Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1069, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212454

RESUMO

Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.


Assuntos
Neoplasias das Glândulas Salivares , Fatores de Transcrição , Animais , Camundongos , Ectodisplasinas/genética , Células Epiteliais/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Glândula Submandibular/metabolismo , Fatores de Transcrição/metabolismo , Receptor Xedar/metabolismo
2.
Int J Radiat Biol ; 99(11): 1702-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212632

RESUMO

PURPOSE: Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS: Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS: We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS: These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.


Assuntos
MicroRNAs , Irradiação Corporal Total , Camundongos , Animais , Humanos , Irradiação Corporal Total/efeitos adversos , Qualidade de Vida , Camundongos Endogâmicos C57BL , Pulmão/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Modelos Animais de Doenças , Receptor Xedar/genética , Receptor Xedar/metabolismo
3.
Nature ; 617(7962): 827-834, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165186

RESUMO

Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.


Assuntos
Caquexia , Atrofia Muscular , Neoplasias , Transdução de Sinais , Receptor Xedar , Animais , Camundongos , Caquexia/complicações , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/patologia , Receptor Xedar/metabolismo , Humanos , Ligantes , Receptores de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Quinase Induzida por NF-kappaB
4.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982831

RESUMO

Animal models are invaluable in the research of the pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic aseptic urinary bladder disease of unknown etiology that primarily affects women. Here, a mouse model of IC/BPS was induced with multiple low-dose cyclophosphamide (CYP) applications and thoroughly characterized by RNA sequencing, qPCR, Western blot, and immunolabeling to elucidate key inflammatory processes and sex-dependent differences in the bladder inflammatory response. CYP treatment resulted in the upregulation of inflammatory transcripts such as Ccl8, Eda2r, and Vegfd, which are predominantly involved in innate immunity pathways, recapitulating the crucial findings in the bladder transcriptome of IC/BPS patients. The JAK/STAT signaling pathway was analyzed in detail, and the JAK3/STAT3 interaction was found to be most activated in cells of the bladder urothelium and lamina propria. Sex-based data analysis revealed that cell proliferation was more pronounced in male bladders, while innate immunity and tissue remodeling processes were the most distinctive responses of female bladders to CYP treatment. These processes were also reflected in prominent histological changes in the bladder. The study provides an invaluable reference dataset for preclinical research on IC/BPS and an insight into the sex-specific mechanisms involved in the development of IC/BPS pathology, which may explain the more frequent occurrence of this disease in women.


Assuntos
Cistite Intersticial , Camundongos , Animais , Feminino , Masculino , Cistite Intersticial/genética , Cistite Intersticial/patologia , Bexiga Urinária/patologia , Transcriptoma , Pelve/patologia , Proliferação de Células , Modelos Animais de Doenças , Receptor Xedar/metabolismo
5.
Int J Biol Sci ; 18(15): 5624-5640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263181

RESUMO

Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus and is one of the leading causes of end-stage kidney disease. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that play important roles in various diseases, yet their roles in DKD are poorly understood. CircRNA HIPK3 (circHIPK3), a highly conserved circRNA, is closely related to various cellular functions, including cell proliferation and apoptosis. The association between circHIPK3 and diabetic complications has been well demonstrated in multiple previous studies. However, the role of circHIPK3 in podocyte injury in DKD remains unclear. Herein, we discovered that circHIPK3 expression is markedly elevated in cultured podocytes under high-glucose (HG) conditions and glomeruli of diabetic mice, which is closely associated with podocyte injury in DKD. Functionally, lentivirus-mediated knockdown of circHIPK3 dramatically suppresses HG-induced podocyte apoptosis in vitro. Therapeutically, silencing circHIPK3 by adeno-associated virus-mediated RNA interference ameliorates podocyte injury and albuminuria in STZ-induced diabetic mice. Mechanistically, circHIPK3 facilitates the enrichment of fused in sarcoma (FUS) on the ectodysplasin A2 receptor (EDA2R) promoter, resulting in the upregulation of EDA2R expression and activation of apoptotic signaling. Taken together, these results indicate circHIPK3/FUS/EDA2R axis as a therapeutic target for podocyte injury and DKD progression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , RNA Circular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Receptor Xedar/metabolismo , Glucose/metabolismo
6.
Allergol Immunopathol (Madr) ; 50(5): 84-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36086968

RESUMO

BACKGROUND: Long-term hyperoxia impairs growth of the lungs and contributes to development of bronchopulmonary dysplasia. Ectodysplasin A (EDA) binds to ectodysplasin A2 receptor (EDA2R) and is essential for normal prenatal development. The functioning of EDA2R in bronchopulmonary dysplasia is investigated in this study. METHODS: Murine lung epithelial cells (MLE-12) were exposed to hyperoxia to induce cell injury. Cell viability and apoptosis were detected, respectively, by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and flow cytometry. Inflammation and oxidative stress were evaluated by enzyme-linked immunosorbent serologic assay. RESULTS: Hyperoxia decreased cell viability and promoted cell apoptosis of MLE-12. EDA2R was elevated in hyperoxia-induced MLE-12. Silencing of EDA2R enhanced cell viability and reduced cell apoptosis of hyperoxia-induced MLE-12. Hyperoxia-induced up-regulation of tumor necrosis factor alpha (TNF-α), Interleukin (IL)-1ß, and IL-18 as well as MLE-12 was suppressed by knockdown of EDA2R. Inhibition of EDA2R down-regulated the level of malondialdehyde (MDA), up-regulated superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in hyperoxia-induced MLE-12. Interference of EDA2R attenuated hyperoxia-induced increase in p-p65 in MLE-12. CONCLUSION: Knockdown of EDA2R exerted anti-inflammatory and antioxidant effects against hyperoxia-induced injury in lung epithelial cells through inhibition of nuclear factor kappa B (NF-κB) pathway.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Displasia Broncopulmonar/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Pulmão/patologia , Camundongos , NF-kappa B/metabolismo , Receptor Xedar/metabolismo
7.
Am J Pathol ; 192(4): 613-628, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092726

RESUMO

Cisplatin induces both acute and chronic nephrotoxicity during chemotherapy in patients with cancer. Presented here is the first study of single-nucleus RNA sequencing (snRNA-seq) of cisplatin-induced nephrotoxicity. Repeated low-dose cisplatin treatment (RLDC) led to decreases in renal function and kidney weight in mice at 9 weeks. The kidneys of these mice showed tubular degeneration and dilation. snRNA-seq identified 16 cell types and 17 cell clusters in these kidneys. Cluster-by-cluster comparison demonstrated cell type-specific changes in gene expression and identified a unique proximal tubule (PT) injury/repair cluster that co-expressed the injury marker kidney injury molecule-1 (Kim1) and the proliferation marker Ki-67. Compared with control, post-RLDC kidneys had 424 differentially expressed genes in PT cells, including tubular transporters and cytochrome P450 enzymes involved in lipid metabolism. snRNA-seq also revealed transcriptional changes in potential PT injury markers (Krt222, Eda2r, Ltbp2, and Masp1) and repair marker (Bex4). RLDC induced inflammation and proinflammatory cytokines (RelB, TNF-α, Il7, Ccl2, and Cxcl2) and the expression of fibrosis markers (fibronectin, collagen I, connective tissue growth factor, vimentin, and α-smooth muscle actin). Together, these results provide new insights into RLDC-induced transcriptional changes at the single-cell level that may contribute to the development of chronic kidney problems in patients with cancer after cisplatin chemotherapy.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Insuficiência Renal Crônica , Injúria Renal Aguda/patologia , Animais , Biomarcadores/metabolismo , Cisplatino/toxicidade , Fibrose , Humanos , Rim/patologia , Proteínas de Ligação a TGF-beta Latente/metabolismo , Camundongos , RNA Nuclear Pequeno/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Receptor Xedar/metabolismo
8.
Commun Biol ; 4(1): 213, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594251

RESUMO

The mucosa microenvironment is critical for intestinal stem cell self-renewal and reconstruction of the epithelial barrier in inflammatory bowel disease (IBD), where the mechanisms underlying cross-talk between intestinal crypts and the microenvironment remain unclear. Here, we firstly identified miR-494-3p as an important protector in colitis. miR-494-3p levels were decreased and negatively correlated with the severity in human IBD samples, as well as in colitis mice. In colitis crypts, a notable cytokine-cytokine receptor, miR-494-3p-targeted EDA2R and the ligand EDA-A2, suppressed colonic stemness and epithelial repair by inhibiting ß-catenin/c-Myc. In differentiated IECs, miR-494-3p inhibits macrophage recruitment, M1 activation and EDA-A2 secretion by targeting IKKß/NF-κB in colitis. A miR-494-3p agomir system notably ameliorated the severity of colonic colitis in vivo. Collectively, our findings uncover a miR-494-3p-mediated cross-talk mechanism by which macrophage-induced intestinal stem cell impairment aggravates intestinal inflammation.


Assuntos
Colite/metabolismo , Colo/metabolismo , Ectodisplasinas/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Comunicação Parácrina , Células-Tronco/metabolismo , Receptor Xedar/metabolismo , Animais , Antagomirs/administração & dosagem , Células Cultivadas , Quimiotaxia , Colite/genética , Colite/patologia , Colite/prevenção & controle , Colo/patologia , Modelos Animais de Doenças , Ectodisplasinas/genética , Humanos , Quinase I-kappa B/metabolismo , Mucosa Intestinal/patologia , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Organoides , Nicho de Células-Tronco , Células-Tronco/patologia , Via de Sinalização Wnt , Receptor Xedar/genética
9.
Cell Transplant ; 30: 963689721996346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33637015

RESUMO

X-linked ectodermal dysplasia receptor (XEDAR) is a new member of the tumor necrosis factor receptor (TNFR) family that induces cell death. The purpose of this study is to determine the tumor-suppressive potential of XEDAR in the development and differentiation of gastric cancer (GC). XEDAR levels were analyzed in human GC tissues and adjacent normal tissues by immunohistochemistry (IHC), quantitative real-time reverse transcription PCR (RT-qPCR), and Western blot analysis. We found that XEDAR expression was significantly downregulated in GC tissues and further decreased in low differentiated GC tissues. Overexpression of XEDAR in MKN45 and MGC803 cells suppressed the ability of cell proliferation and migration, whereas silencing XEDAR showed the opposite effect. Additionally, XEDAR silencing resulted in the upregulation of the differentiation molecular markers ß-catenin, CD44 and Cyclin D1 at the protein levels, whereas XEDAR overexpression showed the opposite effect. Notably, XEDAR positively regulated the expression of liver X receptor alpha (LXRα) through upregulating the RELA gene that was characterized as a transcription factor of LXRα in this study. Inhibition of LXRα by GSK2033 or activation of the Wnt/ß-catenin pathway by Wnt agonist 1 impaired the effect of XEDAR overexpression on differentiation of MKN45 cells. Moreover, inhibition of RELA mediated by siRNA could promote cell proliferation/migration and rescue the effect of XEDAR overexpression on cell behaviors and expression of genes. Subsequently, overexpression of XEDAR suppressed the growth of GC cells in vivo. Taken together, our findings showed that XEDAR could promote differentiation and suppress proliferation and invasion of GC cells.


Assuntos
Receptores X do Fígado/metabolismo , Neoplasias Gástricas/metabolismo , Fator de Transcrição RelA/metabolismo , Via de Sinalização Wnt , Receptor Xedar/metabolismo , beta Catenina/metabolismo , Adulto , Idoso , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Genes Supressores de Tumor , Humanos , Receptores X do Fígado/genética , Masculino , Pessoa de Meia-Idade , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fator de Transcrição RelA/genética , Regulação para Cima , Receptor Xedar/genética , beta Catenina/genética
10.
Biochem Biophys Res Commun ; 529(3): 766-772, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736705

RESUMO

Androgenetic alopecia (AGA) is a common genetic disorder, and a X-chromosomal locus that contains the androgen receptor (AR) and ectodysplasin A2 receptor (EDA2R) genes represents a major susceptibility locus for AGA. In our previous study, we reported that ectodysplasin-A2 (EDA-A2) induces apoptosis in cultured human hair follicle (HF) cells and promotes the regression of HFs in mice. However, the role of the EDA-A2/EDA2R in AGA remains unknown, as the causative gene in this pathway has not yet been identified and potential functional connections between EDA-A2 signaling and the androgen pathway remain unclear. In this study, we investigated the expression of EDA2R in balding HFs and matched with non-balding HFs. The EDA2R level was upregulated in the balding dermal papilla (DP) cells compared with non-balding DP cells derived from patients with AGA. However, EDA2R was strongly expressed in both balding and non-balding outer root sheath (ORS) cells. We screened EDA-A2-regulated genes in balding DP cells and identified dickkopf 1 (DKK-1) as catagen inducer during the hair cycle. The mRNA and protein expression levels of DKK-1 were both upregulated by EDA-A2. In addition, DKK-1 expression was induced by EDA-A2 both in cultured human HFs and in mouse HFs. Moreover, the EDA-A2-induced apoptosis of DP and ORS cells was reversed by the antibody-mediated neutralization of DKK-1. Collectively, our data strongly suggest that EDA-A2 induces DKK-1 secretion and causes apoptosis in HFs by binding EDA2R, which is overexpressed in the bald scalp. EDA-A2/EDA2R signaling could inhibit hair growth through DKK-1 induction, and an inhibitor of EDA-A2/EDA2R signaling may be a promising agent for the treatment and prevention of AGA.


Assuntos
Alopecia/genética , Ectodisplasinas/metabolismo , Folículo Piloso/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Receptor Xedar/metabolismo , Alopecia/metabolismo , Apoptose , Células Cultivadas , Folículo Piloso/citologia , Humanos , Regulação para Cima , Receptor Xedar/genética
11.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31829409

RESUMO

X-linked ectodermal dysplasia receptor (XEDAR) has been widely studied in epidermal morphogenesis, but few studies have been conducted on tumorigenesis and development, including gastric cancer. In the present research, we aimed to investigate the effect of XEDAR on gastric cancer and further explore the molecular mechanisms involved. The differential expression of XEDAR in 90 tissue specimens (30 gastric cancer tissues, 30 adjacent tissues and 30 normal tissues) was detected by real-time PCR (RT-PCR) and Western blot. Cell proliferation and apoptosis were explored using MTT and Annexin-V/propidium iodide (PI) assays, respectively. The results revealed that the expression of XEDAR was decreased in gastric cancer tissues and in gastric cancer cell lines, and its expression is regulated by p53 in BGC-823 cells. Furthermore, overexpression of XEDAR inhibited cell proliferation and induced apoptosis in BGC-823 cells. XEDAR moreover inhibited proliferation and induced apoptosis in gastric cancer cells by regulating the JNK signaling pathway. Collectively, the results of the present study suggested that XEDAR inhibits cell proliferation and induces apoptosis by participating in p53-mediated signaling pathway and inhibiting the downstream JNK signaling pathway in gastric cancer.


Assuntos
Apoptose , Proliferação de Células , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Receptor Xedar/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Receptor Xedar/genética
12.
Oxid Med Cell Longev ; 2019: 3829342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885785

RESUMO

Little information has been available about the influence of dietary genistein (GEN) on hepatic transcriptome of laying broiler breeder (LBB) hens. The study is aimed at broadening the understanding of RNA expression profiles and alternative splicing (AS) signatures of GEN-treated breeder hens and thereby improving laying performance and immune function of hens during the late egg-laying period. 720 LBB hens were randomly allocated into three groups with supplemental dietary GEN doses (0, 40 mg/kg, and 400 mg/kg). Each treatment has 8 replicates of 30 birds. Dietary GEN enhanced the antioxidative capability of livers, along with the increased activities of glutathione peroxidase and catalase. Furthermore, it improved lipid metabolic status and apoptotic process in the liver of hens. 40 mg/kg dietary GEN had the better effects on improving immune function and laying performance. However, transcriptome data indicated that 400 mg/kg dietary GEN did negative regulation of hormone biosynthetic process. Also, it upregulated the expressions of EDA2R and CYR61 by the Cis regulation of neighbouring genes (lncRNA_XLOC_018890 and XLOC_024242), which might activate NF-κB and immune-related signaling pathway. Furthermore, dietary GEN induced AS events in the liver, which also enriched into immune and metabolic process. Therefore, the application of 40 mg/kg GEN in the diet of breeder hens during the late egg-laying period can improve lipid metabolism and immune function. We need to pay attention to the side-effects of high-dose GEN on the immune function.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Genisteína/farmacologia , Fígado/efeitos dos fármacos , RNA/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Galinhas , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , RNA Longo não Codificante/metabolismo , Triglicerídeos/sangue , Receptor Xedar/genética , Receptor Xedar/metabolismo
13.
Biochem Biophys Res Commun ; 520(2): 428-433, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607478

RESUMO

Ectodysplasin is a ligand of the TNF family that plays a key role in ectodermal differentiation. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by the insertion of two amino acids and bind to two different receptors, ectodysplasin A receptor (EDAR) and ectodysplasin A2 receptor (EDA2R), respectively. Mutations of EDA-A1 and its receptor EDAR have been associated with hypohidrotic ecodermal dysplasia (HED). However, the role of EDA-A2 and the expression pattern of EDA2R in human hair follicles and in the mouse hair growth cycle have not been reported. In this study, we first investigated the expression of EDA2R in human hair follicles and in cultured follicular cells. EDA2R was strongly expressed in outer root sheath (ORS) cells and weakly expressed in dermal papilla (DP) cells. EDA-A2 induced the apoptosis of both ORS cells and DP cells via the activation of cleaved caspase-3. In addition, EDA2R was highly expressed in the late anagen phase compared with other phases in the hair growth cycle. Moreover, EDA-A2 induced apoptosis in cultured human hair follicle cells and in the mouse hair growth cycle, causing the premature onset of the catagen phase. Collectively, our results suggest that EDA-A2/EDA2R signaling could inhibit hair growth, and an inhibitor of EDA-A2/EDA2R signaling may be a promising agent for the treatment and prevention of hair loss.


Assuntos
Ectodisplasinas/farmacologia , Folículo Piloso/citologia , Receptor Xedar/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/metabolismo , Células Cultivadas , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Feminino , Folículo Piloso/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Receptor Xedar/genética
14.
Clin Exp Med ; 17(1): 111-119, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26659383

RESUMO

Despite recent advancements in the knowledge of the etiology and pathogenic mechanisms, treatment of the autoimmune disease Sjögren's syndrome (SS) remains mostly empiric and symptom-based, indicating the need for novel therapeutic approaches. Ectodysplasin-A2 (EDA-A2) is a recently isolated member of the tumor necrosis factor superfamily that binds to X-linked ectodermal dysplasia receptor (XEDAR). In this report, we have analyzed the expression and the biological activity of EDA-A2 in human salivary gland epithelial cells (SGEC) from primary Sjögren's syndrome (pSS) patients. We report that EDA-A2 and its receptor XEDAR are overexpressed in pSS SGEC in comparison with healthy individuals and that the EDA-A2/XEDAR system in these cells is involved in the induction of apoptosis via caspases activation. Collectively, our results suggest that EDA-A2/XEDAR system may be a promising agent for the gene therapy of pSS.


Assuntos
Caspase 3/genética , Ectodisplasinas/genética , Células Epiteliais/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Receptor Xedar/genética , Apoptose/genética , Estudos de Casos e Controles , Caspase 3/metabolismo , Ectodisplasinas/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Glândulas Salivares/patologia , Transdução de Sinais , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Receptor Xedar/antagonistas & inibidores , Receptor Xedar/metabolismo
15.
Biochem Biophys Res Commun ; 465(2): 275-80, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26260321

RESUMO

Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR has been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20.


Assuntos
Regulação da Expressão Gênica , Subunidade p52 de NF-kappa B/genética , Receptor Xedar/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Células HEK293 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Receptor Xedar/metabolismo , Quinase Induzida por NF-kappaB
16.
FEBS Lett ; 584(11): 2473-7, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20434500

RESUMO

The p53 tumor suppressor coordinates a multitude of cellular and organismal processes and exerts its activities mainly by activation of gene transcription. Here we describe the transcriptional activation of ectodysplasin A2 receptor (EDA2R) by p53 in a variety of cell types and tissues. We demonstrate that treatment of cancer cells with the ligand EDA-A2, known to specifically activate EDA2R, results in p53-dependent cell death. Moreover, we show that EDA2R is transactivated by p53 during chemotherapy-induced hair-loss, although its presence is not necessary for this process. These data shed new light on the role of EDA2R in exerting p53 function.


Assuntos
Alopecia/genética , Genes p53/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/fisiologia , Receptor Xedar/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica , Proteína Supressora de Tumor p53/genética
17.
Mol Cancer Res ; 8(6): 855-63, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20501644

RESUMO

We recently identified X-linked ectodermal dysplasia receptor (XEDAR, also known as TNFRSF27 or EDA2R) as a direct p53 target that was frequently downregulated in colorectal cancer tissues due to its epigenetic alterations or through the p53 gene mutations. However, the role of the posttranslational regulation of XEDAR protein in colorectal carcinogenesis was not well clarified thus far. Here, we report that the extracellular NH(2) terminus of XEDAR protein was cleaved by a metalloproteinase and released into culture media. The remaining COOH-terminal membrane-anchored fragment was rapidly degraded through the ubiquitin-proteasome pathway. Interestingly, ectopic p53 expression also transactivated an XEDAR ligand, EDA-A2, together with XEDAR. Moreover, EDA-A2 blocked the cleavage of XEDAR and subsequently inhibited cell growth. We also found a missense mutation of the XEDAR gene in NCI-H716 colorectal cancer cells, which caused the translocation of XEDAR protein from cell membrane to cytoplasm. This mutation attenuated the growth-suppressive effect of XEDAR, indicating that membrane localization is critical for physiologic XEDAR function. Thus, our findings clearly revealed the crucial role of EDA-A2/XEDAR interaction in the p53-signaling pathway.


Assuntos
Neoplasias Colorretais/metabolismo , Ectodisplasinas/metabolismo , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Receptor Xedar/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Ectodisplasinas/genética , Humanos , Mutação de Sentido Incorreto/genética , Complexo de Endopeptidases do Proteassoma/fisiologia , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional/genética , Estrutura Terciária de Proteína/genética , Coelhos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/fisiologia , Receptor Xedar/genética
18.
Cancer Gene Ther ; 14(11): 927-33, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17693991

RESUMO

The extremely poor prognosis of patients with metastatic osteosarcoma indicates the need for novel therapeutic approaches. Ectodysplasin-A2 (EDA-A2) is a recently isolated member of the tumor necrosis factor superfamily that binds to X-linked ectodermal dysplasia receptor (XEDAR). In this report, we have analyzed the biological activity of EDA-A2 against osteosarcoma-derived cell lines. We report that XEDAR is expressed in cell lines derived from osteosarcoma and adenoviral-mediated expression of EDA-A2 in these cells results in the induction of apoptosis via caspase activation and cell-cycle arrest in the G(0)/G(1) phase. Treatment with EDA-A2 also upregulates the expression of alkaline phosphatase, a marker of osteogenic differentiation, in a caspase-dependent fashion. Collectively, our results suggest that EDA-A2 may be a promising agent for the gene therapy of osteosarcoma.


Assuntos
Apoptose , Neoplasias Ósseas/terapia , Ectodisplasinas/genética , Terapia Genética/métodos , Osteossarcoma/terapia , Adenoviridae/genética , Caspases/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Transferência de Genes , Humanos , Receptor Xedar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA