Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732235

RESUMO

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Ouro , Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Células Hep G2 , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Quitosana/química , Células HEK293 , Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/genética , Células CACO-2 , Luciferases/genética , Luciferases/metabolismo , Polietilenoglicóis/química , Plasmídeos/genética , Dissacarídeos/química , Terapia Genética/métodos , Polímeros/química , Sobrevivência Celular/efeitos dos fármacos
2.
Eur J Med Chem ; 264: 115988, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039790

RESUMO

Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Galactose , Receptor de Asialoglicoproteína/metabolismo , Neoplasias Hepáticas/patologia , Doxorrubicina/farmacologia , Glicoconjugados/farmacologia
3.
Biochem Biophys Res Commun ; 644: 85-94, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36640667

RESUMO

RNAi is a sequence-specific gene regulation mechanism that involves small interfering RNAs (siRNAs). RNAi therapeutic has become a new class of precision medicine and has shown great potential in treating liver-associated diseases, especially metabolic diseases. To facilitate the development of liver-targeted RNAi therapeutics in cell model, we surveyed a panel of liver cancer cell lines for the expression of genes implicated in RNAi therapeutics including the asialoglycoprotein receptor (ASGR) and metabolic disease associated genes PCSK9, ANGPTL3, CIDEB, and LDLR. A high-content screen assay based on lipid droplet staining confirmed the involvement of PCSK9, ANGPTL3, and CIDEB in lipid metabolism in selected liver cancer cell lines. Several liver cancer cell lines have high levels of ASGR1 expression, which is required for liver-specific uptake of GalNAc-conjugated siRNA, a clinically approved siRNA delivery platform. Using an EGFP reporter system, we demonstrated Hep G2 can be used to evaluate gene knockdown efficiency of GalNAc-siRNA. Our findings pave the way for using liver cancer cells as a convenient model system for the identification and testing of siRNA drug candidate genes and for studying ASGR-mediated GalNAc-siRNA delivery in liver.


Assuntos
Neoplasias Hepáticas , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Terapêutica com RNAi , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Linhagem Celular , RNA de Cadeia Dupla , Proteína 3 Semelhante a Angiopoietina , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo
4.
Int J Nanomedicine ; 17: 5099-5116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340185

RESUMO

Purpose: This study aimed to design a prototypic drug delivery system (DDS) made of an amphiphilic, pullulan (Pull)-derived biodegradable polymer for targeting the asialoglycoprotein receptor (ASGPR) overexpressed in HCC. Stearic acid (SA) was conjugated to increase the hydrophobicity of pullulan (Pull-SA). Methods: Pullulan (Pull) was linked to stearic acid (SA) after functional group modifications via EDC/NHS chemistry and characterized. Sorafenib tosylate (SRFT) was entrapped in pullulan-stearic acid nanoparticles (Pull-SA-SRFT) and its particle size, zeta potential, entrapment efficiency (EE), loading capacity (LC), and release efficiency was measured. The competence of Pull-SA-SRFT over SRFT in vitro was assessed using the ASGPR over-expressing PLC/PRF/5 hepatocellular carcinoma (HCC) cell line. This was done by studying cytotoxicity by MTT assay and chromosome condensation assay, early apoptosis by annexin-Pi staining, and late apoptosis by live-dead assay. The cellular uptake study was performed by incorporating coumarin-6 (C6) fluorophore in place of SRFT in Pull-SA conjugates. A biodistribution study was conducted in Swiss-albino mice to assess the biocompatibility and targeting properties of SRFT and Pull-SA-SRFT to the liver and other organs at 1, 6, 24, and 48 h. Results: The characterization studies of the copolymer confirmed the successful conjugation of Pull-SA. The self-assembled amphiphilic nanocarrier could proficiently entrap the hydrophobic drug SRFT to obtain an entrapment efficiency of 95.6% (Pull-SA-SRFT). Characterization of the synthesized nanoparticles exhibited highly desirable nanoparticle characteristics. In vitro, apoptotic studies urged that Pull-SA-SRFT nanoparticle was delivered more efficiently to HCC than SRFT. The cellular uptake study performed, gave propitious results in 4 hrs. The biodistribution study conducted in immunocompetent mice suggested that Pull-SA-SRFT was delivered more than SRFT to the liver when compared to other organs, and that the system was biocompatible. Conclusion: Pull-SA-SRFT is a promisingly safe, biodegradable, cell-specific nanocarrier and a potential candidate to target hydrophobic drugs to HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/uso terapêutico , Distribuição Tecidual , Neoplasias Hepáticas/patologia , Glucanos/química , Receptor de Asialoglicoproteína/metabolismo , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Nature ; 608(7922): 413-420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922515

RESUMO

High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.


Assuntos
Receptor de Asialoglicoproteína , Colesterol , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Receptor de Asialoglicoproteína/antagonistas & inibidores , Receptor de Asialoglicoproteína/deficiência , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Assialoglicoproteínas/metabolismo , Atorvastatina/farmacologia , Proteína BRCA1 , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Sinergismo Farmacológico , Endocitose , Ezetimiba/farmacologia , Humanos , Lipídeos/análise , Lipídeos/sangue , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ubiquitina-Proteína Ligases/metabolismo
6.
Anal Chim Acta ; 1221: 340106, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934396

RESUMO

Due to high recurrence and metastasis rates leading to high mortality of hepatocellular carcinoma (HCC), detection of HCC circulating tumor cells (HCC-CTCs), which are regarded as an HCC blood marker, holds great significance in HCC early diagnosis, metastasis evolution, and prognosis. However, current existing circulating tumor cell (CTC) detection methods require multiple steps, and have low accuracy due to extremely rare CTCs in peripheral blood (PB). Thus, a simple and sensitive HCC-CTCs detection method is urgently needed. Here, a glutathione (GSH) activatable bioprobe (LacCC) targeting HCC cells was first developed through coordinating copper ions (Cu2+) to lactose modified coumarin derivative (LacC). Owing to the carbohydrate-protein interaction between lactose group and asialoglycoprotein receptors (ASGPRs) overexpressed on the membrane of HCC cells, LacCC displays selectivity towards HCC cells. The fluorescence of LacCC recovers rapidly within 2 min upon demetallation by high concentration of GSH in HCC cells. In simulated PB samples, as low as 10 HepG2 cells were detected via CLSM after removing red blood cells (RBCs) and culturing with LacCC. By coupling with flow cytometry, LacCC can achieve quantitative detection of HCC cells with low detection limit (LOD) of 3 cells per sample. Thus, this bioprobe possessing ASGPRs targetability and fast GSH responsiveness shows ultrasensitive detectability towards HCC cells in PB, which may have the potential for simple yet highly sensitive HCC-CTCs detection.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Glutationa , Humanos , Lactose , Neoplasias Hepáticas/metabolismo , Células Neoplásicas Circulantes/patologia
7.
Cancer Res ; 82(21): 3987-4000, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36043912

RESUMO

Liver cancer is characterized by aggressive growth and high mortality. Asialoglycoprotein receptor 1 (ASGR1), which is expressed almost exclusively in liver cells, is reduced in liver cancer. However, the specific mechanism of ASGR1 function in liver cancer has not been fully elucidated. On the basis of database screening, we identified ASGR1 as a tumor suppressor regulated by DNA methylation. Expression of ASGR1 was downregulated in liver cancer and correlated with tumor size, grade, and survival. Functional gain and loss experiments showed that ASGR1 suppresses the progression of liver cancer in vivo and in vitro. RNA sequencing and mass spectrometry showed that ASGR1 inhibits tyrosine phosphorylation of STAT3 by interacting with Nemo-like kinase (NLK). NLK bound the SH2 domain of STAT3 in an ATP-dependent manner and competed with glycoprotein 130 (GP130), ultimately suppressing GP130/JAK1-mediated phosphorylation of STAT3. ASGR1 altered the binding strength of NLK and STAT3 by interacting with GP130. Furthermore, the domain region of NLK was crucial for binding STAT3 and curbing its phosphorylation. Collectively, these results confirm that ASGR1 suppresses the progression of liver cancer by promoting the binding of NLK to STAT3 and inhibiting STAT3 phosphorylation, suggesting that approaches to activate the ASGR1-NLK axis may be a potential therapeutic strategy in this disease. SIGNIFICANCE: ASGR1 downregulation by DNA methylation facilitates liver tumorigenesis by increasing STAT3 phosphorylation.


Assuntos
Neoplasias Hepáticas , Humanos , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Receptor gp130 de Citocina , Neoplasias Hepáticas/patologia , Fator de Transcrição STAT3/metabolismo , Fosforilação , Domínios de Homologia de src , Proteínas Serina-Treonina Quinases
8.
Exp Biol Med (Maywood) ; 247(11): 972-981, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470702

RESUMO

Liver cancer (LC) is one of the most common malignant tumors worldwide. Since the mechanism of LC pathogenesis and metastasis cannot be carried out directly on the human body, it is particularly important to establish human liver cancer cell lines for research in vitro. In this study, tissue block adherence method combined with cell clumps digestion method was used to establish primary human hepatocytes (PHHs) with a successful rate of 60% (45/75). Short tandem repeat (STR) analysis proved the cells were derived from its paired tissues. These cells from hepatocellular carcinoma (HCC) expressed NTCP and secreted ALB and AAT as detected by western blot, and expressed hepatocyte-specific membrane protein ASGR1 as detected by flow cytometry. Liver cancer biomarkers like CK7 in ICC (intrahepatic cholangiocarcinoma), AFP, and GPC3 in HCC expressed of different degree as detected by immunohistochemical analysis. These cells displayed typical liver cancer cell morphological characteristics and can passage stably. In conclusion, we developed an effective method to establish PHHs. Further studies are necessary to study if these cells maintaining other liver function and reproduce the physiology of the tumors and how these cells behavior in the drug development.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Receptor de Asialoglicoproteína/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Glipicanas/metabolismo , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia
9.
Nucleic Acid Ther ; 32(3): 163-176, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797690

RESUMO

Antisense oligonucleotides (ASOs), a novel paradigm in modern therapeutics, modulate cellular gene expression by binding to complementary messenger RNA (mRNA) sequences. While advances in ASO medicinal chemistry have greatly improved the efficiency of cellular uptake, selective uptake by specific cell types has been difficult to achieve. For more efficient and selective uptake, ASOs are often conjugated with molecules with high binding affinity for transmembrane receptors. Triantennary N-acetyl-galactosamine conjugated phosphorothioate ASOs (GalNAc-PS-ASOs) were developed to enhance targeted ASO delivery into liver through the hepatocyte-specific asialoglycoprotein receptor (ASGR). We assessed the kinetics of uptake and subsequent intracellular distribution of AlexaFluor 488 (AF488)-labeled PS-ASOs and GalNAc-PS-ASOs in J774A.1 mouse macrophages and primary mouse or rat hepatocytes using simultaneous coherent anti-Stokes Raman scattering (CARS) and two-photon fluorescence (2PF) imaging. The CARS modality captured the dynamic lipid distributions and overall morphology of the cells; two-photon fluorescence (2PF) measured the time- and dose-dependent localization of ASOs delivered by a modified treatment of suspension cells. Our results show that in macrophages, the uptake rate of PS-ASOs did not significantly differ from that of GalNAc-PS-ASOs. However, in hepatocytes, GalNAc-PS-ASOs exhibited a peripheral uptake distribution compared to a polar uptake distribution observed in macrophages. The peripheral distribution correlated with a significantly larger amount of internalized GalNAc-PS-ASOs compared to the PS-ASOs. This work demonstrates the relevance of multimodal imaging for elucidating the uptake mechanism, accumulation, and fate of different ASOs in liver cells that can be used further in complex in vitro models and liver tissues to evaluate ASO distribution and activity.


Assuntos
Hepatócitos , Macrófagos , Oligonucleotídeos Antissenso , Animais , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Linhagem Celular , Fluorescência , Hepatócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Ratos
10.
J Biol Chem ; 297(4): 101177, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508778

RESUMO

The hepatic carbohydrate-recognizing asialoglycoprotein receptor (ASGR1) mediates the endocytosis/lysosomal degradation of desialylated glycoproteins following binding to terminal galactose/N-acetylgalactosamine. Human heterozygote carriers of ASGR1 deletions exhibit ∼34% lower risk of coronary artery disease and ∼10% to 14% reduction of non-HDL cholesterol. Since the proprotein convertase PCSK9 is a major degrader of the low-density lipoprotein receptor (LDLR), we investigated the degradation and functionality of LDLR and/or PCSK9 by endogenous/overexpressed ASGR1 using Western blot and immunofluorescence in HepG2-naïve and HepG2-PCSK9-knockout cells. ASGR1, like PCSK9, targets LDLR, and both independently interact with/enhance the degradation of the receptor. This lack of cooperativity between PCSK9 and ASGR1 was confirmed in livers of wildtype (WT) and Pcsk9-/- mice. ASGR1 knockdown in HepG2-naïve cells significantly increased total (∼1.2-fold) and cell-surface (∼4-fold) LDLR protein. In HepG2-PCSK9-knockout cells, ASGR1 silencing led to ∼2-fold higher levels of LDLR protein and DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-LDL uptake associated with ∼9-fold increased cell-surface LDLR. Overexpression of WT-ASGR1/2 primarily reduced levels of immature non-O-glycosylated LDLR (∼110 kDa), whereas the triple Ala-mutant of Gln240/Trp244/Glu253 (characterized by loss of carbohydrate binding) reduced expression of the mature form of LDLR (∼150 kDa), suggesting that ASGR1 binds the LDLR in both a sugar-dependent and -independent fashion. The protease furin cleaves ASGR1 at the RKMK103↓ motif into a secreted form, likely resulting in a loss of function on LDLR. Altogether, we demonstrate that LDLR is the first example of a liver-receptor ligand of ASGR1. We conclude that silencing of ASGR1 and PCSK9 may lead to higher LDL uptake by hepatocytes, thereby providing a novel approach to further reduce LDL cholesterol levels.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Furina/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Animais , Receptor de Asialoglicoproteína/genética , Furina/genética , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética
11.
Sci Rep ; 11(1): 18324, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526590

RESUMO

Early diagnosis and therapy of liver fibrosis is of utmost importance, especially considering the increased incidence of alcoholic and non-alcoholic liver syndromes. In this work, a systematic study is reported to develop a dual function and biocompatible nanoprobe for liver specific diagnostic and therapeutic applications. A polysaccharide polymer, pullulan stabilized iron oxide nanoparticle (P-SPIONs) enabled high liver specificity via asialogycoprotein receptor mediation. Longitudinal and transverse magnetic relaxation rates of 2.15 and 146.91 mM-1 s-1 respectively and a size of 12 nm, confirmed the T2 weighted magnetic resonance imaging (MRI) efficacy of P-SPIONs. A current of 400A on 5 mg/ml of P-SPIONs raised the temperature above 50 °C, to facilitate effective hyperthermia. Finally, a NIR dye conjugation facilitated targeted dual imaging in liver fibrosis models, in vivo, with favourable histopathological results and recommends its use in early stage diagnosis using MRI and optical imaging, and subsequent therapy using hyperthermia.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Biomarcadores , Glucanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Imagem Óptica/métodos , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Sobrevivência Celular , Fenômenos Químicos , Técnicas de Química Sintética , Compostos Férricos/química , Glucanos/química , Cirrose Hepática/etiologia , Cirrose Hepática/terapia , Nanopartículas de Magnetita/química , Masculino , Sondas Moleculares/síntese química , Sondas Moleculares/química , Terapia de Alvo Molecular/métodos , Ratos , Espécies Reativas de Oxigênio
12.
Nat Chem Biol ; 17(9): 947-953, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34413525

RESUMO

Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy. Most TPD technologies use the ubiquitin-proteasome system, and are therefore limited to targeting intracellular proteins. To address this limitation, we developed a class of modular, bifunctional synthetic molecules called MoDE-As (molecular degraders of extracellular proteins through the asialoglycoprotein receptor (ASGPR)), which mediate the degradation of extracellular proteins. MoDE-A molecules mediate the formation of a ternary complex between a target protein and ASGPR on hepatocytes. The target protein is then endocytosed and degraded by lysosomal proteases. We demonstrated the modularity of the MoDE-A technology by synthesizing molecules that induce depletion of both antibody and proinflammatory cytokine proteins. These data show experimental evidence that nonproteinogenic, synthetic molecules can enable TPD of extracellular proteins in vitro and in vivo. We believe that TPD mediated by the MoDE-A technology will have widespread applications for disease treatment.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Dinitrofenóis/química , Dinitrofenóis/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
13.
Mol Ther ; 29(10): 2910-2919, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091052

RESUMO

N-Acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) are a leading RNA interference (RNAi) platform allowing targeted inhibition of disease-causing genes in hepatocytes. More than a decade of development has recently resulted in the first approvals for this class of drugs. While substantial effort has been made to improve nucleic acid modification patterns for better payload stability and efficacy, relatively little attention has been given to the GalNAc targeting ligand. In addition, the lack of an intrinsic endosomal release mechanism has limited potency. Here, we report a stepwise analysis of the structure activity relationships (SAR) of the components comprising these targeting ligands. We show that there is relatively little difference in biological performance between bi-, tri-, and tetravalent ligand structures while identifying other features that affect their biological activity more significantly. Further, we demonstrate that subcutaneous co-administration of a GalNAc-functionalized, pH responsive endosomal release agent markedly improved the activity and duration of effect for siRNA conjugates, without compromising tolerability, in non-human primates. These findings could address a significant bottleneck for future siRNA ligand conjugate development.


Assuntos
Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , RNA Interferente Pequeno/administração & dosagem , Animais , Feminino , Células Hep G2 , Humanos , Injeções Subcutâneas , Ligantes , Lipossomos , Masculino , Camundongos , Nanopartículas , Primatas , RNA Interferente Pequeno/química , Relação Estrutura-Atividade
14.
ChemMedChem ; 16(14): 2211-2216, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33860988

RESUMO

Targeted intracellular delivery is an efficient strategy for developing therapeutics against cancer and other intracellular infections. Nonspecific drug delivery shows limited clinical applications owing to high dosage, cytotoxicity, nonspecific action, high cost, etc. Therefore, targeted delivery of less cytotoxic drug candidates to hepatocytes through ASGPR-mediated endocytosis could be an efficient strategy to surmount the prevailing shortcomings. In the present work, the gene encoding ASGPR-H1-CRD was amplified from Huh7 cells, cloned into pET 11a vector, and the ASGPR-H1-CRD protein was expressed and purified from E. coli. A novel triantennary galactose-conjugated quinoline derivative 4 was synthesized that demonstrates 17-fold higher binding affinity to isolated ASGPR-H1-CRD protein receptor (Kd ∼54 µM) in comparison to D-galactose (Kd ∼900 µM). Moreover, micro-calorimetric studies for the interaction of glycoconjugate 4 with ASGPR protein on live hepatocytes showed notable thermal response in case of ASGPR-containing Huh7 cells, in comparison to non-ASGPR Chang cells. These results might serve as an approach towards targeted delivery of small glycoconjugates to hepatocytes.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Glicoconjugados/farmacologia , Quinolinas/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
15.
Nat Chem Biol ; 17(9): 937-946, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33767387

RESUMO

Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome-targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosome-targeting receptor, to degrade extracellular proteins in a cell-type-specific manner. We conjugated binders to a triantenerrary N-acetylgalactosamine (tri-GalNAc) motif that engages ASGPR to drive the downregulation of proteins. Degradation of epidermal growth factor receptor (EGFR) by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC consisting of a 3.4-kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type-restricted protein degradation.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Lisossomos/metabolismo , Acetilgalactosamina/metabolismo , Humanos , Células Tumorais Cultivadas
16.
ACS Appl Bio Mater ; 4(6): 4789-4799, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007028

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common neoplasia and the fourth most common cause of cancer-related mortality worldwide. Sorafenib is the first-line molecular therapy for patients in an advanced stage of HCC. However, the recommended clinical dose of Sorafenib is associated with several complications, which derive from its lack of cell specificity and its very low water solubility. To circumvent these drawbacks, in the present study we developed two sugar-coated polydiacetylene-based nanomicelles-Sorafenib carriers targeting mannose and asialoglycoprotein receptors (MR and ASGPR, respectively). The strategies allowed the inducement of apoptosis and reduction of cell proliferation at a nanomolar, instead of micromolar, range in liver cancer cells. The study showed that, contrary to literature data, Sorafenib included into the pMicMan (Man = mannose) vector (targeting MR) is more efficient than pMicGal (Gal = galactose) (targeting ASGPR). Indeed, pMicMan increased the endosomal incorporation with an increased intracellular Sorafenib concentration that induced apoptosis and reduced cell proliferation at a low concentration range (10-20 nM).


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Galactose/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Manose/administração & dosagem , Nanopartículas/administração & dosagem , Polímero Poliacetilênico/administração & dosagem , Sorafenibe/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Endossomos/metabolismo , Galactose/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Manose/química , Receptor de Manose/metabolismo , Micelas , Nanopartículas/química , Polímero Poliacetilênico/química , Sorafenibe/química
17.
Mol Pharm ; 18(1): 461-468, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264010

RESUMO

In this work, we have developed covalent and low molecular weight docetaxel delivery systems based on conjugation with N-acetyl-d-galactosamine and studied their properties related to hepatocellular carcinoma cells. The resulting glycoconjugates have an excellent affinity to the asialoglycoprotein receptor (ASGPR) in the nanomolar range of concentrations and a high cytotoxicity level comparable to docetaxel. Likewise, we observed the 21-75-fold increase in water solubility in comparison with parent docetaxel and prodrug lability to intracellular conditions with half-life values from 25.5 to 42 h. We also found that the trivalent conjugate possessed selective toxicity against hepatoma cells vs control cell lines (20-35 times). The absence of such selectivity in the case of monovalent conjugates indicates the effect of ligand valency. Specific ASGPR-mediated cellular uptake of conjugates was proved in vitro using fluorescent-labeled analogues. In addition, we showed an enhanced generation of reactive oxygen species in the HepG2 cells, which could be inhibited by the natural ligand of ASGPR. Overall, the obtained results highlight the potential of ASGPR-directed cytostatic taxane drugs for selective therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Docetaxel/administração & dosagem , Glicoconjugados/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Células A549 , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Células PC-3
18.
Hepatology ; 74(1): 411-427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33369745

RESUMO

BACKGROUND AND AIMS: Thrombocytopenia has been described in most patients with acute and chronic liver failure. Decreased platelet production and decreased half-life of platelets might be a consequence of low levels of thrombopoietin (TPO) in these patients. Platelet production is tightly regulated to avoid bleeding complications after vessel injury and can be enhanced under elevated platelet destruction as observed in liver disease. Thrombopoietin (TPO) is the primary regulator of platelet biogenesis and supports proliferation and differentiation of megakaryocytes. APPROACH AND RESULTS: Recent work provided evidence for the control of TPO mRNA expression in liver and bone marrow (BM) by scanning circulating platelets. The Ashwell-Morell receptor (AMR) was identified to bind desialylated platelets to regulate hepatic thrombopoietin (TPO) production by Janus kinase (JAK2)/signal transducer and activator of transcription (STAT3) activation. Two-thirds partial hepatectomy (PHx) was performed in mice. Platelet activation and clearance by AMR/JAK2/STAT3 signaling and TPO production were analyzed at different time points after PHx. Here, we demonstrate that PHx in mice led to thrombocytopenia and platelet activation defects leading to bleeding complications, but unaltered arterial thrombosis, in these mice. Platelet counts were rapidly restored by up-regulation and crosstalk of the AMR and the IL-6 receptor (IL-6R) to induce JAK2-STAT3-TPO activation in the liver, accompanied by an increased number of megakaryocytes in spleen and BM before liver was completely regenerated. CONCLUSIONS: The AMR/IL-6R-STAT3-TPO signaling pathway is an acute-phase response to liver injury to reconstitute hemostasis. Bleeding complications were attributable to thrombocytopenia and platelet defects induced by elevated PGI2 , NO, and bile acid plasma levels early after PHx that might also be causative for the high mortality in patients with liver disease.


Assuntos
Hepatectomia/efeitos adversos , Trombocitopenia/sangue , Trombopoetina/biossíntese , Animais , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Modelos Animais de Doenças , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Contagem de Plaquetas , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Organismos Livres de Patógenos Específicos , Trombocitopenia/etiologia , Trombopoetina/sangue
19.
Toxins (Basel) ; 12(9)2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927695

RESUMO

Although peptide therapeutics have been explored for decades, the successful delivery of potent peptides in vitro and in vivo remains challenging due to the poor stability, low cell permeability, and off-target effects. We developed a redox sensitive polymer-based nanocomplex which can efficiently and stably deliver the peptide drug melittin for cancer therapy. The nanocomplex selectively targets cancer cells through lactobionic acid mediated endocytosis and releases melittin intracellularly upon the trigger of elevated redox potential. In vivo study proved that the targeted nanocomplex shows excellent potency in inhibiting tumor growth in a xenograft colon cancer mouse model. Thus, the polymer/melittin nanocomplexes will provide a new approach for melittin based cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Meliteno/farmacologia , Nanopartículas , Nanotecnologia , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Dissacarídeos/química , Dissacarídeos/metabolismo , Composição de Medicamentos , Endocitose , Feminino , Células HCT116 , Humanos , Ligantes , Células MCF-7 , Meliteno/química , Meliteno/metabolismo , Camundongos Nus , Oxirredução , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Chemistry ; 26(48): 11048-11059, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32628283

RESUMO

Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Carboidratos/química , Carcinoma Hepatocelular/diagnóstico por imagem , Ouro , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Compostos de Sulfidrila/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA