Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochem Biophys Res Commun ; 613: 174-179, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35597124

RESUMO

The spleen is required for the vagal cholinergic anti-inflammatory activity to maintain systemic immune homeostasis, but the underlying mechanism of this function is not fully understood yet. We hypothesized that vagus nerve mediates alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in monocytes, an essential regulator of cholinergic anti-inflammatory activity, and the spleen is essential site for this process. To verify this hypothesis, mice were subjected to splenectomy or celiac vagotomy. The level of α7nAChR expression in circulating monocytes was analyzed by real-time PCR. Impact of α7nAChR agonist PNU282987 on LPS-evoked release of TNF-α and IL-1ß from circulating monocytes was assessed by ELISA. The effect of norepinephrine (NE), acetylcholine (ACh) and neuregulin-1 (NRG-1) on α7nAChR expression was detected by real-time PCR. We found that splenectomy or celiac vagotomy abrogated α7nAChR expression in circulating monocytes. LPS-induced release of TNF-α and IL-1ß from these monocytes was not alleviated significantly by PNU282987 as compared with that of sham mice. NE and ACh addition fails to stimulate α7nAChR expression, but, NRG-1 treatment can significantly induce α7nAChR expression in these monocytes compared with untreated cells in vitro. Overall, our results reveal that celiac vagus nerve mediates α7nAChR expression in monocytes, and the spleen is indispensable site for this process.


Assuntos
Monócitos , Baço , Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Acetilcolina/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Monócitos/metabolismo , Receptores Colinérgicos/metabolismo , Baço/citologia , Baço/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
Cell Mol Life Sci ; 79(1): 64, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013841

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widespread throughout the central nervous system. Signaling through nAChRs contributes to numerous higher-order functions, including memory and cognition, as well as abnormalities such as nicotine addiction and neurodegenerative disorders. Although recent studies indicate that the PDZ-containing proteins comprising PSD-95 family co-localize with nicotinic acetylcholine receptors and mediate downstream signaling in the neurons, the mechanisms by which α7nAChRs are regulated remain unclear. Here, we show that the PDZ-LIM domain family protein PDLIM5 binds to α7nAChRs and plays a role in nicotine-induced α7nAChRs upregulation and surface expression. We find that chronic exposure to 1 µM nicotine upregulated α7, ß2-contained nAChRs and PDLIM5 in cultured hippocampal neurons, and the upregulation of α7nAChRs and PDLIM5 is increased more on the cell membrane than the cytoplasm. Interestingly, in primary hippocampal neurons, α7nAChRs and ß2nAChRs display distinct patterns of expression, with α7nAChRs colocalized more with PDLIM5. Furthermore, PDLIM5 interacts with α7nAChRs, but not ß2nAChRs in native brain neurons. Knocking down of PDLIM5 in SH-SY5Y abolishes nicotine-induced upregulation of α7nAChRs. In primary hippocampal neurons, using shRNA against PDLIM5 decreased both surface clustering of α7nAChRs and α7nAChRs-mediated currents. Proteomics analysis and isothermal titration calorimetry (ITC) results show that PDLIM5 interacts with α7nAChRs through the PDZ domain, and the interaction between PDLIM5 and α7nAChRs can be promoted by nicotine. Collectively, our data suggest a novel cellular role of PDLIM5 in the regulation of α7nAChRs, which may be relevant to plastic changes in the nervous system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipocampo/metabolismo , Proteínas com Domínio LIM/metabolismo , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Comportamento Aditivo/fisiopatologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Proteínas com Domínio LIM/genética , Neurônios/metabolismo , Domínios Proteicos/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fumar , Regulação para Cima , Receptor Nicotínico de Acetilcolina alfa7/biossíntese
3.
Neurotoxicology ; 85: 245-253, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34111468

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects many older people around the world. Numerous studies are underway to evaluate the protective effects of natural products in AD. Alpha-linoleic acid (ALA) is an essential unsaturated fatty acid that exhibits neuroprotective outcomes in rat models of ischemic stroke and Parkinson's disease. This research aimed to investigate the effect of ALA on oxidative stress, neuroinflammation, neuronal death, and memory deficit induced by amyloid-beta (Aß) peptide. After intrahippocampal injection of Aß1-42, rats received ALA (150 µg/kg, subcutaneously) for 14 consecutive days. ALA decreased the levels of malondialdehyde and nitric oxide, enhanced glutathione content, and increased the activity of catalase in the hippocampus of the rat model of AD. It also reduced the expression of tumor necrosis factor-α, interleukin-1ß, interleukin-6, nuclear factor-kappa B, and N-methyl-d-aspartate receptor subunits NR2A and NR2B mRNAs in the hippocampus, prevented the neuronal loss in the CA1 region, and enhanced the expression of α7 nicotinic acetylcholine receptor. In addition, ALA allowed Aß1-42-injected rats to spend less time and distance to reach the hidden platform in the Morris water maze test and to swim longer in the target quadrant. We concluded that ALA reduces the biochemical, molecular, histological, and behavioral changes caused by Aß1-42 and it may be an effective option for treating AD.


Assuntos
Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Ácido alfa-Linolênico/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7 , Peptídeos beta-Amiloides/toxicidade , Animais , Expressão Gênica , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/fisiologia , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Ácido alfa-Linolênico/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/genética
4.
Neurosci Lett ; 743: 135566, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352289

RESUMO

Smokers have a higher incidence of chronic pain than non-smokers, but the neural mechanism is not yet fully understood. Nicotine is the main component of tobacco and acts as an agonist for nicotinic cholinergic receptors (nAChRs) in the nervous system. This study was approved by the IACUC of UM. The effects of chronic nicotine administration on mechanical sensitivity were studied using a rat model. The changes in the expression levels of the α7 isoform of nAChR (α7-nAChR), inflammatory cytokines TNFα and COX-2, as well as the density of neuro-immune cells (astrocytes and microglia) were measured concurrently. The results indicate that long-term nicotine administration induces hypersensitivity to mechanical stimuli, as demonstrated by a significant reduction in the pain perception threshold. In response to nicotine, the expression levels of α7-nAChR increased in the periaqueductal gray matter (PAG) and decreased in the spinal cord. Acute administration of the selective α7-nAChR agonist CDP-Choline reversed this hypersensitivity. Chronic nicotine administration led to an increase of microglial cells in the dorsal horn of the spinal cord and increased expression levels of the cytokines TNFα and COX-2. This study suggests that decreased α7-nAChR expression in the spinal cord, as a result of long-term exposure to nicotine, may be causatively linked to chronic pain. Simultaneously, the increase of neuro-immune factors in the spinal cord is also a potential factor leading to chronic pain.


Assuntos
Modelos Animais de Doenças , Hiperalgesia/metabolismo , Nicotina/toxicidade , Medula Espinal/metabolismo , Tato/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Animais , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Citidina Difosfato Colina/farmacologia , Citidina Difosfato Colina/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Nicotina/administração & dosagem , Nicotina/agonistas , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/genética
5.
Front Immunol ; 12: 671167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975827

RESUMO

High-fat diet (HFD) consumption can trigger chronic inflammation in some tissues. However, it remains unclear if HFD induces chronic inflammation in the spleen. This investigation aims to address the effect of HFD consumption and exercise intervention on the level of tumor necrosis factor alpha (TNF-α) in the spleen. Rats were subjected to HFD feeding and/or moderate-intensity treadmill running. The TNF-α levels in plasma and spleen were detected by ELISA. The mass and total cell numbers of the spleen were measured. In addition, the expression of TNF-α and its relevant gene mRNAs in macrophages from the spleen were analyzed by qRT-PCR. We found that HFD consumption did not significantly affect the mass and total cell numbers of the spleen. However, HFD consumption significantly increased splenic TNF-α level, the expression of TNF-α, toll-like receptor 4, and nuclear factor κB p65 mRNAs. In contrast, the expression of nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) mRNA in macrophages was downregulated. Additionally, exercise abolished the increase in splenic TNF-α level as well as the abnormal expression of TNF-α and related gene mRNAs in macrophages in HFD-fed rats. In conclusion, our results reveal that HFD consumption increases TNF-α level in the spleen, which is along with upregulation of the expression of TLR4 and NF-κB mRNAs as well as downregulation of the expression of α7nAChR mRNA in splenic macrophages in rats. Exercise abolished detrimental effects of HFD on TNF-α level in the spleen and prevented abnormal expression of these genes in the macrophages from rat spleen.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/etiologia , Condicionamento Físico Animal , Baço/química , Fator de Necrose Tumoral alfa/análise , Animais , Ensaio de Imunoadsorção Enzimática , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Macrófagos/metabolismo , Masculino , NF-kappa B/biossíntese , NF-kappa B/genética , Especificidade de Órgãos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Corrida , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/genética
6.
Eur Neuropsychopharmacol ; 41: 92-105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33109433

RESUMO

The smoking incentive in patients with schizophrenia (SCZ) depends on stimulation of nicotinic acetylcholine receptors (nAChRs) in the central nervous system. To detect potential predictor genes for nicotine responses in SCZ, we explored common factor using research data in human and animal samples. In lymphoblastoid cell lines from SCZ, the mRNA expression level of α7 nAChR subunit was decreased. In SCZ-like model mice of phencyclidine (PCP; 10 mg/kg/day, subcutaneously for 14 days)-administered mice, the mRNA expression level of α7 nAChR subunit and protein expression level of α7 or α4 nAChR subunit were significantly decreased in the prefrontal cortex during PCP withdrawal. Protein, but not mRNA, expression levels of α7, α4, and ß2 nAChR subunits were significantly increased in the nucleus accumbens. Acute (-)-nicotine [(-)-NIC: 0.3 mg/kg, s.c.] treatment attenuated impairments of social behaviors and visual recognition memory. These effects of (-)-NIC were completely blocked by both methyllycaconitine, a selective α7 nAChR antagonist, and dihydro-ß-erythroidine (DHßE), a selective α4ß2 nAChR antagonist. (-)-NIC did not induce conditioned place preference, but enhanced sensitivity to methamphetamine-induced hyperactivity. These findings suggest that α7 nAChR is associated with development of disease and is implicated in the therapeutic effect of nicotine in SCZ. The smoking incentive in SCZ might be attributed to treat their own symptoms, rather than a result of (-)-NIC dependence, by stimulating α7 and/or α4ß2 nAChRs.


Assuntos
Dependência Psicológica , Nicotina/uso terapêutico , Fenciclidina/toxicidade , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Nicotina/farmacologia , Núcleo Accumbens/química , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Esquizofrenia/tratamento farmacológico , Interação Social/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/análise
7.
Biomed Pharmacother ; 131: 110611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890966

RESUMO

Hypertrophic scars often cause great pain to patients. It is generally believed that anti-inflammatory scar therapies are the best strategies for treatment because excessive inflammation is observed in hypertrophic scar tissue. However, the results of such treatment are unsatisfactory. In recent studies, immune stimulatory therapies have been suggested to be a preferable method for ameliorating hypertrophic scars. In this study, the expression of the human-specific gene CHRFAM7A, which has been reported to be a promoter of inflammation, was found to be lower in human hypertrophic scars than in normotrophic scars. The CHRFAM7A gene was overexpressed in a hypertrophic scar mouse model using a lentivirus system. Scar fibrosis decreased in the CHRFAM7A transfection group compared to the control group, and the proportion of M2 macrophages decreased at 4 and 8 weeks after establishing the model. We also found that CHRFAM7A increased the activation of the Notch pathway, which eventually attenuated M2 polarization. In the CHRFAM7A-transfected hypertrophic scar mouse group, the number of M1 macrophages increased dramatically in the initial period. Moreover, the expression of the inflammatory gene TNFα was also increased in transfected mice. Our results demonstrate that CHRFAM7A can effectively ameliorate hypertrophic scar formation via regulation of macrophage phenotypic transition. CHRFAM7A might be a therapeutic target for hypertrophic scars.


Assuntos
Polaridade Celular/fisiologia , Cicatriz Hipertrófica/metabolismo , Macrófagos/metabolismo , Receptores Notch/metabolismo , Pele/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Animais , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/terapia , Humanos , Macrófagos/patologia , Camundongos , Camundongos SCID , Técnicas de Cultura de Órgãos , Pele/patologia , Transplante de Pele/métodos
8.
J Psychopharmacol ; 34(1): 125-136, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556775

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a neurodevelopmental disorder influenced by patient sex. Mechanisms underlying sex differences in SCZ remain unknown. A two-hit model of SCZ combines the exposure to perinatal infection (first-hit) with peripubertal unpredictable stress (PUS, second-hit). N-acetylcysteine (NAC) has been tested in SCZ because of the involvement of glutathione mechanisms in its neurobiology. AIMS: We aim to investigate whether NAC administration to peripubertal rats of both sexes could prevent behavioral and neurochemical changes induced by the two-hit model. METHODS: Wistar rats were exposed to polyinosinic:polycytidylic acid (a viral mimetic) or saline on postnatal days (PND) 5-7. On PND30-59 they received saline or NAC 220 mg/kg and between PND40-48 were subjected to PUS or left undisturbed. On PND60 behavioral and oxidative alterations were evaluated in the prefrontal cortex (PFC) and striatum. Mechanisms of hippocampal memory regulation such as immune expression of G protein-coupled estrogen receptor 1 (GPER), α7-nAChR and parvalbumin were also evaluated. RESULTS: NAC prevented sensorimotor gating deficits only in females, while it prevented alterations in social interaction, working memory and locomotor activity in both sexes. Again, in rats of both sexes, NAC prevented the following neurochemical alterations: glutathione (GSH) and nitrite levels in the PFC and lipid peroxidation in the PFC and striatum. Striatal oxidative alterations in GSH and nitrite were observed in females and prevented by NAC. Two-hit induced hippocampal alterations in females, namely expression of GPER-1, α7-nAChR and parvalbumin, were prevented by NAC. CONCLUSION: Our results highlights the influences of sex in NAC preventive effects in rats exposed to a two-hit schizophrenia model.


Assuntos
Acetilcisteína/farmacologia , Esquizofrenia/prevenção & controle , Caracteres Sexuais , Fatores Etários , Animais , Corpo Estriado/metabolismo , Feminino , Glutationa/metabolismo , Hipocampo/metabolismo , Peroxidação de Lipídeos , Locomoção/efeitos dos fármacos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Nitritos/metabolismo , Parvalbuminas/biossíntese , Poli I-C , Córtex Pré-Frontal/metabolismo , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Esquizofrenia/induzido quimicamente , Esquizofrenia/complicações , Filtro Sensorial/efeitos dos fármacos , Interação Social/efeitos dos fármacos , Estresse Psicológico/complicações , Receptor Nicotínico de Acetilcolina alfa7/biossíntese
9.
Neuropharmacology ; 157: 107683, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247270

RESUMO

Nicotine improves endotoxic manifestations of hypotension and cardiac autonomic dysfunction in rats. Here, we test the hypothesis that brainstem antiinflammatory pathways of α7/α4ß2 nicotinic acetylcholine receptors (nAChRs) modulate endotoxic cardiovascular derangements. Pharmacologic and molecular studies were performed to determine the influence of nicotine or selective α7/α4ß2-nAChR ligands on cardiovascular derangements and brainstem neuroinflammation caused by endotoxemia in conscious rats. The i.v. administration of nicotine (50 µg/kg) abolished the lipopolysaccharide (LPS, 10 mg/kg i.v.)-evoked: (i) falls in blood pressure and spectral measure of cardiac sympathovagal balance (ratio of the low-frequency to high-frequency power, LF/HF), (ii) elevations in immunohistochemical protein expressions of NFκB and α4ß2-nAChR in medullary neurons of the nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM), and (iii) decreases in medullary α7-nAChR protein expression. These favorable nicotine influences were replicated in rats treated intracisternally (i.c.) with PHA-543613 (selective α7-nAChR agonist) or 5-iodo-A-85380 (5IA, selective α4ß2-nAChRs agonist). Measurement of arterial baroreflex activity by the vasoactive method revealed that nicotine, PHA, or 5IA reversed the LPS depression of reflex bradycardic, but not tachycardic, activity. Moreover, the counteraction by nicotine of LPS hypotension was mostly inhibited after treatment with i.c. methyllycaconitine (MLA, α7-nAChR antagonist) in contrast to a smaller effect for dihydro-ß-erythroidine (DHßE, α4ß2-nAChR antagonist), whereas the associated increases in LF/HF ratio remained unaltered. The data signifies the importance of brainstem α7, and to a lesser extent α4ß2, receptors in the nicotine counteraction of detrimental cardiovascular and neuroinflammatory consequences of endotoxemia.


Assuntos
Fibras Colinérgicas/fisiologia , Endotoxemia/prevenção & controle , Hipotensão/prevenção & controle , NF-kappa B/biossíntese , Inflamação Neurogênica/prevenção & controle , Receptores Nicotínicos/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Azetidinas/farmacologia , Bradicardia/complicações , Bradicardia/prevenção & controle , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Di-Hidro-beta-Eritroidina/farmacologia , Endotoxemia/complicações , Hipotensão/induzido quimicamente , Hipotensão/complicações , Infusões Intraventriculares , Lipopolissacarídeos , Masculino , Bulbo/metabolismo , Vias Neurais/fisiologia , Nicotina/farmacologia , Piridinas/farmacologia , Quinuclidinas/administração & dosagem , Quinuclidinas/farmacologia , Ratos , Transdução de Sinais , Núcleo Solitário/metabolismo , Taquicardia/induzido quimicamente , Taquicardia/prevenção & controle
10.
J Neuroimmunol ; 332: 155-166, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31048268

RESUMO

The α7 nicotinic acetylcholine receptor (CHRNA7) modulates the inflammatory response by activating the cholinergic anti-inflammatory pathway. CHRFAM7A, the human-restricted duplicated form of CHRNA7, has a negative effect on the functioning of α7 receptors, suggesting that CHRFAM7A expression regulation may be a key step in the modulation of inflammation in the human setting. The analysis of the CHRFAM7A gene's regulatory region reveals some of the mechanisms driving its expression and responsiveness to LPS in human immune cell models. Moreover, given the immunomodulatory potential of donepezil we show that it differently modulates CHRFAM7A and CHRNA7 responsiveness to LPS, thus contributing to its therapeutic potential.


Assuntos
Anti-Inflamatórios/farmacologia , Agonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Isoformas de Proteínas/genética , Sequências Reguladoras de Ácido Nucleico , Células THP-1 , Transcrição Gênica/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/genética
11.
Front Immunol ; 10: 565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967878

RESUMO

Sepsis is one of the leading causes of death in hospitalized patients and the chronic and low-grade inflammation observed in obesity seems to worsen susceptibility and morbidity of infections. However, little is known with respect to a short-term high-fat diet (HFD) and its role in the development of sepsis. Here, we show for the first time, that short-term HFD consumption impairs early nicotinic acetylcholine receptor α7 subunit (α7nAChR)- mediated signaling, one of the major components of the cholinergic anti-inflammatory pathway, with a focus on hypothalamic inflammation and innate immune response. Mice were randomized to a HFD or standard chow (SC) for 3 days, and sepsis was subsequently induced by a lethal intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) or by cecal ligation and puncture (CLP) surgery. In a separate experiment, both groups received LPS (i.p.) or LPS (i.p.) in conjunction with the selective α7nAChR agonist, PNU-282987 (i.p. or intracerebroventricular; i.c.v.), and were sacrificed 2 h after the challenge. Short-term HFD consumption significantly reduced the α7nAChR mRNA and protein levels in the hypothalamus and liver (p < 0.05). Immunofluorescence microscopy demonstrated lower cholinergic receptor nicotinic α7 subunit (α7nAChR)+ cells in the arcuate nucleus (ARC) (α7nAChR+ cells in SC = 216 and HFD = 84) and increased F4/80+ cells in the ARC (2.6-fold) and median eminence (ME) (1.6-fold), which can contribute to neuronal damage. Glial fibrillary acidic protein (GFAP)+ cells and neuronal nuclear antigen (NeuN)+ cells were also increased following consumption of HFD. The HFD-fed mice died quickly after a lethal dose of LPS or following CLP surgery (2-fold compared with SC). The LPS challenge raised most cytokine levels in both groups; however, higher levels of TNF-α (Spleen and liver), IL-1ß and IL-6 (in all tissues evaluated) were observed in HFD-fed mice. Moreover, PNU-282987 administration (i.p. or i.c.v.) reduced the levels of inflammatory markers in the hypothalamus following LPS injection. Nevertheless, when the i.c.v. injection of PNU-282987 was performed the anti-inflammatory effect was much smaller in HFD-fed mice than SC-fed mice. Here, we provide evidence that a short-term HFD impairs early α7nAChR expression in central and peripheral tissues, contributing to a higher probability of death in sepsis.


Assuntos
Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica , Hipotálamo , Imunidade Inata/efeitos dos fármacos , Sepse , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Hipotálamo/imunologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Sepse/imunologia , Sepse/metabolismo , Sepse/patologia , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/imunologia
12.
PLoS One ; 14(4): e0214942, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947238

RESUMO

α7 Nicotinic acetylcholine receptors (nAChRs) reportedly reduce inflammation by blocking effects of the important pro-inflammatory transcription factor, nuclear factor kappa-light chain-enhancer of B cells (NFκB). The α7 nAChR partial agonist GTS-21 reduces secretion of pro-inflammatory cytokines including interleukin-6 (IL6) and tumor-necrosis factor (TNF) in models of endotoxemia and sepsis, and its anti-inflammatory effects are widely ascribed to α7 nAChR activation. However, mechanistic details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways remain unclear. Here, we investigate how GTS-21 acts in two cell systems including the non-immune rat pituitary cell line GH4C1 expressing an NFκB-driven reporter gene and cytokine secretion by ex vivo cultures of primary mouse macrophages activated by lipopolysaccharide (LPS). GTS-21 does not change TNF-stimulated NFκB signaling in GH4C1 cells expressing rat α7 nAChRs, suggesting that GTS-21 requires additional unidentified factors besides α7 nAChR expression to allow anti-inflammatory effects in these cells. In contrast, GTS-21 dose-dependently suppresses LPS-induced IL6 and TNF secretion in primary mouse macrophages endogenously expressing α7 nAChRs. GTS-21 also blocks TNF-induced phosphorylation of NFκB inhibitor alpha (IκBα), an important intermediary in NFκB signaling. However, α7 antagonists methyllycaconitine and α-bungarotoxin only partially reverse GTS-21 blockade of IL6 and TNF secretion. Further, GTS-21 significantly inhibited LPS-induced IL6 and TNF secretion in macrophages isolated from knockout mice lacking α7 nAChRs. These data indicate that even though a discrete component of the anti-inflammatory effects of GTS-21 requires expression of α7 nAChRs in macrophages, GTS-21 also has anti-inflammatory effects independent of these receptors depending on the cellular context.


Assuntos
Anti-Inflamatórios/farmacologia , Compostos de Benzilideno/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Animais , Linhagem Celular , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/patologia , Camundongos , NF-kappa B/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
13.
J Neurochem ; 147(2): 204-221, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30062776

RESUMO

Previous studies in our laboratory have shown that nicotine exposure decreases glucose transport across the blood-brain barrier in ischemia-reperfusion conditions. We hypothesize that nicotine can also dysregulate brain parenchymal glucose utilization by altering glucose transporters with effects on sensitivity to ischemic stroke. In this study, we investigated the effects of nicotine exposure on neuronal glucose utilization using an in vitro ischemic stroke model. We also tested the effects of e-Cig vaping on ischemic brain glucose utilization using an acute brain slice technique. Primary cortical neurons and brain slices were subjected to oxygen-glucose deprivation followed by reoxygenation to mimic ischemia-reperfusion injury. We estimated brain cell glucose utilization by measuring the uptake of [3 H] deoxy-d-glucose. Immunofluorescence and western blotting were done to characterize glucose transporters (GLUTs) and α7 nicotinic acetylcholine receptor (nAChR) expression. Furthermore, we used a glycolytic stress test to measure the effects of nicotine exposure on neuronal glucose metabolism. We observed that short- and long-term nicotine/cotinine exposure significantly decreased neuronal glucose utilization in ischemic conditions and the non-specific nAChR antagonist, mecamylamine reversed this effect. Nicotine/cotinine exposure also decreased neuronal GLUT1 and up-regulated α7 nAChR expression and decreased glycolysis. Exposure of mice to e-Cig vapor for 7 days likewise decreases brain glucose uptake under normoxic and ischemic conditions along with down-regulation of GLUT1 and GLUT3 expressions. These data support, from a cerebrovascular perspective, that nicotine and/or e-Cig vaping induce a state of glucose deprivation at the neurovascular unit which could lead to enhanced ischemic brain injury and/or stroke risk. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Isquemia Encefálica/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Glucose/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Acidente Vascular Cerebral/metabolismo , Animais , Glucose/deficiência , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipóxia Encefálica/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Cultura Primária de Células , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/genética
14.
Drug Deliv ; 25(1): 493-503, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29426250

RESUMO

A micelle system modified with α-Conotoxin ImI (ImI), a potently antagonist for alpha7 nicotinic acetylcholine receptor (α7-nAChR) previously utilized for targeting breast cancer, was constructed. Its targeting efficiency and cytotoxicity against non-small cell lung cancer (NSCLC) highly expressing α7-nAChR was investigated. A549, a non-small cell lung cancer cell line, was selected as the cell model. The cellular uptake study showed that the optimal modification ratio of ImI on micelle surface was 5% and ImI-modification increased intracellular delivery efficiency to A549 cells via receptor-mediated endocytosis. Intracellular Ca2+ transient assay demonstrated that ImI modification led to enhanced molecular interaction between nanocarriers and A549 cells. The in vivo near-infrared fluorescence imaging further revealed that ImI-modified micelles could facilitate the drug accumulation in tumor sites compared with non-modified micelles via α7-nAChR mediation. Moreover, docetaxel (DTX) was loaded in ImI-modified nanomedicines to evaluate its in vitro cytotoxicity. As a result, DTX-loaded ImI-PMs exhibited greater anti-proliferation effect on A549 cells compared with non-modified micelles. Generally, our study proved that ImI-modified micelles had targeting ability to NSCLC in addition to breast cancer and it may provide a promising strategy to deliver drugs to NSCLC overexpressing α7-nAChR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Conotoxinas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/tratamento farmacológico , Taxoides/administração & dosagem , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Conotoxinas/química , Docetaxel , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Polímeros/administração & dosagem , Polímeros/química , Distribuição Aleatória , Taxoides/química , Receptor Nicotínico de Acetilcolina alfa7/genética
15.
Neurochem Int ; 110: 49-56, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28890319

RESUMO

Amyloid ß protein (Aß) plays a central role in Alzheimer's disease (AD) pathogenesis. Point mutations in the Aß sequence, which cluster around the central hydrophobic core of the peptide, are associated with familial AD (FAD). Several mutations have been identified, with the Arctic mutation exhibiting a purely cognitive phenotype that is typical of AD. Our previous findings suggest that Arctic Aß40 binds to and aggregates with CHRNA7, thereby inhibiting the calcium response and signaling pathways downstream of the receptor. Activation of CHRNA7 is neuroprotective both in vitro and in vivo. Therefore, in the present study, we investigated whether Arctic Aß40 affects neuronal survival and/or death via CHRNA7. Using human neuroblastoma SH-SY5Y cells, we found that the neuroprotective function of CHRNA7 is blocked by CHRNA7 knockdown using RNA interference. Furthermore, Arctic Aß40 blocked the neuroprotective effect of nicotine by inhibiting the ERK1/2 pathway downstream of CHRNA7. Moreover, we show that ERK1/2 activation mediates the neuroprotective effect of nicotine against oxidative stress. Collectively, our findings further our understanding of the molecular pathogenesis of Arctic FAD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Nicotina/farmacologia , Fragmentos de Peptídeos/toxicidade , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Neuroblastoma/patologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
16.
Neurosci Lett ; 659: 1-6, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28842280

RESUMO

Postoperative cognitive dysfunction (POCD) is a common disorder of cognitive functions in aged patients following anesthesia and surgery. α7-nicotinic acetylcholine receptors (α7-nAChR) plays a regulatory role in cognitive processes and is involved in cognitive deficits. This study aims to observe the effect of electroacupuncture (EA) on the cognitive function in aged POCD rats, and its regulation on expressions of hippocampal α7-nAChR and proinflammatory factors. Ninety healthy Sprague-Dawley male aged rats were randomly divided into three groups (each n=30): control group (sham operation), model group (partial hepatectomy), and electroacupuncture (EA) group. The cognitive function was detected by Morris water-maze test, and the changes of hippocampal expressions of α7-nAChR, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected by immunohistochemical method. Our results showed that compared with the model group, the EA group had significantly shorter escape latency and decreased crossing platform times at 1d, 3d and 7d after operation (P<0.05). α7-nAChR positive neurons in the hippocampus decreased and TNF-α and IL-1ß positive neurons increased on postoperative days 1, 3 and 7. Compared with the model group, the α7-nAChR positive neurons were increased and TNF-α and IL-1ß positive neurons were decreased in the EA group at the same time points (P<0.05). In conclusion, the electroacupuncture regulation can improve the learning and memory abilities in POCD rats, and its mechanism may be related to upregulation of α7-nAChR and downregulation of TNF-α and IL-1ß in hippocampus.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Disfunção Cognitiva/terapia , Eletroacupuntura , Mediadores da Inflamação/metabolismo , Complicações Pós-Operatórias/terapia , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Animais , Disfunção Cognitiva/complicações , Hipocampo/metabolismo , Interleucina-1beta/biossíntese , Masculino , Aprendizagem em Labirinto , Ratos , Fator de Necrose Tumoral alfa/biossíntese
17.
Artigo em Inglês | MEDLINE | ID: mdl-28347687

RESUMO

Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic system.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/biossíntese , Sistema y+ de Transporte de Aminoácidos/biossíntese , Sistemas Eletrônicos de Liberação de Nicotina , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Nicotina/administração & dosagem , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Administração por Inalação , Animais , Corpo Estriado/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Feminino , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Nicotina/metabolismo
18.
Circ Res ; 119(10): 1101-1115, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27660287

RESUMO

RATIONALE: Renal inflammation contributes to the pathophysiology of hypertension. CD161a+ immune cells are dominant in the (SHR) spontaneously hypertensive rat and expand in response to nicotinic cholinergic activation. OBJECTIVE: We aimed to phenotype CD161a+ immune cells in prehypertensive SHR after cholinergic activation with nicotine and determine if these cells are involved in renal inflammation and the development of hypertension. METHODS AND RESULTS: Studies used young SHR and WKY (Wistar-Kyoto) rats. Splenocytes and bone marrow cells were exposed to nicotine ex vivo, and nicotine was infused in vivo. Blood pressures, kidney, serum, and urine were obtained. Flow cytometry, Luminex/ELISA, immunohistochemistry, confocal microscopy, and Western blot were used. Nicotinic cholinergic activation induced proliferation of CD161a+/CD68+ macrophages in SHR-derived splenocytes, their renal infiltration, and premature hypertension in SHR. These changes were associated with increased renal expression of MCP-1 (monocyte chemoattractant protein-1) and VLA-4 (very-late antigen-4). LLT1 (lectin-like transcript 1), the ligand for CD161a, was overexpressed in SHR kidney, whereas vascular cellular and intracellular adhesion molecules were similar to those in WKY. Inflammatory cytokines were elevated in SHR kidney and urine after nicotine infusion. Nicotine-mediated renal macrophage infiltration/inflammation was enhanced in denervated kidneys, not explained by angiotensin II levels or expression of angiotensin type-1/2 receptors. Moreover, expression of the anti-inflammatory α7-nAChR (α7-nicotinic acetylcholine receptor) was similar in young SHR and WKY rats. CONCLUSIONS: A novel, inherited nicotinic cholinergic inflammatory effect exists in young SHR, measured by expansion of CD161a+/CD68+ macrophages. This leads to renal inflammation and premature hypertension, which may be partially explained by increased renal expression of LLT-1, MCP-1, and VLA-4.


Assuntos
Hipertensão/etiologia , Rim/patologia , Macrófagos/efeitos dos fármacos , Nicotina/farmacologia , Idade de Início , Angiotensina II/metabolismo , Animais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Citocinas/biossíntese , Citocinas/genética , Denervação , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão Renal/etiologia , Hipertensão Renal/genética , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Imunofenotipagem , Integrina alfa4beta1/biossíntese , Integrina alfa4beta1/genética , Rim/inervação , Lectinas/biossíntese , Lectinas/genética , Macrófagos/classificação , Macrófagos/patologia , Masculino , Subfamília B de Receptores Semelhantes a Lectina de Células NK/análise , Nefrite/induzido quimicamente , Nefrite/fisiopatologia , Nicotina/toxicidade , Norepinefrina/metabolismo , Pré-Hipertensão/etiologia , Pré-Hipertensão/genética , Pré-Hipertensão/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/biossíntese , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/biossíntese , Receptor Tipo 2 de Angiotensina/genética , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/genética
19.
PLoS One ; 11(5): e0156451, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27228072

RESUMO

Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC), which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Nicotina/farmacologia , Fator de Transcrição STAT1/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Fator de Transcrição E2F1/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Fator de Transcrição STAT1/genética , Fumar/efeitos adversos , Fumar/genética , Fumar/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética
20.
Sci Rep ; 5: 9493, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25810076

RESUMO

γ oscillations are associated with higher brain functions such as memory, perception and consciousness. Disruption of γ oscillations occur in various neuro-psychological disorders such as schizophrenia. Nicotinic acetylcholine receptors (nAChR) are highly expressed in the hippocampus, however, little is known about the role on hippocampal persistent γ oscillation. This study examined the effects of nicotine and selective nAChR agonists and antagonists on kainate-induced persistent γ oscillation in rat hippocampal slices. Nicotine enhanced γ oscillation at concentrations of 0.1-10 µM, but reduced it at a higher concentration of 100 µM. The enhancement on γ oscillation can be best mimicked by co-application of α4ß2- and α7-nAChR agonist and reduced by a combination of nAChR antagonists, DhßE and MLA. However, these nAChR antagonists failed to block the suppressing role of nicotine on γ. Furthermore, we found that the NMDA receptor antagonist D-AP5 completely blocked the effect of nicotine. These results demonstrate that nicotine modulates γ oscillations via α7 and α4ß2 nAChR as well as NMDA activation, suggesting that nAChR activation may have a therapeutic role for the clinical disorder such as schizophrenia, which is known to have impaired γ oscillation and hypo-NMDA receptor function.


Assuntos
Região CA3 Hipocampal/efeitos dos fármacos , Plasticidade Neuronal/genética , Receptores Nicotínicos/biossíntese , Esquizofrenia/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Animais , Região CA3 Hipocampal/fisiologia , Humanos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nicotina/metabolismo , Agonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Ratos , Receptores Nicotínicos/genética , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA