not been approved for cancer treatment. Ramelteon, a selective melatonin receptor type 1 and 2 (MT1/MT2) receptor agonist, has been approved to treat sleep disorders, suggesting that ramelteon may be effective in the treatment of endometrial cancer. To determine whether this agent may be effective in the treatment of endometrial cancer, this study investigated the ability of ramelteon to suppress the proliferation and invasiveness of HHUA cells, an estrogen receptor-positive endometrial cancer cell line. Ramelteon at 10-8 M maximally suppressed the proliferation of HHUA cells, reducing the percentage of Ki-67 positive proliferating cells. This effect was completely blocked by luzindole, a MT1/MT2 receptor antagonist. Furthermore, ramelteon inhibited HHUA cell invasion and reduced the expression of the MMP-2 and MMP-9 genes. These results suggested that ramelteon may be a candidate for the treatment of recurrent endometrial cancer, with activity similar to that of melatonin.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/patologia , Indenos/farmacologia , Invasividade Neoplásica , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Linhagem Celular Tumoral , Depressão Química , Feminino , Expressão Gênica , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Invasividade Neoplásica/genética
13.
Expert Opin Ther Targets ; 20(10): 1209-18, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27082492

RESUMO

INTRODUCTION: Disorders of rhythmicity can cause a variety of pathologies and are known to impair processes involved in metabolism, as well as in cardiovascular disease and cancer. Developing strategies to treat or prevent such diseases is a new challenge for medicine. Rhythms depend on a complex multi-oscillatory circadian network which, in mammals, is hierarchically organized with the suprachiasmatic nuclei (SCN) as master clock. The SCN, thus form an ideal structure for target discovery in circadian pathologies. AREAS COVERED: The development of strategies to treat or prevent disorders of rhythmicity is a new challenge for medicine. Several pharmacological approaches have been suggested, but until now, it has been mostly melatonin (MTL) or MTL-agonists which have demonstrated usefulness in modulating clock activities in vivo. A great number of structurally different MTL receptor ligands have been developed, some of which are already approved and marketed as drugs. The MTL receptor involved in phase-shifting circadian rhythms (chronobiotic effect) is the MT1 subtype. EXPERT OPINION: As the two receptor subtypes for MTL may have divergent functions, the development of highly selective MT1 and MT2 agonists (and antagonists) is key for the discovery of novel therapeutic agents in specifically defined circadian pathologies. The identification of cells expressing the different MTL receptor subtypes should also permit a better understanding of MLT physiology/pharmacology.


Assuntos
Transtornos Cronobiológicos/tratamento farmacológico , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano/fisiologia , Humanos , Ligantes , Melatonina/administração & dosagem , Melatonina/agonistas , Melatonina/metabolismo , Terapia de Alvo Molecular , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/antagonistas & inibidores , Núcleo Supraquiasmático/metabolismo
14.
Cell Death Differ ; 22(4): 583-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25501601

RESUMO

The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer's disease, the most common cause of dementia in the elderly, suggesting that preservation of the MT2 receptor may be beneficial to these neurological disorders. However, direct evidence linking the MT2 receptor to cognition-related synaptic plasticity remains to be established. Here, we report that the MT2 receptor, but not the MT1 receptor, is essential for axonogenesis both in vitro and in vivo. We find that axon formation is retarded in MT2 receptor knockout mice, MT2-shRNA electroporated brain slices or primary neurons treated with an MT2 receptor selective antagonist. Activation of the MT2 receptor promotes axonogenesis that is associated with an enhancement in excitatory synaptic transmission in central neurons. The signaling components downstream of the MT2 receptor consist of the Akt/GSK-3ß/CRMP-2 cascade. The MT2 receptor C-terminal motif binds to Akt directly. Either inhibition of the MT2 receptor or disruption of MT2 receptor-Akt binding reduces axonogenesis and synaptic transmission. Our data suggest that the MT2 receptor activates Akt/GSK-3ß/CRMP-2 signaling and is necessary and sufficient to mediate functional axonogenesis and synaptic formation in central neurons.


Assuntos
Axônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Recuperação de Fluorescência Após Fotodegradação , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Técnicas In Vitro , Melatonina/farmacologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia
15.
Pharmacology ; 93(5-6): 244-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25059758

RESUMO

BACKGROUND/AIMS: The MT2 melatonin receptor is a potential target for treating circadian rhythm sleep disorders. This study aims to characterize the recently identified MT2 melatonin receptor agonist. METHODS: The pharmacological properties of the MT2 melatonin receptor-selective agonist as exemplified by compound 1 [N-(2-[7-benzyl-1,6-dihydro-2H-indeno(5,4-b)furan-8-yl]ethyl)acetamide] were evaluated by use of cell-free binding and cell-based functional assays. RESULTS: Competition binding assays using 2-[(125)I]iodomelatonin revealed rapid, reversible, and high-affinity binding of compound 1 to human, mouse, and rat MT2 melatonin receptors. cAMP, ERK1/2, and PathHunter ß-arrestin recruitment assays revealed partial agonist activities. However, compound 1 induced a more intense internalization of human MT2 melatonin receptor than melatonin. Based on studies using structurally related analogs of compound 1, we further demonstrated that the extent of internalization is independent of the intrinsic efficacy of agonists. CONCLUSION: These findings provide novel insights into the relationship between intrinsic agonist efficacy and agonist-induced internalization and demonstrate that compound 1 could serve as a pharmacological tool for future studies to elucidate the detailed molecular mechanism of MT2 receptor internalization.


Assuntos
Acetamidas/metabolismo , Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo , Animais , Arrestinas/metabolismo , Ligação Competitiva , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Humanos , Melatonina/análogos & derivados , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ratos , beta-Arrestinas
16.
Crit Care Med ; 42(1): e22-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24145838

RESUMO

OBJECTIVES: Melatonin has been demonstrated to improve survival after experimental sepsis via antioxidant effects. Yet, recent evidence suggests that this protective capacity may also rely on melatonin receptor activation. Therefore, the present study was designed to investigate whether selective melatonin receptor-agonist ramelteon may influence survival and immune response in a model of polymicrobial sepsis in rats, wild-type and melatonin receptor MT1/MT2 double knockout mice. DESIGN: Prospective, randomized, controlled study. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats (200-250 g) and male C3H/HeN wild-type and MT1/MT2 receptor knockout mice (20-22 g). INTERVENTIONS: Animals underwent cecal ligation and incision and remained anesthetized for evaluation of survival for 12 hours (rats: n = 15 per group) or 15 hours (mice: n = 10 per group). Analysis of immune response by means of enzyme-linked immunosorbent assay was performed before and 5 hours after cecal ligation and incision (rats only; n = 5 per group). After induction of sepsis, animals were treated IV with vehicle, different doses of melatonin (rats: 0.01/0.1/1.0/10 mg/kg; mice: 1.0 mg/kg), ramelteon, melatonin receptor-antagonist luzindole, ramelteon + luzindole, or melatonin + luzindole (each 1.0 mg/kg). Sham controls underwent laparotomy but not cecal ligation and incision. MEASUREMENTS AND MAIN RESULTS: Compared with vehicle, administration of ramelteon or melatonin significantly improved median survival time in rats (sepsis/melatonin [0.1 mg/kg], 554 min, [1.0 mg/kg] 570 min, [10 mg/kg] 579 min; sepsis/ramelteon, 468 min; each p < 0.001 vs sepsis/vehicle, 303 min) and wild-type mice (sepsis/melatonin, 781 min; sepsis/ramelteon, 701 min; both p < 0.001 vs sepsis/vehicle, 435 min). This effect was completely antagonized by coadministration of luzindole in all groups. Melatonin, ramelteon, or luzindole had no significant effect on survival time in knockout mice. Significantly elevated concentrations of tumor necrosis factor-α, interleukin-6, and interleukin-10 were observed 5 hours after cecal ligation and incision in rats (p < 0.05 vs baseline and corresponding sham); neither ramelteon nor melatonin treatment significantly affected immune response. CONCLUSIONS: Melatonin receptors mediate improvements of survival after polymicrobial sepsis in rats and mice; this effect appears to be independent from major alterations of cytokine release.


Assuntos
Receptores de Melatonina/fisiologia , Sepse/fisiopatologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Indenos/farmacologia , Interleucina-10/sangue , Interleucina-6/sangue , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT1 de Melatonina/fisiologia , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/fisiologia , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Sepse/mortalidade , Triptaminas/farmacologia , Fator de Necrose Tumoral alfa/sangue
17.
Int J Neuropsychopharmacol ; 18(6)2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25550330

RESUMO

BACKGROUND: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. METHODS: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. RESULTS: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. CONCLUSIONS: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential.


Assuntos
Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucuronidase/deficiência , Hipocampo/efeitos dos fármacos , Melatonina/farmacologia , Transtornos da Memória/prevenção & controle , Memória/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptor MT2 de Melatonina/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Glucuronidase/genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Proteínas Klotho , Transtornos da Memória/enzimologia , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Camundongos Endogâmicos C3H , Camundongos Knockout , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/metabolismo
18.
Mol Cell Endocrinol ; 375(1-2): 1-9, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23701823

RESUMO

The role of melatonin, a regulator of circadian rhythm, in adrenocorticotropin (ACTH) production by corticotrope cells has not been elucidated. In this study, we investigated the effect of melatonin on ACTH production in relation to the biological activity of bone morphogenetic protein (BMP)-4 using mouse corticotrope AtT20 cells that express melatonin type-1 (MT1R) but not type-2 (MT2R) receptors. We previously reported that BMP-4 inhibits corticotropin-releasing hormone (CRH)-induced ACTH production and proopiomelanocortin (POMC) transcription by inhibiting MAPK signaling. Both melatonin and an MT1R/MT2R agonist, ramelteon, suppressed CRH-induced ACTH production, POMC transcription and cAMP synthesis. The inhibitory effects of ramelteon on basal and CRH-induced POMC mRNA and ACTH levels were more potent than those of melatonin. Treatment with melatonin or ramelteon in combination with BMP-4 additively suppressed CRH-induced ACTH production. Of note, the level of MT1R expression was upregulated by BMP-4 stimulation. The suppressive effects of melatonin and ramelteon on POMC transcription and cAMP synthesis induced by CRH were not affected by an MT2R antagonist, luzindole. On the other hand, BMP-4-induced Smad1/5/8 phosphorylation and the expression of a BMP target gene, Id-1, were augmented in the presence of melatonin and ramelteon. Considering that the expression levels of BMP receptors, ALK-3/BMPRII, were increased by ramelteon, MT1R action may play an enhancing role in BMP-receptor signaling. Among the MT1R signaling pathways including AKT, ERK and JNK pathways, inhibition of AKT signaling functionally reversed the MT1R effects on both CRH-induced POMC transcription and BMP-4-induced Id-1 transcription. Collectively, MT1R signaling and BMP-4 actions were mutually augmented, leading to fine-tuning of ACTH production by corticotrope cells.


Assuntos
Hormônio Adrenocorticotrópico/biossíntese , Proteína Morfogenética Óssea 4/fisiologia , Corticotrofos/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Linhagem Celular , Meios de Cultura Livres de Soro , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Expressão Gênica , Humanos , Indenos/farmacologia , Sistema de Sinalização das MAP Quinases , Melatonina/fisiologia , Camundongos , Hipófise/citologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Wistar , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/genética , Proteínas Smad/metabolismo
19.
Exp Eye Res ; 107: 1-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23201027

RESUMO

The present study was designed to determine the effects of melatonin and its receptor agonists on SNP-released nitric oxide (NO) and cGMP production in aqueous humor producing cells of the ciliary body because these effects may play a role in melatonin receptor-mediated regulation of intraocular pressure (IOP). NO release protocols were carried out using human non-pigmented ciliary epithelial (hNPCE) cells treated in dye free DMEM containing l-arginine (10(-3) M). The cGMP experimental protocols were performed using dye free DMEM containing 3-isobutyl-1-methylxanthine (IBMX, 10(-4) M). The effects of varying concentrations (10(-13), 10(-11), 10(-9), 10(-7), and 10(-5) M) of melatonin, 5-MCA-NAT (putative MT(3) agonist), N-butanoyl-2-(2-methoxy-6H-isoindolo[2, 1-a]indol-11-yl)ethanamine (IIK7; selective MT(2) agonist) or S-27633-1 (selective MT(1) agonist) on sodium nitroprusside (SNP)-released NO or cGMP production were determined in separate experiments. NO and cGMP levels were measured using a colorimetric assay or enzyme immunoassay (EIA), respectively. Melatonin receptor selectivity was evaluated using luzindole (LUZ; nonselective MT(1)/MT(2) antagonist) or 4-phenyl-2-propionamidotetralin (4P-PDOT; selective MT(2) antagonist). Melatonin, 5-MCA-NAT, and IIK7 all caused concentration-dependent reduction of SNP-released NO and cGMP production. The inhibitory actions of melatonin, 5-MCA-NAT and IIK7 were either completely blocked at 10(-13), 10(-11), and 10(-9) M concentrations of the agonists or partially at 10(-7) and 10(-5) M in the presence of luzindole or 4P-PDOT. Results from this study suggest that melatonin and its analogs, 5-MCA-NAT and IIK7 inhibit SNP-released NO and cGMP production via activation of MT(2) receptors in human NPCE cells. These actions may play a role in melatonin agonist-induced regulation of aqueous humor secretion and IOP.


Assuntos
Corpo Ciliar/efeitos dos fármacos , GMP Cíclico/biossíntese , Melatonina/farmacologia , Óxido Nítrico/metabolismo , Nitroprussiato/toxicidade , Receptor MT2 de Melatonina/agonistas , Humor Aquoso/fisiologia , Células Cultivadas , Corpo Ciliar/metabolismo , Colorimetria , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Imunoensaio , Pressão Intraocular/fisiologia , Isoindóis/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptores de Melatonina/agonistas , Triptaminas/farmacologia
20.
Mol Carcinog ; 51(8): 608-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21809392

RESUMO

Melatonin inhibits growth and invasive capacity of colon cancer cells in vitro through its membrane (MT1 and MT2) and/or nuclear receptors (RORα). Previous studies showed that this indoleamine is present in both the normal and colon cancer at similar levels. Therefore, we analyzed MT1, MT2, and RORα expression in tumor samples versus normal mucosa (NM) from patients suffering from colorectal cancer (CRC). Given the existence of sex differences in the incidence and pathology of CRC and the involvement of steroid receptors in the oncostatic actions of melatonin in some types of cancer, we also analyzed the expression of androgen (AR) and estrogen receptor (ER) α and ERß. Finally, we conducted some experiments in colon cancer cell lines to corroborate the experiments carried out in human tumors. We found a decreased expression of MT1, MT2, AR, ERα, and ERß in tumor samples versus NM, but no changes in RORα expression in the whole cohort of patients. Classifying tumors by stage and gender, MT1, MT2, AR, ERα, and ERß expression decreased in both early stage and advanced tumors, but only in male patients. On the other hand, MT1 and MT2 expression correlated positively with AR, ERα, and ERß expression in male patients and with ERα or ERß in female patients. In vitro, the invasive capacity was higher in cells with the least expression of MT1, MT2, and AR, and nonselective MT1/MT2 agonists inhibited cell growth and invasion. These results could indicate a possible interaction of these pathways.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Idoso , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Células HT29 , Humanos , Immunoblotting , Indenos/farmacologia , Masculino , Melatonina/análogos & derivados , Melatonina/farmacologia , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA