Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Mol Biol Rep ; 48(12): 8033-8044, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34743271

RESUMO

BACKGROUND: The imbalance of vasoconstrictor and vasodilator axes of the renin-angiotensin system (RAS) is observed in hypertension. Exercise regulates RAS level and improves vascular function. This study focused on the contribution of RAS axes in vascular function of mesenteric arteries and exercise-induced DNA methylation of the Agtr1a (AT1aR) and Mas1 (MasR) genes in hypertension. METHODS: Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were randomized into exercise or sedentary group. Levels of plasma RAS components, vascular tone, and DNA methylation markers were measured. RESULTS: Blood pressure of SHR was markedly reduced after 12 weeks of aerobic exercise. RAS peptides in plasma were all increased with an imbalanced upregulation of Ang II and Ang-(1-7) in SHR, exercise revised the level of RAS and increased Ang-(1-7)/Ang II. The vasoconstriction response induced by Ang II was mainly via type 1 receptors (AT1R), while this contraction was inhibited by Mas receptor (MasR). mRNA and protein of AT1R and MasR were both upregulated in SHR, whereas exercise significantly suppressed this imbalanced increase and increased MasR/AT1R ratio. Exercise hypermethylated Agtr1a and Mas1 genes, associating with increased DNMT1 and DNMT3b and SAM/SAH. CONCLUSIONS: Aerobic exercise ameliorates vascular function via hypermethylation of the Agtr1a and Mas1 genes and restores the vasoconstrictor and vasodilator axes balance.


Assuntos
Proto-Oncogene Mas/metabolismo , Hipertensão Arterial Pulmonar/terapia , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/metabolismo , Animais , Artérias/metabolismo , Pressão Sanguínea/efeitos dos fármacos , DNA/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Hipertensão/metabolismo , Masculino , Artérias Mesentéricas/fisiologia , Óxido Nítrico/metabolismo , Condicionamento Físico Animal/métodos , Esforço Físico/genética , Esforço Físico/fisiologia , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/fisiologia , Sistema Renina-Angiotensina/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
2.
Pharmacol Res ; 174: 105877, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610452

RESUMO

Angiotensin II (AngII) is implicated in neuroinflammation, blood-brain barrier (BBB) disruption, and autonomic dysfunction in hypertension. We have previously shown that exogenous AngII stimulates Toll-like receptor 4 (TLR4) via AngII type 1 receptor (AT1R), inducing activation of hypothalamic microglia ex vivo, and that AngII-AT1R signaling is necessary for the loss of BBB integrity in spontaneously hypertensive rats (SHRs). Herein, we hypothesized that microglial TLR4 and AT1R signaling interactions represent a crucial mechanistic link between AngII-mediated neuroinflammation and BBB disruption, thereby contributing to sympathoexcitation in SHRs. Male SHRs were treated with TAK-242 (TLR4 inhibitor; 2 weeks), Losartan (AT1R inhibitor; 4 weeks), or vehicle, and age-matched to control Wistar Kyoto rats (WKYs). TLR4 and AT1R inhibitions normalized increased TLR4, interleukin-6, and tumor necrosis factor-α protein densities in SHR cardioregulatory nuclei (hypothalamic paraventricular nucleus [PVN], rostral ventrolateral medulla [RVLM], and nucleus tractus solitarius [NTS]), and abolished enhanced microglial activation. PVN, RVLM, and NTS BBB permeability analyses revealed complete restoration after TAK-242 treatment, whereas SHRs presented with elevated dye leakage. Mean arterial pressure was normalized in Losartan-treated SHRs, and attenuated with TLR4 inhibition. In conscious assessments, TLR4 blockade rescued SHR baroreflex sensitivity to vasoactive drugs, and reduced the SHR pressor response to ganglionic blockade to normal levels. These data suggest that TLR4 activation plays a substantial role in mediating a feed-forward pro-hypertensive cycle involving BBB disruption, neuroinflammation, and autonomic dysfunction, and that TLR4-specific therapeutic interventions may represent viable alternatives in the treatment of hypertension.


Assuntos
Encéfalo/metabolismo , Hipertensão , Doenças Neuroinflamatórias , Receptor Tipo 1 de Angiotensina , Receptor 4 Toll-Like , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Arterial , Barorreflexo , Frequência Cardíaca , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Losartan/farmacologia , Masculino , Microglia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Permeabilidade , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/fisiologia , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/fisiologia
3.
Physiol Rep ; 9(14): e14948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288542

RESUMO

Estradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERß, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus.


Assuntos
Envelhecimento/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Estradiol/análogos & derivados , Frequência Cardíaca/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Pressão Sanguínea/fisiologia , Ingestão de Líquidos/fisiologia , Estradiol/administração & dosagem , Feminino , Frequência Cardíaca/fisiologia , Ovariectomia/efeitos adversos , Ovariectomia/tendências , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores de Estrogênio/fisiologia
4.
Hypertension ; 76(1): 121-132, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32475319

RESUMO

The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.


Assuntos
Angiotensina II/fisiologia , Túbulos Renais Proximais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Células Cultivadas , Glicólise , Hipertensão/fisiopatologia , Imidazóis/farmacologia , Córtex Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptor Tipo 1 de Angiotensina/deficiência , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/deficiência , Trocador 1 de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Kaohsiung J Med Sci ; 36(6): 389-392, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32492292

RESUMO

The spike glycoprotein on the virion surface docking onto the angiotensin-converting enzyme (ACE) 2 dimer is an essential step in the process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in human cells-involves downregulation of ACE2 expression with systemic renin-angiotensin system (RAS) imbalance and promotion of multi-organ damage. In general, the RAS induces vasoconstriction, hypertension, inflammation, fibrosis, and proliferation via the ACE/Ang II/Ang II type 1 receptor (AT1R) axis and induces the opposite effects via the ACE2/Ang (1-7)/Mas axis. The RAS may be activated by chronic inflammation in hypertension, diabetes, obesity, and cancer. SARS-CoV-2 induces the ACE2 internalization and shedding, leading to the inactivation of the ACE2/Ang (1-7)/Mas axis. Therefore, we hypothesize that two hits to the RAS drives COVID-19 progression. In brief, the first hit originates from chronic inflammation activating the ACE/Ang II/AT1R axis, and the second originates from the COVID-19 infection inactivating the ACE2/Ang (1-7)/Mas axis. Moreover, the two hits to the RAS may be the primary reason for increased mortality in patients with COVID-19 who have comorbidities and may serve as a therapeutic target for COVID-19 treatment.


Assuntos
Betacoronavirus , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/fisiologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Comorbidade , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Humanos , Modelos Biológicos , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/fisiologia
7.
Curr Hypertens Rep ; 22(3): 22, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32114685

RESUMO

PURPOSE OF REVIEW: The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS: Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Sistema Renina-Angiotensina , Angiotensina II , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Bloqueadores do Receptor Tipo 2 de Angiotensina II , Humanos , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos
8.
Psychoneuroendocrinology ; 107: 208-216, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31150966

RESUMO

Angiotensin AT1 receptors are implicated in behavioral and physiological processes associated with fear and stress. However, the precise role of AT1 receptors in modulating fear-related behavior and its relation to their physiological effects remains unclear. Here, we examined innate and learned fear responses and their relationship to cardiovascular arousal in AT1A receptor knockout (AT1A-/-) mice. Using synchronized video and blood pressure telemetry, we found that, in a novel test environment, AT1A-/- mice showed reduced neophobia but a similar rise in blood pressure, as compared to AT1A+/+ mice. In response to a discrete threat, footshock, both flight behavior and cardiovascular arousal were decreased in AT1A-/- mice. Reduced flight behavior was also observed in AT1A-/- mice in the elevated T-maze test. During fear conditioning, the immediate freezing response to the first shock, but not the rate of freezing acquisition was decreased in AT1A-/- mice. Likewise, AT1A-/- mice showed reduced freezing and pressor responses to the first re-exposure, but normal rate of freezing extinction over subsequent trials. Similarly, in the elevated T-maze, the rates of avoidance acquisition and escape learning remained unchanged in AT1A-/- mice. Finally, after re-exposure, AT1A-/- mice displayed altered c-Fos expression, compared to AT1A+/+ mice, in the hypothalamus and periaqueductal gray but not in fear-related limbic-cortical areas, nor in medullary nuclei that convey visceral afferent information. We conclude that AT1A receptor knockout reduces innate fear responses, without affecting learning efficiency in mice. These effects are dissociable from cardiovascular effects and likely reflect altered neurotransmission in hypothalamic-midbrain defense regions.


Assuntos
Pressão Sanguínea/fisiologia , Medo/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensinas/metabolismo , Animais , Ansiedade/fisiopatologia , Sistema Cardiovascular/metabolismo , Condicionamento Operante/fisiologia , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/fisiologia
9.
Transl Psychiatry ; 9(1): 36, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696810

RESUMO

Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin-angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females.


Assuntos
Encéfalo/fisiologia , Estradiol/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Anticoncepcionais Orais Sintéticos/administração & dosagem , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Levanogestrel/administração & dosagem , Losartan/administração & dosagem , Consolidação da Memória/fisiologia , Ovariectomia , Hipófise/efeitos dos fármacos , Hipófise/fisiologia , Ratos Sprague-Dawley
10.
Arterioscler Thromb Vasc Biol ; 39(3): 459-466, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602301

RESUMO

Objective- Pharmacological inhibition of the AT1R (angiotensin II type 1 receptor) with losartan can attenuate ascending aortic remodeling induced by transverse aortic constriction (TAC). In this study, we investigated the role of the AT2R (angiotensin II type 2 receptor) and MasR (Mas receptor) in TAC-induced ascending aortic dilation and remodeling. Approach and Results- Wild-type C57BL/6J mice were subjected to sham or TAC surgeries in the presence and absence of various drugs. Aortic diameters were assessed by echocardiography, central blood pressure was measured in the ascending aorta 2 weeks post-operation, and histology and gene expression analyses completed. An angiotensin-converting enzyme inhibitor, captopril, decreased systolic blood pressure to the same level as losartan but did not attenuate aortic dilation, adventitial inflammation, medial collagen deposition, elastin breakage, or Mmp9 (matrix metalloproteinase-9) expression when compared with TAC mice. In contrast, co-administration of captopril with an AT2R agonist, compound 21, attenuated aortic dilation, medial collagen content, elastin breaks, and Mmp9 expression, whereas co-administration of captopril with a MasR agonist (AVE0991) did not reverse aortic dilation and led to aberrant aortic remodeling. An AT2R antagonist, PD123319, reversed the protective effects of losartan in TAC mice. Treatment with compound 21 alone showed no effect on TAC-induced aortic enlargement, blood pressure, elastin breakage, or Mmp9 expression. Conclusions- Our data indicate that when AT1R signaling is blocked, AT2R activation is a key modulator to prevent aortic dilation that occurs with TAC. These data suggest that angiotensin-converting enzyme inhibitor may not be as effective as losartan for slowing aneurysm growth because losartan requires intact AT2R signaling to prevent aortic enlargement.


Assuntos
Aneurisma Aórtico/fisiopatologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Aorta/fisiopatologia , Aneurisma Aórtico/etiologia , Aneurisma Aórtico/prevenção & controle , Aortite/tratamento farmacológico , Aortite/etiologia , Aortite/fisiopatologia , Fenômenos Biomecânicos , Captopril/farmacologia , Constrição , Hipertensão/complicações , Hipertensão/fisiopatologia , Imidazóis/farmacologia , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/fisiologia , Piridinas/farmacologia , Distribuição Aleatória , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Remodelação Vascular/efeitos dos fármacos
11.
Curr Hypertens Rep ; 20(5): 41, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717388

RESUMO

PURPOSE OF REVIEW: Angiotensin type 2 receptor (AT2R) and receptor Mas (MasR) are part of the "protective arm" of the renin angiotensin system. Gene and pharmacological manipulation studies reveal that AT2R and MasR are involved in natriuretic, vasodilatory, and anti-inflammatory responses and in lowering blood pressure in various animal models under normal and pathological conditions such as salt-sensitive hypertension, obesity, and diabetes. The scope of this review is to discuss co-localization and heterodimerization as potential molecular mechanisms of AT2R- and MasR-mediated functions including antihypertensive activities. RECENT FINDINGS: Accumulating evidences show that AT2R and MasR are co-localized, make a heterodimer, and are functionally interdependent in producing their physiological responses. Moreover, ang-(1-7) preferably may be an AT1R-biased agonist while acting as a MasR agonist. The physical interactions of AT2R and MasR appear to be an important mechanism by which these receptors are involved in blood pressure regulation and antihypertensive activity. Whether heteromers of these receptors influence affinity or efficacy of endogenous or synthetic agonists remains a question to be considered.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Dimerização , Humanos , Hipertensão/fisiopatologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-29678287

RESUMO

AT1 angiotensin receptor (AT1R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT1R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT1R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT1R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT1R have been developed to selectively activate the ß-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT1R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT1R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases.


Assuntos
Receptor Cross-Talk , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/fisiologia , Receptor Cross-Talk/fisiologia
13.
Braz. j. med. biol. res ; 51(12): e7526, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974255

RESUMO

It has been previously demonstrated that the hemodynamic effect induced by angiotensin II (AII) in the liver was completely abolished by losartan while glucose release was partially affected by losartan. Angiotensin II type 1 (AT1) and adrenergic (∝1- and β-) receptors (AR) belong to the G-proteins superfamily, which signaling promote glycogen breakdown and glucose release. Interactive relationship between AR and AT1-R was shown after blockade of these receptors with specific antagonists. The isolated perfused rat liver was used to study hemodynamic and metabolic responses induced by AII and adrenaline (Adr) in the presence of AT1 (losartan) and ∝1-AR and β-AR antagonists (prazosin and propranolol). All antagonists diminished the hemodynamic response induced by Adr. Losartan abolished hemodynamic response induced by AII, and AR antagonists had no effect when used alone. When combined, the antagonists caused a decrease in the hemodynamic response. The metabolic response induced by Adr was mainly mediated by ∝1-AR. A significant decrease in the hemodynamic response induced by Adr caused by losartan confirmed the participation of AT1-R. The metabolic response induced by AII was impaired by propranolol, indicating the participation of β-AR. When both ARs were blocked, the hemodynamic and metabolic responses were impaired in a cumulative effect. These results suggested that both ARs might be responsible for AII effects. This possible cross-talk between β-AR and AT1-R signaling in the hepatocytes has yet to be investigated and should be considered in the design of specific drugs.


Assuntos
Animais , Masculino , Receptores Adrenérgicos alfa/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Glucose/metabolismo , Hipertensão Portal/metabolismo , Fígado/metabolismo , Propranolol/farmacologia , Fatores de Tempo , Prazosina/farmacologia , Receptores Adrenérgicos alfa/efeitos dos fármacos , Receptores Adrenérgicos beta/efeitos dos fármacos , Ratos Wistar , Antagonistas Adrenérgicos beta/farmacologia , Losartan/farmacologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Fígado/efeitos dos fármacos
14.
Circ Res ; 121(1): 43-55, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28512108

RESUMO

RATIONALE: Neurogenic hypertension is characterized by an increase in sympathetic activity and often resistance to drug treatments. We previously reported that it is also associated with a reduction of angiotensin-converting enzyme type 2 (ACE2) and an increase in a disintegrin and metalloprotease 17 (ADAM17) activity in experimental hypertension. In addition, while multiple cells within the central nervous system have been involved in the development of neurogenic hypertension, the contribution of ADAM17 has not been investigated. OBJECTIVE: To assess the clinical relevance of this ADAM17-mediated ACE2 shedding in hypertensive patients and further identify the cell types and signaling pathways involved in this process. METHODS AND RESULTS: Using a mass spectrometry-based assay, we identified ACE2 as the main enzyme converting angiotensin II into angiotensin-(1-7) in human cerebrospinal fluid. We also observed an increase in ACE2 activity in the cerebrospinal fluid of hypertensive patients, which was correlated with systolic blood pressure. Moreover, the increased level of tumor necrosis factor-α in those cerebrospinal fluid samples confirmed that ADAM17 was upregulated in the brain of hypertensive patients. To further assess the interaction between brain renin-angiotensin system and ADAM17, we generated mice lacking angiotensin II type 1 receptors specifically on neurons. Our data reveal that despite expression on astrocytes and other cells types in the brain, ADAM17 upregulation during deoxycorticosterone acetate-salt hypertension occurs selectively on neurons, and neuronal angiotensin II type 1 receptors are indispensable to this process. Mechanistically, reactive oxygen species and extracellular signal-regulated kinase were found to mediate ADAM17 activation. CONCLUSIONS: Our data demonstrate that angiotensin II type 1 receptors promote ADAM17-mediated ACE2 shedding in the brain of hypertensive patients, leading to a loss in compensatory activity during neurogenic hypertension.


Assuntos
Proteína ADAM17/fisiologia , Hipertensão/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Adulto , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
15.
Pharmacology ; 100(3-4): 105-114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28521325

RESUMO

AIM: The aim of this study was to investigate the effect of a high salt (HS) diet on age-related changes in blood pressure (BP) and the possible role played by regulatory central mechanisms. METHODS: Young (5 months) and old (27 months) male Fischer 344 × Brown Norway (F344/BN) rats were fed standard chow or 8% HS diet for 12 days. BP and heart rate (HR) were measured by telemetry. RESULTS: Mean arterial BP (MAP) was significantly elevated in old rats during the day and night when compared with young animals. The HS diet further elevated MAP in both age groups, and the increase was more pronounced in the old animals, while HR was not altered by age or HS diet. In addition, cardiovascular responses to restraint stress were diminished in the old when compared with the young and were unchanged with HS diet in either age group. Both age and the HS diet elevated the adrenomedullary mRNA levels of tyrosine hydroxylase, an indicator for sympathoexcitation. HS diet enhanced intracerebroventricular angiotensin II (AngII)-induced BP and HR elevations in both age groups. AngII type 1 receptor mRNA increased significantly in the hypothalamus with age and HS diet. Furthermore, hypothalamic p22phox mRNA and gp91phox protein, subunits of NADPH oxidase, as well as NADPH oxidase activity increased with the HS diet in the old animals, whereas antioxidant enzymes that decreased with age yet remained unaltered with the HS diet. CONCLUSION: Our findings indicate that sensitivity of BP to HS diet increases with age, and that central AngII-induced pressor responses are diminished in old rats compared with the young both under control conditions and during HS diet treatment. These changes are paralleled by increases in the expression and NADPH oxidase activity in the hypothalamus, possibly leading to central oxidative stress-mediated sympathoexcitation and high BP.


Assuntos
Envelhecimento/fisiologia , Hipertensão/fisiopatologia , Cloreto de Sódio na Dieta , Animais , Pressão Sanguínea , Hipotálamo/metabolismo , Locomoção , Masculino , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Oxirredução , RNA Mensageiro/metabolismo , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/fisiologia , Restrição Física , Transdução de Sinais , Estresse Psicológico/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo
16.
J Am Soc Nephrol ; 28(5): 1350-1361, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28151411

RESUMO

Inappropriate activation of the renin-angiotensin system (RAS) exacerbates renal and vascular injury. Accordingly, treatment with global RAS antagonists attenuates cardiovascular risk and slows the progression of proteinuric kidney disease. By reducing BP, RAS inhibitors limit secondary immune activation responding to hemodynamic injury in the target organ. However, RAS activation in hematopoietic cells has immunologic effects that diverge from those of RAS stimulation in the kidney and vasculature. In preclinical studies, activating type 1 angiotensin (AT1) receptors in T lymphocytes and myeloid cells blunts the polarization of these cells toward proinflammatory phenotypes, protecting the kidney from hypertensive injury and fibrosis. These endogenous functions of immune AT1 receptors temper the pathogenic actions of renal and vascular AT1 receptors during hypertension. By counteracting the effects of AT1 receptor stimulation in the target organ, exogenous administration of AT2 receptor agonists or angiotensin 1-7 analogs may similarly limit inflammatory injury to the heart and kidney. Moreover, although angiotensin II is the classic effector molecule of the RAS, several RAS enzymes affect immune homeostasis independently of canonic angiotensin II generation. Thus, as reviewed here, multiple components of the RAS signaling cascade influence inflammatory cell phenotype and function with unpredictable and context-specific effects on innate and adaptive immunity.


Assuntos
Sistema Renina-Angiotensina/imunologia , Angiotensina I/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Fragmentos de Peptídeos/fisiologia , Peptidil Dipeptidase A/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia
17.
Mol Neurobiol ; 54(1): 661-670, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26758277

RESUMO

Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.


Assuntos
Indutores da Angiogênese/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/deficiência , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Indutores da Angiogênese/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Angiotensinas/antagonistas & inibidores , Angiotensinas/fisiologia , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Injeções Intraventriculares , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/fisiologia , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
18.
Oncotarget ; 7(34): 54290-54302, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27509058

RESUMO

Growing evidence has shown that NLRP3 inflammasome activation promotes the development of tubularinterstitial inflammation and progression of renal injury. We previously found that mitochondrial dysfunction is a critical determinant for the activation of NLRP3 inflammasome in albumin-overload rats. Angiotensin (Ang) II plays an important role in mitochondrial homeostasis. Here, we investigated the role of Ang II in NLRP3 inflammasome activation and the involvement of mitochondrial dysfunction in this process. In vitro, Ang II triggered NLRP3 inflammasome activation in a dose- and time-dependent manner, and this effect is mediated by AT1 receptor rather than AT2 receptor. MitoTEMPO, a mitochondrial targeted antioxidant, attenuated Ang II induced mitochondrial reactive oxygen species (mROS) production and NLRP3 inflammation activation. Following chronic Ang II infusion for 28 days, we observed remarkable tubular epithelial cells (TECs) injury, mitochondrial damage, and albuminuria in WT mice. However, these abnormalities were significantly attenuated in AT1 receptor KO mice. Then, we examined the role of mitochondria in Ang II-infused mice with or without mitoTEMPO treatment. As expected, Ang II-induced mitochondrial dysfunction and NLRP3 inflammasome activation was markedly inhibited by mitoTEMPO. Notably, NLRP3 deletion signally protected TECs from Ang II-triggered mitochondrial dysfunction and NLRP3 inflammasome activation. Taken together, these data demonstrate that Ang II induces NLRP3 inflammasome activation in TECs which is mediated by mitochondrial dysfunction.


Assuntos
Angiotensina II/farmacologia , Nefropatias/etiologia , Mitocôndrias/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Células Cultivadas , Células Epiteliais/patologia , Túbulos Renais/patologia , Camundongos , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia
19.
Sci Rep ; 6: 29036, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381670

RESUMO

To investigate the mechanism underlying AT1-AA-induced retinopathy in severe preeclampsia by measuring the positive rate and titer of AT1-AA in plasma from women with severe preeclampsia and normal pregnant women to see whether AT1-AA titer was correlated with the grade of retinopathy. A preeclampsia rat model was also established by intravenous injection of AT1-AA extracted from the plasma of patient suffering from severe preeclampsia. The results showed that the plasma titer and positive rate of AT1-AA were significantly higher in women with severe preeclampsia than normal pregnant women. The antibody titer in cases of severe preeclampsia was associated with the grade of retinopathy, and positively correlated with the level of TNF-α and VEGF. The animal experiment results showed that the modeled rats presented symptoms very similar to symptoms of human preeclampsia, including retinopathy. Ocular fundus examination showed retinal microvascular abnormalities, hemorrhaging and leakage in the severe preeclampsia. Morphological changes included edema, thickening of the INL and ONL, and pigment atrophy. TNF-α and VEGF levels were increased in the vitreous humor and retina of the model rats. Our studies results suggest that abnormal expression of AT1-AA could induce damage to retinal capillary endothelial cells and increase vascular permeability, resulting in retinopathy.


Assuntos
Autoanticorpos/imunologia , Retinopatia Hipertensiva/imunologia , Pré-Eclâmpsia/imunologia , Receptor Tipo 1 de Angiotensina/imunologia , Adulto , Animais , Autoanticorpos/sangue , Feminino , Humanos , Retinopatia Hipertensiva/patologia , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Receptor Tipo 1 de Angiotensina/fisiologia , Fator de Necrose Tumoral alfa/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
20.
Microcirculation ; 23(8): 621-625, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27344060

RESUMO

Myogenic vasoconstriction (Bayliss effect) is mediated by vascular smooth muscle cells (VSMCs) of small resistance arteries sensing mechanical forces. During the last three decades, several proteins have been proposed as VSMC mechanosensors. Our previous studies highlighted agonist-independent mechanical activation of Gq/11 protein-coupled receptors (Gq/11 PCRs) in VSMCs of resistance arteries. In particular, angiotensin II AT1 receptors (AT1 Rs) emerged as mechanosensors mediating myogenic tone. Moreover, we found that the AT1B receptor isoform was more mechanosensitive than the AT1A receptor. Interestingly, cysteinyl leukotriene 1 receptors (CysLT1 Rs) were up-regulated in AT1 R-deficient arteries as an essential backup strategy to compensate for the loss of vasoconstrictor receptors. Up-regulation of CysLT1 Rs resulted in increased myogenic tone at low intraluminal pressures resulting in hyperactivity of AT1 R-deficient arteries. Only at high intraluminal pressures myogenic tone was reduced, thus reflecting the loss of AT1 Rs. Further, CysLT1 Rs were involved in myogenic vasoconstriction of wild-type arteries. Simultaneous blockade of AT1 Rs and CysLT1 Rs in wild-type arteries caused reduction in myogenic tone of more than 60% comparable to the application of the selective Gq/11 -protein inhibitor YM-254890. Our findings suggest that AT1 Rs and CysLT1 Rs are crucial mechanosensors in resistance arteries mediating 60% of myogenic vasoconstriction via the Gq/11 -protein pathway without involvement of endogenous agonists.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Músculo Liso Vascular/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Leucotrienos/fisiologia , Vasoconstrição , Animais , Fenômenos Biomecânicos , Humanos , Mecanorreceptores , Mecanotransdução Celular , Camundongos , Miócitos de Músculo Liso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA