Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.567
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38715255

RESUMO

Breast cancer bone metastases (BMET) are incurable, primarily osteolytic, and occur most commonly in estrogen receptor-α positive (ER+) breast cancer. ER+ human breast cancer BMET modeling in mice has demonstrated an estrogen (E2)-dependent increase in tumor-associated osteolysis and bone-resorbing osteoclasts, independent of estrogenic effects on tumor proliferation or bone turnover, suggesting a possible mechanistic link between tumoral ERα-driven osteolysis and ER+ bone progression. To explore this question, inducible secretion of the osteolytic factor, parathyroid hormone-related protein (PTHrP), was utilized as an in vitro screening bioassay to query the osteolytic potential of estrogen receptor- and signaling pathway-specific ligands in BMET-forming ER+ human breast cancer cells expressing ERα, ERß, and G protein-coupled ER. After identifying genomic ERα signaling, also responsibility for estrogen's proliferative effects, as necessary and sufficient for osteolytic PTHrP secretion, in vivo effects of a genomic-only ER agonist, estetrol (E4), on osteolytic ER+ BMET progression were examined. Surprisingly, while pharmacologic effects of E4 on estrogen-dependent tissues, including bone, were evident, E4 did not support osteolytic BMET progression (vs robust E2 effects), suggesting an important role for nongenomic ER signaling in ER+ metastatic progression at this site. Because bone effects of E4 did not completely recapitulate those of E2, the relative importance of nongenomic ER signaling in tumor vs bone cannot be ascertained here. Nonetheless, these intriguing findings suggest that targeted manipulation of estrogen signaling to mitigate ER+ metastatic progression in bone may require a nuanced approach, considering genomic and nongenomic effects of ER signaling on both sides of the tumor/bone interface.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Receptor alfa de Estrogênio , Estrogênios , Transdução de Sinais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Animais , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Osteólise/metabolismo , Osteólise/patologia , Receptores de Estrogênio/metabolismo
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732206

RESUMO

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Assuntos
Neoplasias da Mama , Pontos de Checagem do Ciclo Celular , Curcumina , Inibidor de Quinase Dependente de Ciclina p21 , Regulação Neoplásica da Expressão Gênica , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células MCF-7 , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Antineoplásicos/farmacologia , Proteínas GADD45
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731947

RESUMO

Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17ß-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid hormones including E2 were depleted, matrix mineralization was significantly reduced. However, the E2 treatment induced this. The E2 effects were suppressed by ICI182,780, the estrogen receptor (ER)α, and the ERß antagonist, as well as their mRNA knockdown, whereas Raloxifene, an inhibitor of estrogen-induced transcription, and G15, a G-protein-coupled estrogen receptor (GPER) 1 inhibitor, had little or no effect. Furthermore, the E2-activated matrix mineralization was disrupted by PMA, a PKC activator, and SB202190, a p38 MAPK inhibitor, but not by wortmannin, a PI3K inhibitor. Matrix mineralization was also induced by the culture media from the E2-stimulated cell culture. This effect was hindered by PMA or heat treatment, but not by SB202190. These results indicate that E2 activates the p38 MAPK pathway via ERs independently from actions in the nucleus. Such activation may cause the secretion of certain signaling molecule(s), which inhibit the PKC pathway. Our study provides a novel pathway of E2 action that could be a therapeutic target to activate matrix mineralization under various diseases, including osteoporosis.


Assuntos
Estradiol , Osteoblastos , Transdução de Sinais , Animais , Camundongos , Estradiol/farmacologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Estrogênios/farmacologia , Estrogênios/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética
4.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
5.
Genome Res ; 34(4): 539-555, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719469

RESUMO

Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.


Assuntos
Neoplasias da Mama , Cromatina , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio , Fator 3-alfa Nuclear de Hepatócito , Polimorfismo de Nucleotídeo Único , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Cromatina/metabolismo , Cromatina/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Linhagem Celular Tumoral
6.
Arch Toxicol ; 98(6): 1795-1807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704805

RESUMO

The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17ß-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10-4 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10-4 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10-3 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.


Assuntos
Disruptores Endócrinos , Estradiol , Receptor alfa de Estrogênio , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/agonistas , Disruptores Endócrinos/toxicidade , Ligantes , Estradiol/metabolismo , Estrogênios/metabolismo
7.
Mol Biol Rep ; 51(1): 634, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727746

RESUMO

BACKGROUND: The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17ß-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS: In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and ß-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERß inhibitor (ERß-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and ß-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS: Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.


Assuntos
Receptores de Estrogênio , Tartarugas , Animais , Tartarugas/genética , Tartarugas/metabolismo , Masculino , Feminino , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Estradiol/metabolismo , Caracteres Sexuais , Estrogênios/metabolismo , Estrogênios/farmacologia , beta Catenina/metabolismo , beta Catenina/genética , Fígado/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos dos fármacos
8.
Commun Biol ; 7(1): 563, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740899

RESUMO

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Assuntos
Receptor alfa de Estrogênio , Proteólise , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Receptor alfa de Estrogênio/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Feminino , Proteólise/efeitos dos fármacos , Animais , Administração Oral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem
9.
Sci Rep ; 14(1): 8200, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589728

RESUMO

Breast cancer (BC) is a leading cause of global cancer-related mortality in women, necessitating accurate tumor classification for timely intervention. Molecular and histological factors, including PAM50 classification, estrogen receptor α (ERα), breast cancer type 1 susceptibility protein (BRCA1), progesterone receptor (PR), and HER2 expression, contribute to intricate BC subtyping. In this work, through a combination of bioinformatic and wet lab screenings, followed by classical signal transduction and cell proliferation methods, and employing multiple BC cell lines, we identified enhanced sensitivity of ERα-positive BC cell lines to ALK and MELK inhibitors, inducing ERα degradation and diminishing proliferation in specific BC subtypes. MELK inhibition attenuated ERα transcriptional activity, impeding E2-induced gene expression, and hampering proliferation in MCF-7 cells. Synergies between MELK inhibition with 4OH-tamoxifen (Tam) and ALK inhibition with HER2 inhibitors revealed potential therapeutic avenues for ERα-positive/PR-positive/HER2-negative and ERα-positive/PR-negative/HER2-positive tumors, respectively. Our findings propose MELK as a promising target for ERα-positive/PR-positive/HER2-negative BC and highlight ALK as a potential focus for ERα-positive/PR-negative/HER2-positive BC. The synergistic anti-proliferative effects of MELK with Tam and ALK with HER2 inhibitors underscore kinase inhibitors' potential for selective treatment in diverse BC subtypes, paving the way for personalized and effective therapeutic strategies in BC management.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Proliferação de Células , Células MCF-7 , Fenótipo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo
10.
ACS Appl Bio Mater ; 7(5): 2741-2751, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38630629

RESUMO

Herb-based extracellular vesicles (EV), inherently replete with bioactive proteins, RNA, lipids, and other medicinal compounds, are noncytotoxic and uniquely capable of cellular delivery to meet the ever-stringent challenges of ongoing clinical applications. EVs are abundant in nature, affordable, and scalable, but they are also incredibly fragile and stuffed with many biomolecules. To address the low drug binding abilities and poor stability of EVs, we demonstrated herb-based EVs (isolated from neem, mint, and curry leaves) conjugated with chitosan (CS) and PEGylated graphene oxide (GP) that led to their transformation into robust and efficient vectors. The designed conjugates successfully delivered estrogen receptor α (ERα1)-targeting siRNA to breast cancer MCF7 cells. Our data revealed that neem-based EV-CS-GP conjugates were most efficient in cellular siRNA delivery, which could be attributed to hyaluronic acid-mediated recognition of neem EVs by MCF7 cells via CD44 receptors. Our approach shows a futuristic direction in designing clinically viable, sustainable, nontoxic EV-based vehicles that can deliver a variety of functional siRNA cargos.


Assuntos
Neoplasias da Mama , Quitosana , Receptor alfa de Estrogênio , Vesículas Extracelulares , Grafite , Polietilenoglicóis , RNA Interferente Pequeno , Humanos , Quitosana/química , Grafite/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Tamanho da Partícula , Feminino , Sobrevivência Celular/efeitos dos fármacos
11.
J Hazard Mater ; 470: 134233, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603913

RESUMO

Food additives are chemicals incorporated in food to enhance its flavor, color and prevent spoilage. Some of these are associated with substantial health hazards, including developmental disorders, increase cancer risk, and hormone disruption. Hence, this study aimed to comprehend the in-silico toxicology framework for evaluating mutagenic and xenoestrogenic potential of food additives and their association with breast cancer. A total of 2885 food additives were screened for toxicity based on Threshold of Toxicological Concern (TTC), mutagenicity endpoint prediction, and mutagenic structural alerts/toxicophores identification. Ten food additives were identified as having mutagenic potential based on toxicity screening. Furthermore, Protein-Protein Interaction (PPI) analysis identified ESR1, as a key hub gene in breast cancer. KEGG pathway analysis verified that ESR1 plays a significant role in breast cancer pathogenesis. Additionally, competitive interaction studies of the predicted potential mutagenic food additives with the estrogen receptor-α were evaluated at agonist and antagonist binding sites. Indole, Dichloromethane, Trichloroethylene, Quinoline, 6-methyl quinoline, Ethyl nitrite, and 4-methyl quinoline could act as agonists, and Paraldehyde, Azodicarbonamide, and 2-acetylfuranmay as antagonists. The systematic risk assessment framework reported in this study enables the exploration of mutagenic and xenoestrogenic potential associated with food additives for hazard identification and management.


Assuntos
Receptor alfa de Estrogênio , Aditivos Alimentares , Mutagênicos , Mutagênicos/toxicidade , Aditivos Alimentares/toxicidade , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Humanos , Medição de Risco , Simulação por Computador , Disruptores Endócrinos/toxicidade , Testes de Mutagenicidade , Neoplasias da Mama/genética , Simulação de Acoplamento Molecular
12.
Eur J Med Chem ; 270: 116393, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588626

RESUMO

Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Antagonistas de Estrogênios/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Resistencia a Medicamentos Antineoplásicos
13.
Ecotoxicol Environ Saf ; 276: 116303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599157

RESUMO

Certain insecticides are known to have estrogenic effects by activating estrogen receptors through genomic transcription. This has led researchers to associate specific insecticide use with an increased breast cancer risk. However, it is unclear if estrogen receptor-dependent pathways are the only way in which these compounds induce carcinogenic effects. The objective of this study was to determine the impact of the pyrethroid insecticide permethrin on the growth of estrogen receptor negative breast cancer cells MDA-MB-231. Using tandem mass spectrometric techniques, the effect of permethrin on cellular protein expression was investigated, and gene ontology and pathway function enrichment analyses were performed on the deregulated proteins. Finally, molecular docking simulations of permethrin with the candidate target protein was performed and the functionality of the protein was confirmed through gene knockdown experiments. Our findings demonstrate that exposure to 10-40 µM permethrin for 48 h enhanced cell proliferation and cell cycle progression in MDA-MB-231. We observed deregulated expression in 83 upregulated proteins and 34 downregulated proteins due to permethrin exposure. These deregulated proteins are primarily linked to transmembrane signaling and chemical carcinogenesis. Molecular docking simulations revealed that the overexpressed transmembrane signaling protein, G protein-coupled receptor 39 (GPR39), has the potential to bind to permethrin. Knockdown of GPR39 partially impeded permethrin-induced cellular proliferation and altered the expression of proliferation marker protein PCNA and cell cycle-associated protein cyclin D1 via the ERK1/2 signaling pathway. These findings offer novel evidence for permethrin as an environmental breast cancer risk factor, displaying its potential to impact breast cancer cell proliferation via an estrogen receptor-independent pathway.


Assuntos
Proliferação de Células , Receptor alfa de Estrogênio , Inseticidas , Simulação de Acoplamento Molecular , Permetrina , Receptores Acoplados a Proteínas G , Permetrina/toxicidade , Humanos , Proliferação de Células/efeitos dos fármacos , Inseticidas/toxicidade , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Transdução de Sinais/efeitos dos fármacos
14.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581678

RESUMO

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Assuntos
Transtorno Autístico , Modelos Animais de Doenças , Receptor alfa de Estrogênio , Camundongos Knockout , Neocórtex , PTEN Fosfo-Hidrolase , Receptor de Glutamato Metabotrópico 5 , Animais , Feminino , Masculino , Camundongos , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Receptor alfa de Estrogênio/metabolismo , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Neocórtex/patologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Células Piramidais/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Comportamento Social
15.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673823

RESUMO

Energy metabolism plays a pivotal role in the pathogenesis of endometriosis. For the initial stages of the disease in adolescents, this aspect remains unexplored. The objective of this paper was to analyze the association of cellular and endosomal profiles of markers of glycolysis, mitochondrial biogenesis, apoptosis, autophagy and estrogen signaling in peritoneal endometriosis (PE) in adolescents. We included 60 girls aged 13-17 years in a case-control study: 45 with laparoscopically confirmed PE (main group) and 15 with paramesonephric cysts (comparison group). Samples of plasma and peritoneal fluid exosomes, endometrioid foci and non-affected peritoneum were tested for estrogen receptor (Erα/ß), hexokinase (Hex2), pyruvate dehydrogenase kinase (PDK1), glucose transporter (Glut1), monocarboxylate transporters (MCT1 and MCT2), optic atrophy 1 (OPA1, mitochondrial fusion protein), dynamin-related protein 1 (DRP1, mitochondrial fission protein), Bax, Bcl2, Beclin1, Bnip3, P38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1 (Hif-1α), mitochondrial voltage-dependent anion channel (VDAC) and transforming growth factor (TGFß) proteins as markers of estrogen signaling, glycolysis rates, mitochondrial biogenesis and damage, apoptosis and autophagy (Western-Blot and PCR). The analysis identified higher levels of molecules associated with proliferation (ERß), glycolysis (MCT2, PDK1, Glut1, Hex2, TGFß and Hif-1α), mitochondrial biogenesis (OPA1, DRP1) and autophagy (P38, Beclin1 and Bnip3) and decreased levels of apoptosis markers (Bcl2/Bax) in endometrioid foci compared to non-affected peritoneum and that in the comparison group (p < 0.05). Patients with PE had altered profiles of ERß in plasma and peritoneal fluid exosomes and higher levels of Glut1, MCT2 and Bnip3 in plasma exosomes (p < 0.05). The results of the differential expression profiles indicate microenvironment modification, mitochondrial biogenesis, estrogen reception activation and glycolytic switch along with apoptosis suppression in peritoneal endometrioid foci already in adolescents.


Assuntos
Apoptose , Autofagia , Endometriose , Glicólise , Feminino , Humanos , Adolescente , Endometriose/metabolismo , Endometriose/patologia , Estudos de Casos e Controles , Biogênese de Organelas , Receptor beta de Estrogênio/metabolismo , Transdução de Sinais , Receptor alfa de Estrogênio/metabolismo , Biomarcadores
16.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685233

RESUMO

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Assuntos
Apoptose , Piretrinas , Humanos , Piretrinas/toxicidade , Piretrinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Simulação de Acoplamento Molecular , Estradiol/farmacologia , Proliferação de Células/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Isomerismo , Movimento Celular/efeitos dos fármacos , Benzoatos/farmacologia , Benzoatos/química , Estereoisomerismo , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
17.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566248

RESUMO

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Assuntos
Receptor alfa de Estrogênio , Fármacos Neuroprotetores , Criança , Feminino , Animais , Masculino , Camundongos , Humanos , Receptor alfa de Estrogênio/metabolismo , Neuroproteção , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Isquemia , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
18.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564418

RESUMO

The estrogen receptor-α (ER) drives 75% of breast cancers. On activation, the ER recruits and assembles a 1-2 MDa transcriptionally active complex. These complexes can modulate tumour growth, and understanding the roles of individual proteins within these complexes can help identify new therapeutic targets. Here, we present the discovery of ER and ZMIZ1 within the same multi-protein assembly by quantitative proteomics, and validated by proximity ligation assay. We characterise ZMIZ1 function by demonstrating a significant decrease in the proliferation of ER-positive cancer cell lines. To establish a role for the ER-ZMIZ1 interaction, we measured the transcriptional changes in the estrogen response post-ZMIZ1 knockdown using an RNA-seq time-course over 24 h. Gene set enrichment analysis of the ZMIZ1-knockdown data identified a specific delay in the response of estradiol-induced cell cycle genes. Integration of ENCODE data with our RNA-seq results identified that ER and ZMIZ1 both bind the promoter of E2F2. We therefore propose that ER and ZMIZ1 interact to enable the efficient estrogenic response at subset of cell cycle genes via a novel ZMIZ1-ER-E2F2 signalling axis. Finally, we show that high ZMIZ1 expression is predictive of worse patient outcome, ER and ZMIZ1 are co-expressed in breast cancer patients in TCGA and METABRIC, and the proteins are co-localised within the nuclei of tumour cell in patient biopsies. In conclusion, we establish that ZMIZ1 is a regulator of the estrogenic cell cycle response and provide evidence of the biological importance of the ER-ZMIZ1 interaction in ER-positive patient tumours, supporting potential clinical relevance.


Assuntos
Neoplasias da Mama , Fator de Transcrição E2F2 , Receptor alfa de Estrogênio , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Linhagem Celular Tumoral , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F2/genética , Proliferação de Células/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Ciclo Celular/genética , Prognóstico
19.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38643482

RESUMO

Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Mutação , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Animais , Antineoplásicos Hormonais/uso terapêutico
20.
Cell Signal ; 119: 111184, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640982

RESUMO

Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Fulvestranto , Fosfofrutoquinase-2 , Humanos , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Fulvestranto/farmacologia , Animais , Estabilidade Proteica/efeitos dos fármacos , Camundongos , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Carcinogênese/metabolismo , Carcinogênese/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA