Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 792354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095762

RESUMO

Background: Melanocortin-4 receptor (MC4R) mutations are the most common of the rare monogenic forms of obesity. However, the efficacy of bariatric surgery (BS) and pharmacotherapy on weight and glycemic control in individuals with MC4R deficiency (MC4R-d) is not well-established. We investigated and compared the outcomes of BS and pharmacotherapy in patients with and without MC4R-d. Methods: Pertinent details were derived from the electronic database among identified patients who had BS with MC4R-d (study group, SG) and wild-type controls (age- and sex-matched control group, CG). Short- and long-term outcomes were reported for the SG. Short-term outcomes were compared between the two groups. Results: Seventy patients were screened for MC4R-d. The SG [six individuals (four females, two males); 18 (10-27) years old at BS; 50.3 (41.8-61.9) kg/m2 at BS, three patients with homozygous T162I mutations, two patients with heterozygous T162I mutations, and one patient with heterozygous I170V mutation] had a follow-up duration of up to 10 years. Weight loss, which varied depending on mutation type [17.99 (6.10-22.54) %] was stable for 6 months; heterogeneity of results was observed thereafter. BS was found superior to liraglutide on weight and glycemic control outcomes. At a median follow-up of 6 months, no significant difference was observed on weight loss (20.8% vs. 23.0%, p = 0.65) between the SG and the CG [eight individuals (four females, four males); 19.0 (17.8-36.8) years old at BS, 46.2 (42.0-48.3) kg/m2 at BS or phamacotherapeutic intervention]. Glycemic control in patients with MC4R-d and Type 2 diabetes improved post-BS. Conclusion: Our data indicate efficacious short-term but varied long-term weight loss and glycemic control outcomes of BS on patients with MC4R-d, suggesting the importance of ongoing monitoring and complementary therapeutic interventions.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/terapia , Controle Glicêmico/métodos , Hipoglicemiantes/uso terapêutico , Obesidade/terapia , Receptor Tipo 4 de Melanocortina/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Hemoglobinas Glicadas/metabolismo , Heterozigoto , Homozigoto , Humanos , Liraglutida/uso terapêutico , Masculino , Metformina/uso terapêutico , Mutação , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Redução de Peso , Adulto Jovem
2.
Biochem Biophys Res Commun ; 520(3): 651-656, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629472

RESUMO

Melanocortin 4 receptor (MC4R)-deficient mice had been used for several years to study human nonalcoholic steatohepatitis (NASH). However, although liver pathologic and biochemical indicators have been examined, mice models do not always faithfully display the phenotype of the human disease. In this study, we investigated the MC4R knockout phenotype in miniature pigs. We found that pigs lacking MC4R exhibited hyperorexia, insulin resistance, hyperinsulinemia, disordered lipid metabolism and their livers accumulated significant amounts of fat. We have shown that deletion of MC4R results in hyperphagia and increased body fat, ultimately leading to hepatic steatosis without atherogenic diet.


Assuntos
Hiperfagia/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptor Tipo 4 de Melanocortina/deficiência , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Animais Geneticamente Modificados , Crescimento Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Técnicas de Inativação de Genes , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gravidez , Receptor Tipo 4 de Melanocortina/genética , Suínos , Porco Miniatura
3.
Nat Commun ; 10(1): 4897, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653860

RESUMO

Rare genetic disorders (RGDs) often exhibit significant clinical variability among affected individuals, a disease characteristic termed variable expressivity. Recently, the aggregate effect of common variation, quantified as polygenic scores (PGSs), has emerged as an effective tool for predictions of disease risk and trait variation in the general population. Here, we measure the effect of PGSs on 11 RGDs including four sex-chromosome aneuploidies (47,XXX; 47,XXY; 47,XYY; 45,X) that affect height; two copy-number variant (CNV) disorders (16p11.2 deletions and duplications) and a Mendelian disease (melanocortin 4 receptor deficiency (MC4R)) that affect BMI; and two Mendelian diseases affecting cholesterol: familial hypercholesterolemia (FH; LDLR and APOB) and familial hypobetalipoproteinemia (FHBL; PCSK9 and APOB). Our results demonstrate that common, polygenic factors of relevant complex traits frequently contribute to variable expressivity of RGDs and that PGSs may be a useful metric for predicting clinical severity in affected individuals and for risk stratification.


Assuntos
Estatura/genética , Índice de Massa Corporal , LDL-Colesterol/sangue , Herança Multifatorial , Obesidade/genética , Doenças Raras/genética , Apolipoproteínas B/genética , Transtorno Autístico/genética , LDL-Colesterol/genética , Deleção Cromossômica , Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Cromossomos Humanos X/genética , Feminino , Humanos , Hiperlipoproteinemia Tipo II/genética , Hipobetalipoproteinemias/genética , Deficiência Intelectual/genética , Síndrome de Klinefelter/genética , Masculino , Pessoa de Meia-Idade , Pró-Proteína Convertase 9/genética , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptores de LDL/genética , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Trissomia/genética , Síndrome de Turner/genética , Cariótipo XYY/genética
4.
Hypertension ; 73(1): 162-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571561

RESUMO

Preeclampsia is a pregnancy-specific disorder of new-onset hypertension linked to placental ischemia. While obesity is a major risk factor for preeclampsia, not all obese pregnant women develop pregnancy-induced hypertension or preeclampsia. Previously, we reported that placental ischemia-induced hypertension is dependent upon intact signaling of the sympathetic nervous system. Moreover, in various models of obesity, blockade of MC4R (melanocortin-4 receptor) signaling protects against the development of hypertension via suppression of the sympathetic nervous system. Less is known about this pathway during obese pregnancy. Although blockade of MC4R may lead to increased body weight during pregnancy, we tested the hypothesis that placental ischemia-induced hypertension is attenuated in obese MC4R-deficient pregnant rats. On gestational day 14, MC4R wild-type or heterozygous-deficient (MC4R-def) rats were subjected to chronic placental ischemia via the reduced uterine perfusion pressure procedure or Sham surgery then examined on gestational day 19. In Sham MC4R-def versus Sham wild-type pregnant rats, there was increased body weight, fat mass, and circulating leptin levels but they had similar fetus weights. Reduced uterine perfusion pressure reduced fetus weights in both strains. Reduced uterine perfusion pressure increased blood pressure in wild-type rats but this response was significantly attenuated in MC4R-def rats, although blood pressure was elevated in Sham MC4R-def over Sham wild-type. These data indicate that while obese MC4R-def pregnant rats have higher blood pressure during pregnancy, placental ischemia-induced hypertension is attenuated in obese MC4R-def pregnant rats. Thus, obese women with abnormal MC4R signaling may be less susceptible to the development of placental ischemia-induced hypertension.


Assuntos
Hipertensão Induzida pela Gravidez , Isquemia , Obesidade , Doenças Placentárias , Pré-Eclâmpsia , Receptor Tipo 4 de Melanocortina , Animais , Pressão Sanguínea/fisiologia , Feminino , Humanos , Hipertensão Induzida pela Gravidez/etiologia , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/fisiopatologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Modelos Animais , Obesidade/metabolismo , Obesidade/fisiopatologia , Placenta/irrigação sanguínea , Placenta/metabolismo , Doenças Placentárias/metabolismo , Doenças Placentárias/fisiopatologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/metabolismo
5.
J Clin Invest ; 128(7): 3160-3170, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29911992

RESUMO

It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.


Assuntos
Corpo Estriado/fisiologia , Motivação/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Benzazepinas/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Dopamina/fisiologia , Antagonistas de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Opiomelanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Recompensa
6.
Sci Rep ; 8(1): 8157, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802399

RESUMO

Accumulating evidence has suggested that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) are therapeutically useful for non-alcoholic steatohepatitis (NASH). However, it is still unclear how FXR agonists protect against NASH and which cell type is the main target of FXR agonists. In this study, we examined the effects of OCA on the development of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice that progressively developed hepatic steatosis and NASH on Western diet (WD). Treatment with OCA effectively prevented chronic inflammation and liver fibrosis in WD-fed MC4R-KO mice with only marginal effect on body weight and hepatic steatosis. Hepatic crown-like structure (hCLS) is a unique histological structure characteristic of NASH, which triggers hepatocyte death-induced interstitial fibrosis. Intriguingly, treatment with OCA markedly reduced hCLS formation even after MC4R-KO mice developed NASH, thereby inhibiting the progression of liver fibrosis. As its mechanism of action, OCA suppressed metabolic stress-induced p53 activation and cell death in hepatocytes. Our findings in this study highlight the role of FXR in hepatocytes in the pathogenesis of NASH. Collectively, this study demonstrates the anti-fibrotic effect of OCA in a murine model of NASH with obesity and insulin resistance, which suggests the clinical implication for human NASH.


Assuntos
Morte Celular/efeitos dos fármacos , Ácido Quenodesoxicólico/análogos & derivados , Citoproteção/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Peso Corporal/efeitos dos fármacos , Ácido Quenodesoxicólico/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Resistência à Insulina , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Sci Rep ; 8(1): 2362, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402900

RESUMO

Sodium glucose cotransporter 2 (SGLT2) inhibitors, an antidiabetic drug, promotes urinary excretion of glucose by blocking its reabsorption in the renal proximal tubules. It is unclear whether SGLT2 inhibition could attenuate nonalcoholic steatohepatitis (NASH) and NASH-associated hepatocellular carcinoma. We examined the preventive effects of an SGLT2 inhibitor canagliflozin (CANA) in Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO) mice, a mouse model of human NASH. An eight-week CANA treatment attenuated hepatic steatosis in WD-fed MC4R-KO mice, with increased epididymal fat mass without inflammatory changes. CANA treatment for 20 weeks inhibited the development of hepatic fibrosis in WD-fed MC4R-KO mice. After one year of CANA treatment, the number of liver tumors was significantly reduced in WD-fed MC4R-KO mice. In adipose tissue, CANA suppressed the ratio of oxidative to reduced forms of glutathiones (GSSG/GSH) in WD-fed MC4R-KO mice. Treatment with GSH significantly attenuated the H2O2-induced upregulation of genes related to NADPH oxidase in 3T3-L1 adipocytes, and that of Il6, Tgfb, and Pdgfb in RAW264.7 cells. This study provides evidence that SGLT2 inhibitors represent the unique class of drugs that can attenuate or delay the onset of NASH and eventually hepatocellular carcinoma, at least partly, through "healthy adipose expansion".


Assuntos
Canagliflozina/administração & dosagem , Carcinoma Hepatocelular/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Animais , Modelos Animais de Doenças , Fígado/patologia , Camundongos , Camundongos Knockout , Receptor Tipo 4 de Melanocortina/deficiência , Resultado do Tratamento
8.
Elife ; 62017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829041

RESUMO

Haploinsufficiency of the melanocortin-4 receptor, the most common monogenetic obesity syndrome in humans, is associated with a reduction in autonomic tone, bradycardia, and incidence of obesity-associated hypertension. Thus, it has been assumed that melanocortin obesity syndrome may be protective with respect to obesity-associated cardiovascular disease. We show here that absence of the melanocortin-4 receptor (MC4R) in mice causes dilated cardiomyopathy, characterized by reduced contractility and increased left ventricular diameter. This cardiomyopathy is independent of obesity as weight matched diet induced obese mice do not display systolic dysfunction. Mc4r cardiomyopathy is characterized by ultrastructural changes in mitochondrial morphology and cardiomyocyte disorganization. Remarkably, testing of myocardial tissue from Mc4r-/- mice exhibited increased ADP stimulated respiratory capacity. However, this increase in respiration correlates with increased reactive oxygen species production - a canonical mediator of tissue damage. Together this study identifies MC4R deletion as a novel and potentially clinically important cause of heart failure.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Receptor Tipo 4 de Melanocortina/deficiência , Difosfato de Adenosina/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Miocárdio/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade
9.
Sci Rep ; 7: 44754, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303974

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by steatosis with lobular inflammation and hepatocyte injury. Pirfenidone (PFD) is an orally bioavailable pyridone derivative that has been clinically used for the treatment of idiopathic pulmonary fibrosis. However, it remains unknown whether PFD improves liver fibrosis in a mouse model with human NASH-like phenotypes. In this study, we employed melanocortin 4 receptor-deficient (MC4R-KO) mice as a mouse model with human NASH-like phenotypes to elucidate the effect and action mechanisms of PFD on the development of NASH. PFD markedly attenuated liver fibrosis in western diet (WD)-fed MC4R-KO mice without affecting metabolic profiles or steatosis. PFD prevented liver injury and fibrosis associated with decreased apoptosis of liver cells in WD-fed MC4R-KO mice. Pretreatment of PFD inhibited the tumor necrosis factor-α (TNF-α)-induced liver injury and fibrogenic responses associated with decreased apoptosis of liver cells in wild-type mice. PFD also prevented TNF-α-induced hepatocyte apoptosis in vitro with reduced activation of caspase-8 and -3. This study provides evidence for the antifibrotic effect of PFD in a mouse model of human NASH. The data of this study highlight hepatocyte apoptosis as a potential therapeutic target, and suggest that PFD can be repositioned as an antifibrotic drug for human NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Piridonas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Dieta Ocidental , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Piridonas/farmacologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Regulação para Cima/genética
10.
Sci Rep ; 6: 37435, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886210

RESUMO

Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.


Assuntos
Tecido Adiposo Marrom/metabolismo , Peso Corporal/genética , Metabolismo Energético/genética , Hipotálamo/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Animais , Restrição Calórica/métodos , Expressão Gênica , Heterozigoto , Homozigoto , Masculino , Fenótipo , Condicionamento Físico Animal , Ratos , Ratos Transgênicos , Receptor Tipo 4 de Melanocortina/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
J Physiol ; 594(24): 7309-7326, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27558671

RESUMO

KEY POINTS: Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. ABSTRACT: Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a consequence of hyperphagia-associated hyperinsulinaemia. It is proposed that physiological responses essential to maintain energy flux (hyperinsulinaemia and the suppression of GH release) override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Implications of these findings are likely to extend beyond individuals with defects in MC4R signalling, encompassing physiological changes central to mechanisms of growth and energy homeostasis universal to hyperphagia-associated childhood-onset obesity.


Assuntos
Hormônio do Crescimento/metabolismo , Hiperfagia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Fluorescência Verde/genética , Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/genética , Insulina/sangue , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética
12.
J Hypertens ; 34(10): 1998-2007, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27467764

RESUMO

OBJECTIVES: Although obesity increases the risk for hypertensive disorders of pregnancy, the mechanisms remain unclear. Neural melanocortin-4 receptor (MC4R) deficiency causes hyperphagia and obesity. Effects of MC4R deficiency on body weight, blood pressure (BP) and placental inflammatory responses to high-fat diet (HFD) are unknown. We tested two hypotheses: MC4R deficiency results in higher body weight, BP and placental inflammation under normal-fat diet (NFD) conditions and HFD exaggerates these responses in MC4R-deficient pregnant rats. METHODS: MC4R and MC4R rats were maintained on NFD (13% kcal fat) or HFD (40% kcal fat) for ∼15 weeks, then measurements made on gestational day 19. RESULTS: MC4R pregnant rats had greater body mass and total body fat and visceral adipose tissue weights along with greater circulating total cholesterol (TC) and leptin levels than MC4R rats regardless of diet. On NFD, circulating adiponectin levels were lower and placental TNFα levels and BP (conscious with carotid catheter) were higher in these heavier rats. Circulating adiponectin levels were lower and placental TNFα levels and BP were higher in MC4R rats compared with NFD controls. These parameters were not affected by HFD in the already heavier and hypertensive MC4R pregnant rats. CONCLUSION: Obesity in MC4R deficiency and HFD in MC4R rats result in higher BP and placental inflammation during pregnancy. However, HFD did not exaggerate these responses in already obese MC4R pregnant rats. These data suggest that obesity and HFD are independently related to hypertension and placental inflammation in pregnancy.


Assuntos
Pressão Sanguínea , Peso Corporal , Dieta Hiperlipídica , Hipertensão/metabolismo , Inflamação/metabolismo , Placenta/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Adiponectina/sangue , Adiposidade , Animais , Colesterol/sangue , Feminino , Gordura Intra-Abdominal , Leptina/sangue , Obesidade/fisiopatologia , Gravidez , Ratos , Receptor Tipo 4 de Melanocortina/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
PLoS One ; 10(3): e0121528, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816330

RESUMO

Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-ß activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.


Assuntos
Ácido Eicosapentaenoico/administração & dosagem , Cirrose Hepática Experimental/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptor Tipo 4 de Melanocortina/deficiência , Adipocinas/sangue , Adiponectina/sangue , Animais , Modelos Animais de Doenças , Ácido Eicosapentaenoico/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
14.
Glia ; 62(1): 17-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166765

RESUMO

The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity.


Assuntos
Hormônios/farmacologia , Microglia/metabolismo , Núcleo Supraóptico/citologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Citocininas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Exenatida , Leptina/deficiência , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/fisiopatologia , Peptídeos/farmacologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Transdução de Sinais/efeitos dos fármacos , Peçonhas/farmacologia
15.
Cell Metab ; 18(6): 860-70, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24315371

RESUMO

The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peso Corporal , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Repressoras/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Hiperfagia , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptídeos Cíclicos/farmacologia , Cloreto de Potássio/farmacologia , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
16.
Diabetes Obes Metab ; 14(7): 608-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22276636

RESUMO

AIMS: Amylinergic and melanocortinergic systems have each been implicated in energy balance regulation. We examined the interactive effects of both systems using gene knockout and pharmacological approaches. METHODS: Acute food consumption was measured in overnight fasted male wild-type (WT) and melanocortin-4 receptor (MC-4R) deficient rats and in male and female WT and amylin knockout mice (AmyKO). Changes in food intake, body weight and composition in male WT and MC-4R deficient rats and in male diet-induced obese (DIO) rats. Pharmacological treatments included either rat amylin, murine leptin and/or the MC-4R agonist, Ac-R[CEH-dF-RWC]-amide. RESULTS: Amylin (10 µg/kg, IP) decreased food intake in WT but not in MC-4R deficient rats (30 and 60 min post-injection). Ac-R[CEH-dF-RWC]-amide (100 µg/kg, IP) suppressed food intake similarly in male WT and AmyKO, but was ineffective in female AmyKO. Amylin (50 µg/kg/day for 28 days) and leptin (125 µg/kg/day) synergistically reduced food intake and body weight in WT and MC-4R deficient rats to a similar extent. Amylin (100 µg/kg) combined with Ac-R[CEH-dF-RWC]-amide (100 µg/kg, IP) decreased acute food intake over 3 h to a greater extent than either agent alone in fasted mice. In DIO rats, additive anorexigenic, weight- and fat-lowering effects were observed over 12 days with the combination of rat amylin (50 µg/kg/day) and Ac-R[CEH-dF-RWC]-amide (2.3 mg/kg, SC injected daily). CONCLUSIONS: Although amylin's acute anorexigenic effects are somewhat blunted in MC-4R deficiency and those of MC-4R agonism in amylin deficiency, these effects are surmountable with pharmacological administration lending therapeutic potential to combined amylin/melanocortin agonism for obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Peso Corporal , Ingestão de Alimentos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/deficiência , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Obesidade/tratamento farmacológico , Receptor Tipo 4 de Melanocortina/deficiência , Animais , Modelos Animais de Doenças , Interações Medicamentosas , Metabolismo Energético , Feminino , Técnicas de Inativação de Genes , Polipeptídeo Amiloide das Ilhotas Pancreáticas/administração & dosagem , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/agonistas
17.
Int J Obes (Lond) ; 36(2): 244-53, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21467998

RESUMO

OBJECTIVE: Heme oxygenase-1 induction (HO-1) elicits chronic weight loss in several rodent models of obesity. Despite these findings, the mechanism by which HO-1 induction reduces body weight is unclear. Chronic HO-1 induction does not alter food intake, suggesting other mechanisms such as increases in metabolism and activity may be responsible for the observed reduction of body weight. In this study, we investigated the mechanism of weight loss elicited by chronic HO-1 induction in a model of genetic obesity due to melanocortin-4 receptor (MC4R) deficiency. DESIGN: Experiments were performed on loxTB MC4R-deficient mice as well as lean controls. Mice were administered cobalt protoporphyrin (CoPP, 5 mg kg(-1)), an inducer of HO-1, once weekly, from 4 to 23 weeks of age. Body weights were measured weekly and fasted blood glucose and insulin, as well as food intake were determined at 18 weeks of age. Oxygen consumption (VO(2)), CO(2) production (VCO(2)), activity and body heat production were measured at 20 weeks of age. RESULTS: Chronic CoPP treatment resulted in a significant decrease in body weight from 5 weeks on in loxTB mice. Chronic CoPP treatment resulted in a significant decrease in fasted blood glucose levels, plasma insulin and a significant increase in plasma adiponectin levels in MC4R-deficient mice. Chronic CoPP treatment increased VO(2) (47 ± 4 vs 38 ± 3 ml kg(-1) per min, P<0.05) and VCO(2) (44 ± 7 vs 34 ± 4 ml kg(-1) per min, P<0.05) in treated vs non-treated, MC4R-deficient mice (n=4). Heat production (10%) and activity (18%) were also significantly (P<0.05) increased in CoPP-treated MC4R-deficient mice. CONCLUSION: Our results suggest that chronic HO-1 induction with CoPP induction elicits weight loss by increasing metabolism and activity by an MC4R-independent pathway.


Assuntos
Peso Corporal/efeitos dos fármacos , Heme Oxigenase-1/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Protoporfirinas/farmacologia , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Animais , Western Blotting , Heme Oxigenase-1/metabolismo , Masculino , Camundongos , Camundongos Obesos , Receptor Tipo 4 de Melanocortina/deficiência
18.
Am J Pathol ; 179(5): 2454-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21906580

RESUMO

Obesity may be viewed as a state of chronic low-grade inflammation that participates in the development of the metabolic syndrome. Nonalcoholic steatohepatitis (NASH) is considered a hepatic phenotype of the metabolic syndrome and a high risk for progression to cirrhosis and hepatocellular carcinoma. Although the "two hit" hypothesis suggests involvement of excessive hepatic lipid accumulation and chronic inflammation, the molecular mechanisms underlying the development of NASH remain unclear, in part because of lack of appropriate animal models. Herein we report that melanocortin 4 receptor-deficient mice (MC4R-KO) develop steatohepatitis when fed a high-fat diet, which is associated with obesity, insulin resistance, and dyslipidemia. Histologic analysis reveals inflammatory cell infiltration, hepatocyte ballooning, and pericellular fibrosis in the liver in MC4R-KO mice. Of note, all of the MC4R-KO mice examined developed well-differentiated hepatocellular carcinoma after being fed a high-fat diet for 1 year. They also demonstrated enhanced adipose tissue inflammation, ie, increased macrophage infiltration and fibrotic changes, which may contribute to excessive lipid accumulation and enhanced fibrosis in the liver. Thus, MC4R-KO mice provide a novel mouse model of NASH with which to investigate the sequence of events that make up diet-induced hepatic steatosis, liver fibrosis, and hepatocellular carcinoma and to aid in understanding the pathogenesis of NASH, pursuing specific biomarkers, and evaluating potential therapeutic strategies.


Assuntos
Fígado Gorduroso/etiologia , Receptor Tipo 4 de Melanocortina/deficiência , Animais , Carcinoma Hepatocelular/etiologia , Modelos Animais de Doenças , Metabolismo dos Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Cirrose Hepática/etiologia , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/fisiologia , Fenótipo , Triglicerídeos/metabolismo
19.
Alcohol Clin Exp Res ; 35(6): 1058-66, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21332528

RESUMO

BACKGROUND: The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). Recent evidence shows that chronic exposure to ethanol significantly blunts central MC peptide immunoreactivity and MC receptor (MCR) agonists protect against high ethanol intake characteristic of C57BL/6J mice. Here, we assessed the role of the MC-4 receptor (MC4R) in voluntary ethanol intake and in modulating the effects of the nonselective MCR agonist melanotan-II (MTII) on ethanol consumption. METHODS: To assess the role of the MC4R, MC4R knockout (Mc4r(-/-) ) and littermate wild-type (Mc4r(+/+) ) mice on a C57BL/6J background were used. Voluntary ethanol (3, 5, 8, 10, 15, and 20%, v/v) and water intake were assessed using standard two-bottle procedures. In separate experiments, Mc4r(-/-) and Mc4r(+/+) mice were given intracerebroventricular (i.c.v.) infusion of MTII (0, 0.5, or 1.0 µg/1 µl) or intraperitoneal (i.p.) injection of MTII (0 or 5 mg/kg/5 ml). The effects of MTII (0 or 0.5 µg/1 µl, i.c.v.) on 10% sucrose and 0.15% saccharin intake were assessed in C57BL/6J mice. RESULTS: Mc4r(-/-) mice showed normal consumption of ethanol over all concentrations tested. I.c.v. infusion of MTII significantly reduced ethanol drinking in Mc4r(+/+) mice, but failed to influence ethanol intake in Mc4r(-/-) mice. When administered in an i.p. injection, MTII significantly reduced ethanol drinking in both Mc4r(-/-) and Mc4r(+/+) mice. MTII attenuated consumption of caloric (ethanol, sucrose, and food) and noncaloric (saccharin) reinforcers. CONCLUSIONS: When given centrally, the MCR agonist MTII reduced ethanol drinking by signaling through the MC4R. On the other hand, MTII-induced reduction of ethanol drinking did not require the MC4R when administered peripherally. Together, the present observations show that the MC4R is necessary for the central actions of MCR agonists on ethanol drinking and that MTII blunts the consumption natural reinforcers, regardless of caloric content, in addition to ethanol.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Mutação/genética , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/deficiência , alfa-MSH/análogos & derivados , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos Cíclicos/uso terapêutico , Receptor Tipo 4 de Melanocortina/genética , alfa-MSH/farmacologia , alfa-MSH/uso terapêutico
20.
Int J Obes (Lond) ; 35(3): 457-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20733581

RESUMO

Bariatric surgery is often successful for treatment of severe obesity. The mechanisms of weight loss after bariatric surgery and the role of central energy homeostatic pathways in this weight loss process are not well understood. The study of individuals with complete loss of function of genes important in the leptin-melanocortin system may help establish the significance of these pathways for weight loss after bariatric surgery. We describe the outcome of bariatric surgery in an adolescent with compound heterozygosity and complete functional loss of both alleles of the melanocortin 4 receptor (MC4R). The patient underwent laparoscopic adjustable gastric banding and truncal vagotomy at years of age, which resulted in initial, but not long-term weight loss. Our experience with this patient suggests that complete MC4R deficiency impairs response to gastric banding and results in poor weight loss after this surgery.


Assuntos
Cirurgia Bariátrica/métodos , Obesidade Mórbida/cirurgia , Receptor Tipo 4 de Melanocortina/deficiência , Redução de Peso/fisiologia , Adolescente , Humanos , Masculino , Obesidade Mórbida/genética , Resultado do Tratamento , Redução de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA