Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Nat Commun ; 15(1): 4485, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802355

RESUMO

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Receptor da Anafilatoxina C5a , Macrófagos Associados a Tumor , Animais , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
2.
Cells ; 12(23)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067135

RESUMO

The complement system mediates diverse regulatory immunological functions. C5aR2, an enigmatic receptor for anaphylatoxin C5a, has been shown to modulate PRR-dependent pro-inflammatory cytokine secretion in human macrophages. However, the specific downstream targets and underlying molecular mechanisms are less clear. In this study, CRISPR-Cas9 was used to generate macrophage models lacking C5aR2, which were used to probe the role of C5aR2 in the context of PRR stimulation. cGAS and STING-induced IFN-ß secretion was significantly increased in C5aR2 KO THP-1 cells and C5aR2-edited primary human monocyte-derived macrophages, and STING and IRF3 expression were increased, albeit not significantly, in C5aR2 KO cell lines implicating C5aR2 as a regulator of the IFN-ß response to cGAS-STING pathway activation. Transcriptomic analysis by RNAseq revealed that nucleic acid sensing and antiviral signalling pathways were significantly up-regulated in C5aR2 KO THP-1 cells. Altogether, these data suggest a link between C5aR2 and nucleic acid sensing in human macrophages. With further characterisation, this relationship may yield therapeutic options in interferon-related pathologies.


Assuntos
Interferon beta , Macrófagos , Proteínas de Membrana , Ácidos Nucleicos , Receptor da Anafilatoxina C5a , Humanos , Interferon beta/metabolismo , Macrófagos/metabolismo , Ácidos Nucleicos/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Receptor da Anafilatoxina C5a/metabolismo , Proteínas de Membrana/metabolismo
3.
Int Immunopharmacol ; 125(Pt B): 111112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948857

RESUMO

Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.


Assuntos
Proteína HMGB1 , Nanopartículas , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Proteína HMGB1/metabolismo , Dióxido de Silício/toxicidade , Células Epiteliais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Complemento C5a/metabolismo
4.
J Innate Immun ; 15(1): 468-484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36882040

RESUMO

Complement activation and Rab GTPase trafficking are commonly observed in inflammatory responses. Recruitment of innate immune cells to sites of infection or injury and secretion of inflammatory chemokines are promoted by complement component 5a (C5a) that activates the cell surface protein C5a receptor1 (C5aR1). Persistent activation can lead to a myriad of inflammatory and autoimmune diseases. Here, we demonstrate that the mechanism of C5a induced chemotaxis of human monocyte-derived macrophages (HMDMs) and their secretion of inflammatory chemokines are controlled by Rab5a. We find that C5a activation of the G protein coupled receptor C5aR1 expressed on the surface of HMDMs, recruits ß-arrestin2 via Rab5a trafficking, then activates downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling that culminates in chemotaxis and secretion of pro-inflammatory chemokines from HMDMs. High-resolution lattice light-sheet microscopy on live cells showed that C5a activates C5aR1-GFP internalization and colocalization with Rab5a-tdTomato but not with dominant negative mutant Rab5a-S34N-tdTomato in HEK293 cells. We found that Rab5a is significantly upregulated in differentiated HMDMs and internalization of C5aR1 is dependent on Rab5a. Interestingly, while knockdown of Rab5a inhibited C5aR1-mediated Akt phosphorylation, it did not affect C5aR1-mediated ERK1/2 phosphorylation or intracellular calcium mobilization in HMDMs. Functional analysis using transwell migration and µ-slide chemotaxis assays indicated that Rab5a regulates C5a-induced chemotaxis of HMDMs. Further, C5aR1 was found to mediate interaction of Rab5a with ß-arrestin2 but not with G proteins in HMDMs. Furthermore, C5a-induced secretion of pro-inflammatory chemokines (CCL2, CCL3) from HMDMs was attenuated by Rab5a or ß-arrestin2 knockdown or by pharmacological inhibition with a C5aR1 antagonist or a PI3K inhibitor. These findings reveal a C5a-C5aR1-ß-arrestin2-Rab5a-PI3K signaling pathway that regulates chemotaxis and pro-inflammatory chemokine secretion in HMDMs and suggests new ways of selectively modulating C5a-induced inflammatory outputs.


Assuntos
Quimiocinas , Quimiotaxia , Macrófagos , Receptor da Anafilatoxina C5a , Proteínas rab5 de Ligação ao GTP , Humanos , beta-Arrestinas/metabolismo , Quimiocinas/metabolismo , Complemento C5a/metabolismo , Células HEK293 , Macrófagos/metabolismo , Transporte Proteico , Proteínas rab5 de Ligação ao GTP/metabolismo , Receptor da Anafilatoxina C5a/metabolismo
5.
Cell Rep ; 42(2): 112078, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36735535

RESUMO

Complement activation is thought to underline the pathologic progression of obesity-related metabolic disorders; however, its role in adaptive thermogenesis has scarcely been explored. Here, we identify complement C3a receptor (C3aR) and C5a receptor (C5aR) as critical switches to control adipocyte browning and energy balance in male mice. Loss of C3aR and C5aR in combination, more than individually, increases cold-induced adipocyte browning and attenuates diet-induced obesity in male mice. Mechanistically, loss of C3aR and C5aR increases regulatory T cell (Treg) accumulation in the subcutaneous white adipose tissue during cold exposure or high-fat diet. Activated Tregs produce adenosine, which is converted to inosine by adipocyte-derived adenosine deaminases. Inosine promotes adipocyte browning in a manner dependent on activating adenosine A2a receptor. These data reveal a regulatory mechanism of complement in controlling adaptive thermogenesis and suggest that targeting the C3aR/C5aR pathways may represent a therapeutic strategy in treating obesity-related metabolic diseases.


Assuntos
Receptor da Anafilatoxina C5a , Transdução de Sinais , Animais , Masculino , Camundongos , Adipócitos , Dieta , Obesidade , Receptor da Anafilatoxina C5a/metabolismo
6.
Front Immunol ; 14: 1086673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776827

RESUMO

TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 µM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.


Assuntos
Macrófagos , Receptores de Complemento , Cricetinae , Humanos , Camundongos , Animais , Cricetulus , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Receptor da Anafilatoxina C5a/metabolismo
7.
Cell Mol Neurobiol ; 43(5): 1957-1974, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36006573

RESUMO

After restoration of spontaneous circulation (ROSC) following cardiac arrest, complements can be activated and excessive autophagy can contribute to the brain ischemia-reperfusion (I/R) injury. Mild hypothermia (HT) protects against brain I/R injury after ROSC, but the mechanisms have not been fully elucidated. Here, we found that HT significantly inhibited the increases in serum NSE, S100ß, and C5a, as well as neurologic deficit scores, TUNEL-positive cells, and autophagic vacuoles in the pig brain cortex after ROSC. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. HT could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Our findings demonstrated that C5a could bind to C5aR1 to induce neuronal autophagy during the brain I/R injury, which was associated with the inhibited PI3K/Akt/mTOR pathway. HT could inhibit C5a-induced neuronal autophagy by regulating the C5a-C5aR1 interaction and the PI3K/Akt/mTOR pathway, which might be one of the neuroprotective mechanisms underlying I/R injury. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. Mild hypothermia (HT) could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Proposed mechanism by which HT protects against brain I/R injury by repressing C5a-C5aR1-induced excessive autophagy. Complement activation in response to brain I/R injury generates C5a that can interact with C5aR1 to inactivate mTOR, probably through the PI3K-AKT pathway, which can finally lead to autophagy activation. The excessively activated autophagy ultimately contributes to cell apoptosis and brain injury. HT may alleviate complement activation and then reduce C5a-induced autophagy to protect against brain I/R injury. HT, mild hypothermia; I/R, ischemia reperfusion.


Assuntos
Parada Cardíaca , Hipotermia , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Suínos , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipotermia/metabolismo , Proteína Beclina-1/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Fármacos Neuroprotetores/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Oxigênio/metabolismo , Parada Cardíaca/metabolismo , Parada Cardíaca/terapia , Autofagia , RNA Mensageiro/metabolismo , Glucose/metabolismo
8.
Transpl Immunol ; 72: 101559, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35227893

RESUMO

BACKGROUND: C5a promotes alloreactivity via the C5a receptor 1 (C5aR1) on immune cells, but this has not been confirmed in the case of small intestine transplantation immunity. In the present study, we examined the effect of C5aR1 antagonist (PMX53) on macrophage function in small intestinal transplantation. METHODS: The model was created by heterotopic intestinal transplantation using donor Dark Agouti and recipient Lewis rats. PMX53 was administered starting on the day of operation until postoperative day 7. The graft survivals were compared, and HE staining of grafts, lymphocyte mixed reaction test (MLR, mixed culture of T cells from lymph nodes and spleen cells from donors), and changes in macrophage and T cell accumulation in grafts on day 6 after transplantation were evaluated. In addition, the effect of PMX53 on macrophage differentiation and activation was assessed using macrophages derived from bone marrow (BMDM). RESULTS: Graft survival was significantly prolonged in the therapeutic group compared to the untreated group. Histological evaluation showed that PMX53 inhibited the shortening of the graft villus, and the stimulation index of MLR was significantly lower in the therapeutic group compared to the untreated group. In the therapeutic group, the accumulation of macrophages in intestinal graft and monocyte in blood were reduced, compared with the untreated group. PMX53 decreased the differentiation in BMDM and the mRNA expression of IL-1ß and TNF-α in activated BMDM. CONCLUSION: Inhibition of C5a/C5aR1 signaling appears to regulate macrophage differentiation and suppress rejection in small intestine transplantation immunity.


Assuntos
Macrófagos , Receptor da Anafilatoxina C5a , Animais , Sobrevivência de Enxerto , Ratos , Ratos Endogâmicos Lew , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais
9.
Am J Pathol ; 192(2): 361-378, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35144762

RESUMO

As per the classical view of the coagulation system, it functions solely in plasma to maintain hemostasis. An experimental approach modeling vascular reconstitution was used to show that vascular endothelial cells (ECs) endogenously synthesize coagulation factors during angiogenesis. Intracellular thrombin generated from this synthesis promotes the mitotic function of vascular endothelial cell growth factor A (VEGF-A). The thrombin concurrently cleaves C5a from EC-synthesized complement component C5 and unmasks the tethered ligand for EC-expressed protease-activated receptor 4 (PAR4). The two ligands jointly trigger EC C5a receptor-1 (C5ar1) and PAR4 signaling, which together promote VEGF receptor 2 growth signaling. C5ar1 is functionally associated with PAR4, enabling C5a or thrombin to elicit Gαi and/or Gαq signaling. EC coagulation factor and EC complement component synthesis concurrently down-regulate with contact inhibition. The connection of these processes with VEGF receptor 2 signaling provides new insights into mechanisms underlying angiogenesis. Knowledge of endogenous coagulation factor/complement component synthesis and joint PAR4/C5ar1 signaling could be applied to other cell types.


Assuntos
Fatores de Coagulação Sanguínea/biossíntese , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Receptor da Anafilatoxina C5a/metabolismo , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais , Animais , Fatores de Coagulação Sanguínea/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptores Ativados por Proteinase/genética
10.
Cancer Lett ; 529: 70-84, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971753

RESUMO

Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.


Assuntos
Complemento C5a/imunologia , Armadilhas Extracelulares/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunofenotipagem , Camundongos , Modelos Biológicos , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor da Anafilatoxina C5a/metabolismo
11.
J Immunol ; 208(1): 133-142, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853076

RESUMO

The anaphylatoxin C5a is core effector of complement activation. C5a exerts potent proinflammatory and immunomodulatory actions through interacting with its C5a receptors, C5aR1 and C5aR2, modulating multiple signaling and functional activities of immune cells. Native C5a contains a large N-linked glycosylation site at Asn64, which accounts for up to 25% of its m.w. To date, the vast majority of published studies examining C5a are performed using Escherichia coli-generated recombinant C5a, which is readily available from numerous commercial suppliers, but lacks this glycosylation moiety. However, a plasma-purified "native" form of C5a is also commercially available. The different size and glycosylation of these two C5a versions could have functional implications. Therefore, the current study aimed to compare recombinant human C5a to purified plasma-derived human C5a in driving the signaling and functional activities of human primary macrophages. We found that both versions of C5a displayed similar potencies at triggering C5aR1- and C5aR2-mediated cell signaling, but elicited distinct functional responses in primary human monocyte-derived macrophages. Multiple commercial sources of recombinant C5a, but not the plasma-purified or a synthetic C5a version, induced human monocyte-derived macrophages to produce IL-6 and IL-10 in a C5a receptor-independent manner, which was driven through Syk and NF-κB signaling and apparently not due to endotoxin contamination. Our results, therefore, offer caution against the sole use of recombinant human C5a, particularly in functional/cytokine assays conducted in human primary immune cells, and suggest studies using recombinant human C5a should be paired with C5aR1 inhibitors or purified/synthetic human C5a to confirm relevant findings.


Assuntos
Complemento C5a/metabolismo , Escherichia coli/metabolismo , Macrófagos/imunologia , Plasma/metabolismo , Células Cultivadas , Complemento C5a/genética , Escherichia coli/genética , Glicosilação , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , NF-kappa B/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Proteínas Recombinantes/genética , Transdução de Sinais
12.
J Med Chem ; 64(22): 16598-16608, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34762432

RESUMO

The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not ß-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.


Assuntos
Antineoplásicos/uso terapêutico , Complemento C5a/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptor da Anafilatoxina C5a/agonistas , Animais , Antineoplásicos/farmacologia , Humanos , Camundongos , Receptor da Anafilatoxina C5a/metabolismo
13.
BMC Cancer ; 21(1): 1136, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34688269

RESUMO

BACKGROUND: C5aR has been extensively studied in recent years as an essential component of the complement system. However, the role of C5aR in tumors has not been sufficiently investigated and summarized. The aim of this meta-analysis was to investigate the prognostic value of C5aR in solid tumors as well as the correlation between C5aR and clinicopathological features. METHODS: Relevant study collection was performed in PubMed, Embase, Web of Science, BIOSIS Previews, Cochrane Library until July 10, 2021. Pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated. Sensitivity analyses were performed to assess the robustness of this study, while publication bias was tested by Begg's and Egger's tests. RESULTS: A total of 11 studies involving 1577 patients were included in the study. Our results suggest that the high-level C5aR expression in tumor tissue predicted unsatisfactory overall survival (OS) (HR = 1.92, 95% CI:1.47-2.50, P < 0.001) and recurrence-free survival (RFS) (HR = 2.19, 95% CI:1.47-3.27, P < 0.001). Besides, a higher level of C5aR expression was associated with larger tumor size (OR = 1.58, 95% CI: 1.18-2.10, P = 0.002) and the occurrence of metastases in lymph nodes (OR = 1.99, 95% CI: 1.46-2.72, P<0.001), whereas it was independent of tumor stage, vascular invasion and tumor differentiation. CONCLUSION: In conclusion, C5aR may be a potential biomarker for evaluating tumor prognosis and treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Humanos , Prognóstico
14.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576075

RESUMO

Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme ß-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of GluCer and its metabolite glucosylsphingosine (GluSph) in a number of tissues and organs. In the immune system, GCase deficiency deregulates signal transduction events, resulting in an inflammatory environment. It is known that the complement system promotes inflammation, and complement inhibitors are currently being considered as a novel therapy for GD; however, the mechanism by which complement drives systemic macrophage-mediated inflammation remains incompletely understood. To help understand the mechanisms involved, we used human GD-induced pluripotent stem cell (iPSC)-derived macrophages. We found that GD macrophages exhibit exacerbated production of inflammatory cytokines via an innate immune response mediated by receptor 1 for complement component C5a (C5aR1). Quantitative RT-PCR and ELISA assays showed that in the presence of recombinant C5a (rC5a), GD macrophages secreted 8-10-fold higher levels of TNF-α compared to rC5a-stimulated control macrophages. PMX53, a C5aR1 blocker, reversed the enhanced GD macrophage TNF-α production, indicating that the observed effect was predominantly C5aR1-mediated. To further analyze the extent of changes induced by rC5a stimulation, we performed gene array analysis of the rC5a-treated macrophage transcriptomes. We found that rC5a-stimulated GD macrophages exhibit increased expression of genes involved in TNF-α inflammatory responses compared to rC5a-stimulated controls. Our results suggest that rC5a-induced inflammation in GD macrophages activates a unique immune response, supporting the potential use of inhibitors of the C5a-C5aR1 receptor axis to mitigate the chronic inflammatory abnormalities associated with GD.


Assuntos
Complemento C5a/farmacologia , Doença de Gaucher/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/genética , Macrófagos/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Oxirredução , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
15.
Mol Cell ; 81(22): 4605-4621.e11, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34582793

RESUMO

G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7TMRs), typically interact with two distinct signal-transducers, i.e., G proteins and ß-arrestins (ßarrs). Interestingly, there are some non-canonical 7TMRs that lack G protein coupling but interact with ßarrs, although an understanding of their transducer coupling preference, downstream signaling, and structural mechanism remains elusive. Here, we characterize two such non-canonical 7TMRs, namely, the decoy D6 receptor (D6R) and the complement C5a receptor subtype 2 (C5aR2), in parallel with their canonical GPCR counterparts. We discover that D6R and C5aR2 efficiently couple to ßarrs, exhibit distinct engagement of GPCR kinases (GRKs), and activate non-canonical downstream signaling pathways. We also observe that ßarrs adopt distinct conformations for D6R and C5aR2, compared to their canonical GPCR counterparts, in response to common natural agonists. Our study establishes D6R and C5aR2 as ßarr-coupled 7TMRs and provides key insights into their regulation and signaling with direct implication for biased agonism.


Assuntos
Membrana Celular/metabolismo , Conformação Proteica , Transdução de Sinais , beta-Arrestinas/química , Animais , Proteínas de Ligação ao GTP/química , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Transporte Proteico , Receptor da Anafilatoxina C5a/metabolismo
16.
Nat Cancer ; 2(2): 218-232, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34505065

RESUMO

Complement has emerged as a component of tumor promoting inflammation. We conducted a systematic assessment of the role of complement activation and effector pathways in sarcomas. C3-/-, MBL1/2-/- and C4-/- mice showed reduced susceptibility to 3-methylcholanthrene sarcomagenesis and transplanted sarcomas, whereas C1q and factor B deficiency had marginal effects. Complement 3a receptor (C3aR), but not C5aR1 and C5aR2, deficiency mirrored the phenotype of C3-/- mice. C3 and C3aR deficiency were associated with reduced accumulation and functional skewing of tumor-associated macrophages, increased T cell activation and response to anti-PD-1 therapy. Transcriptional profiling of sarcoma infiltrating macrophages and monocytes revealed the enrichment of MHC II-dependent antigen presentation pathway in C3-deficient cells. In patients, C3aR expression correlated with a macrophage population signature and C3 deficiency-associated signatures predicted better clinical outcome. These results suggest that the lectin pathway and C3a/C3aR axis are key components of complement and macrophage-mediated sarcoma promotion and immunosuppression.


Assuntos
Lectinas , Receptores de Complemento/metabolismo , Sarcoma , Animais , Ativação do Complemento/fisiologia , Humanos , Terapia de Imunossupressão , Lectinas/metabolismo , Camundongos , Monócitos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sarcoma/tratamento farmacológico
17.
Cell Death Dis ; 12(8): 737, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312368

RESUMO

Neutrophils are significant compositions of solid tumors and exert distinct functions in different types of tumors. However, the precise role of neutrophils in the progression of breast cancer (BC) is presently unclear. In this study, by investigating the single-cell RNA sequencing data, we identify a new neutrophil subset, C5aR1-positive neutrophils, that correlates with tumor progression and poor survival for BC patients. Furthermore, it is discovered that C5aR1-positive neutrophils enhance BC cell glycolysis via upregulating ENO1 expression. Mechanically, C5aR1-positive neutrophil-secreted IL1ß and TNFα cooperatively activate ERK1/2 signaling, which phosphorylates WTAP at serine341 and thereby stabilizes WTAP protein. The stabilization of WTAP further promotes RNA m6A methylation of ENO1, impacting the glycolytic activity of BC cells. Importantly, C5aR1-positive neutrophils also promote breast cancer growth in vivo, and this effect is abolished by WTAP silencing. In clinical BC samples, increased C5aR1-positive neutrophils correlate with elevated IL1ß, TNFα, and ENO1 expression. A high co-expression of C5aR1-positive neutrophil gene signature and ENO1 predicts worse prognosis of BC patients compared with a low co-expression. Collectively, our study reveals a novel subset of C5aR1-positive neutrophils that induces breast cancer glycolysis via increasing ERK1/2-WTAP-dependent m6A methylation of ENO1. These findings support the potential for exploration of C5aR1-positive neutrophils as a therapeutic target in breast cancer.


Assuntos
Adenosina/análogos & derivados , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicólise , Neutrófilos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Fatores de Processamento de RNA/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenosina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metaboloma , Metilação , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Fosforilação , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , Estabilidade Proteica , Transdução de Sinais , Processos Estocásticos , Análise de Sobrevida , Regulação para Cima/genética
18.
Nat Commun ; 12(1): 3352, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099640

RESUMO

Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.


Assuntos
Plaquetas/metabolismo , Fator Plaquetário 4/metabolismo , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Indutores da Angiogênese , Animais , Ativação do Complemento , Complemento C5a , Inflamação , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência , Receptores CXCR3/genética , Transdução de Sinais
19.
Nat Immunol ; 22(6): 757-768, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031614

RESUMO

Maturation of B cells within germinal centers (GCs) generates diversified B cell pools and high-affinity B cell antigen receptors (BCRs) for pathogen clearance. Increased receptor affinity is achieved by iterative cycles of T cell-dependent, affinity-based B cell positive selection and clonal expansion by mechanisms hitherto incompletely understood. Here we found that, as part of a physiologic program, GC B cells repressed expression of decay-accelerating factor (DAF/CD55) and other complement C3 convertase regulators via BCL6, but increased the expression of C5b-9 inhibitor CD59. These changes permitted C3 cleavage on GC B cell surfaces without the formation of membrane attack complex and activated C3a- and C5a-receptor signals required for positive selection. Genetic disruption of this pathway in antigen-activated B cells by conditional transgenic DAF overexpression or deletion of C3a and C5a receptors limited the activation of mechanistic target of rapamycin (mTOR) in response to BCR-CD40 signaling, causing premature GC collapse and impaired affinity maturation. These results reveal that coordinated shifts in complement regulation within the GC provide crucial signals underlying GC B cell positive selection.


Assuntos
Linfócitos B/imunologia , Ativação do Complemento , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Centro Germinativo/imunologia , Animais , Animais Geneticamente Modificados , Linfócitos B/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/metabolismo , Linhagem Celular Tumoral , Hematopoiese Clonal/imunologia , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Tonsila Palatina/citologia , Tonsila Palatina/patologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo
20.
Front Immunol ; 12: 661290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995384

RESUMO

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Assuntos
Colo/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Colo/citologia , Colo/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Expressão Gênica/imunologia , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Intestino Delgado/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Fagócitos/metabolismo , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA