Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 744: 109698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487948

RESUMO

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doença de Parkinson , Animais , Ratos , alfa-Sinucleína/metabolismo , Autofagia/fisiologia , Carcinogênese , Transformação Celular Neoplásica , gama-Sinucleína/genética , gama-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação para Cima , Humanos
2.
Cancer Gene Ther ; 29(10): 1487-1501, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35396501

RESUMO

DNA damaging agents are used as chemotherapeutics in many cancers, including hepatocellular carcinoma (HCC). However, they are associated with problems such as low sensitivity to chemotherapy and the induction of liver injury, underscoring the need to identify new therapies. Here, we investigated the differential regulatory effect of metabotropic glutamate receptor 5 (mGlu5) on chemosensitivity in HCC and chemotoxicity to the normal liver. The expression of mGlu5 was higher in HCC than in the normal liver, and correlated with poor prognosis according to The Cancer Genome Atlas database and Integrative Molecular Database of Hepatocellular Carcinoma. Cisplatin, oxaliplatin or methyl methanesulfonate (MMS) caused cell death by decreasing mGlu5 expression in HCC cells and increased mGlu5 expression in hepatic cells. In HCC cells, inhibition of mGlu5 aggravated MMS-induced DNA damage by increasing intracellular Ca2+ overload and mitogen-activated protein kinase (MAPK) activation, thereby promoting cell death, and activation of mGlu5 rescued the effect of MMS. However, in hepatic cells, mGlu5 inhibition alleviated MMS-induced DNA damage by downregulating Ca2+-derived MAPK pathways to advance hepatic cell survival. The opposite effects of mGlu5 overexpression or knockdown on MMS-induced DNA damage supported that cell death is a result of the differential regulation of mGlu5 expression. Inhibition of mGlu5 increased chemosensitivity and decreased chemotoxicity in a rat tumor model. This study suggests that mGlu5 inhibition could act synergistically with HCC chemotherapeutics with minimal side effects, which may improve the treatment of patients with HCC in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Cisplatino , Dano ao DNA , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Metanossulfonato de Metila , Proteínas Quinases Ativadas por Mitógeno/genética , Oxaliplatina , Ratos , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo
3.
Pharmacol Rep ; 73(4): 1096-1108, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34426901

RESUMO

The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270-272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028-8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.


Assuntos
Neurônios GABAérgicos/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Células do Corno Posterior/fisiologia , Receptor A2A de Adenosina/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Subunidades Proteicas/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , Receptor A2A de Adenosina/genética , Receptor de Glutamato Metabotrópico 5/genética
4.
Sci Signal ; 13(662)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323410

RESUMO

The prevalence, presentation, and progression of Alzheimer's disease (AD) differ between men and women, although ß-amyloid (Aß) deposition is a pathological hallmark of AD in both sexes. Aß-induced activation of the neuronal glutamate receptor mGluR5 is linked to AD progression. However, we found that mGluR5 exhibits distinct sex-dependent profiles. Specifically, mGluR5 isolated from male mouse cortical and hippocampal tissues bound with high affinity to Aß oligomers, whereas mGluR5 from female mice exhibited no such affinity. This sex-selective Aß-mGluR5 interaction did not appear to depend on estrogen, but rather Aß interaction with cellular prion protein (PrPC), which was detected only in male mouse brain homogenates. The ternary complex between mGluR5, Aß oligomers, and PrPC was essential to elicit mGluR5-dependent pathological suppression of autophagy in primary neuronal cultures. Pharmacological inhibition of mGluR5 reactivated autophagy, mitigated Aß pathology, and reversed cognitive decline in male APPswe/PS1ΔE9 mice, but not in their female counterparts. Aß oligomers also bound with high affinity to human mGluR5 isolated from postmortem donor male cortical brain tissue, but not that from female samples, suggesting that this mechanism may be relevant to patients. Our findings indicate that mGluR5 does not contribute to Aß pathology in females, highlighting the complexity of mGluR5 pharmacology and Aß signaling that supports the need for sex-specific stratification in clinical trials assessing AD therapeutics.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Multimerização Proteica , Receptor de Glutamato Metabotrópico 5/metabolismo , Caracteres Sexuais , Transdução de Sinais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptor de Glutamato Metabotrópico 5/genética
5.
Proc Natl Acad Sci U S A ; 117(32): 19566-19577, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719118

RESUMO

The ventromedial hypothalamus (VMH) plays chief roles regulating energy and glucose homeostasis and is sexually dimorphic. We discovered that expression of metabotropic glutamate receptor subtype 5 (mGluR5) in the VMH is regulated by caloric status in normal mice and reduced in brain-derived neurotrophic factor (BDNF) mutants, which are severely obese and have diminished glucose balance control. These findings led us to investigate whether mGluR5 might act downstream of BDNF to critically regulate VMH neuronal activity and metabolic function. We found that mGluR5 depletion in VMH SF1 neurons did not affect energy balance regulation. However, it significantly impaired insulin sensitivity, glycemic control, lipid metabolism, and sympathetic output in females but not in males. These sex-specific deficits are linked to reductions in intrinsic excitability and firing rate of SF1 neurons. Abnormal excitatory and inhibitory synapse assembly and elevated expression of the GABAergic synthetic enzyme GAD67 also cooperate to decrease and potentiate the synaptic excitatory and inhibitory tone onto mutant SF1 neurons, respectively. Notably, these alterations arise from disrupted functional interactions of mGluR5 with estrogen receptors that switch the normally positive effects of estrogen on SF1 neuronal activity and glucose balance control to paradoxical and detrimental. The collective data inform an essential central mechanism regulating metabolic function in females and underlying the protective effects of estrogen against metabolic disease.


Assuntos
Glicemia/metabolismo , Estrogênios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Metabolismo Energético , Feminino , Glutamato Descarboxilase/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Mutantes , Rede Nervosa , Inibição Neural , Neurônios/metabolismo , Neurônios/fisiologia , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Estrogênio/metabolismo , Fatores Sexuais , Transdução de Sinais , Fator Esteroidogênico 1/metabolismo , Sistema Nervoso Simpático/metabolismo , Transmissão Sináptica , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo
6.
Cell Metab ; 30(5): 877-889.e7, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474565

RESUMO

Activation of hepatocyte cannabinoid receptor-1 (CB1R) by hepatic stellate cell (HSC)-derived 2-arachidonoylglycerol (2-AG) drives de novo lipogenesis in alcoholic liver disease (ALD). How alcohol stimulates 2-AG production in HSCs is unknown. Here, we report that chronic alcohol consumption induced hepatic cysteine deficiency and subsequent glutathione depletion by impaired transsulfuration pathway. A compensatory increase in hepatic cystine-glutamate anti-porter xCT boosted extracellular glutamate levels coupled to cystine uptake both in mice and in patients with ALD. Alcohol also induced the selective expression of metabotropic glutamate receptor-5 (mGluR5) in HSCs where mGluR5 activation stimulated 2-AG production. Consistently, genetic or pharmacologic inhibition of mGluR5 or xCT attenuated alcoholic steatosis in mice via the suppression of 2-AG production and subsequent CB1R-mediated de novo lipogenesis. We conclude that a bidirectional signaling operates at a metabolic synapse between hepatocytes and HSCs through xCT-mediated glutamate-mGluR5 signaling to produce 2-AG, which induces CB1R-mediated alcoholic steatosis.


Assuntos
Fígado Gorduroso Alcoólico/sangue , Fígado Gorduroso Alcoólico/patologia , Ácido Glutâmico/metabolismo , Células Estreladas do Fígado/metabolismo , Transdução de Sinais/genética , Adulto , Idoso , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Feminino , Glicerídeos/metabolismo , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipogênese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Transfecção
7.
Toxicol Ind Health ; 35(3): 211-227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30862296

RESUMO

There are limited studies focused on the precise mechanism of gonadotropin-releasing hormone (GnRH) secretion dysfunction after overexposure to manganese (Mn). The objective of the present study was to explore the mechanism of Mn disruption of GnRH synthesis via nuclear factor erythroid-2-related factor-2 (Nrf2)/metabotropic glutamate receptor-5 (mGluR5)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) signaling pathway in vitro and in vivo. Primary astrocytes were cultured and treated with different doses of Mn, tert-butylhydroquinonet (tBHQ; Nrf2 agonists), 3-[(2-methyl-4-thaizolyl) ethynyl] pyridine (MTEP; mGluR5 inhibitor), and celecoxib (COX-2 inhibitor) to measure the levels of COX-2, mGluR5, Nrf2, and Nrf2 target genes. Mice were randomly divided into 11 groups, of which included the control group, 12.5-, 25-, and 50-mg/kg MnCl2 group, dimethyl sulfoxide (DMSO) group, tBHQ control group, tBHQ pretreatment group, MTEP control group, MTEP pretreatment group, celecoxib control group, and celecoxib pretreatment group. The injection was administered every day for 2 weeks. Then, levels of GnRH, PGE2, COX-2, mGluR5, Nrf2, Nrf2 target genes, and morphological changes in the hypothalamus of mice were measured. Mn reduced protein levels of Nrf2 and mRNA expression of Nrf2 target genes and increased mGluR5, COX-2, PGE2, and GnRH levels. Meanwhile, injury-related histomorphology changes in the hypothalamus of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GnRH secretion through Nrf2/mGluR5/COX-2/PGE2 signaling pathway.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Manganês/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Receptor de Glutamato Metabotrópico 5/genética , Transdução de Sinais/genética
8.
Brain Behav Immun ; 79: 114-124, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30682501

RESUMO

Antidepressant-like effects of metabotropic glutamate receptor 5 (mGluR5) have been verified by specific antagonists or whole body knock-out (KO) mice. Previous experiments indicate that blocking mGluR5 exerts antidepressant-like effects through neuronal mechanisms, like modulating NMDA receptor activity or 5-HT system. Here we found that transplanting bone marrow from mGluR5 KO mice to WT mice could also show antidepressant-like effects, which were confirmed by sucrose preference test and tail suspension test. Furthermore, mGluR5 deficiency dramatically inhibits cytokines release from bone marrow cells, such as IL-1ß, TNF-α and IL-6, alleviating proinflammatory responses in LPS-induced depression model. In addition, inhibited cytokines could decrease the activation of brain endothelial cells in ERK-dependent manner. These data provide the evidence that blocking mGluR5 could improve depression through inhibiting peripheral immune responses, confirming the causal relationship between peripheral immune phenotype and brain behavior.


Assuntos
Antidepressivos/metabolismo , Depressão/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Encéfalo/metabolismo , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/etiologia , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Genes Brain Behav ; 18(1): e12506, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027581

RESUMO

Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase-2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism-related behaviors in male and female COX2-deficient knockin, (COX)-2- , mice at young (4-6 weeks) or adult (8-11 weeks) ages. Autism-related behaviors were prominent in male (COX)-2- mice for most behavioral tests. In the open field test, (COX)-2- mice traveled more than controls and adult male (COX)-2- mice spent less time in the center indicating elevated hyperactive and anxiety-linked behaviors. (COX)-2- mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)-2- mice fell more frequently in the inverted screen test revealing motor deficits. The three-chamber sociability test found that adult female (COX)-2- mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)-2- mice showed altered expression of several autism-linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age-related differences and greater impact on males. We propose that (COX)-2- mice might serve as a novel model system to study specific types of autism.


Assuntos
Transtorno Autístico/genética , Comportamento Animal , Ciclo-Oxigenase 2/genética , Animais , Transtorno Autístico/fisiopatologia , Ciclo-Oxigenase 2/deficiência , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Proteína Wnt2/genética , Proteína Wnt2/metabolismo
10.
Mol Neurobiol ; 56(6): 4037-4050, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30259400

RESUMO

L-DOPA is the main pharmacological therapy for Parkinson's disease. However, long-term exposure to L-DOPA induces involuntary movements termed dyskinesia. Clinical trials show that dyskinesia is attenuated by metabotropic glutamate receptor type 5 (mGluR5) antagonists. Further, the onset of dyskinesia is delayed by nicotine and mGluR5 expression is lower in smokers than in non-smokers. However, the mechanisms by which mGluR5 modulates dyskinesia and how mGluR5 and nicotine interact have not been established. To address these issues, we studied the role of mGluR5 in D1R-containing neurons in dyskinesia and examined whether nicotine reduces dyskinesia via mGluR5. In the aphakia mouse model of Parkinson's disease, we selectively knocked down mGluR5 in D1R-containing neurons (aphakia-mGluR5KD-D1). We found that genetic downregulation of mGluR5 decreased dyskinesia in aphakia mice. Although chronic nicotine increased the therapeutic effect of L-DOPA in both aphakia and aphakia-mGluR5KD-D1 mice, it caused a robust reduction in dyskinesia only in aphakia, and not in aphakia-mGluR5KD-D1 mice. Downregulating mGluR5 or nicotine treatment after L-DOPA decreased ERK and histone 3 activation, and FosB expression. Combining nicotine and mGluR5 knockdown did not have an added antidyskinetic effect, indicating that the effect of nicotine might be mediated by downregulation of mGluR5 expression. Treatment of aphakia-mGluR5KD-D1 mice with a negative allosteric modulator did not further modify dyskinesia, suggesting that mGluR5 in non-D1R-containing neurons does not play a role in its development. In conclusion, this work suggests that mGluR5 antagonists reduce dyskinesia by mainly affecting D1R-containing neurons and that the effect of nicotine on dyskinetic signs in aphakia mice is likely via mGluR5.


Assuntos
Afacia/complicações , Corpo Estriado/patologia , Discinesia Induzida por Medicamentos/genética , Técnicas de Silenciamento de Genes , Levodopa/efeitos adversos , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Dopamina D1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Regulação para Baixo/efeitos dos fármacos , Discinesia Induzida por Medicamentos/complicações , Discinesia Induzida por Medicamentos/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/patologia , Nicotina/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo
11.
J Neurosci ; 38(43): 9160-9174, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30201771

RESUMO

To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.


Assuntos
Histonas/metabolismo , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Animais , Histonas/genética , Masculino , Neuralgia/induzido quimicamente , Neuralgia/genética , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Fator de Necrose Tumoral alfa/toxicidade , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
12.
Toxicol Lett ; 288: 71-81, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29458170

RESUMO

Clinical epidemiological studies have shown that there is a link between Parkinson's disease (PD) and cancer, but how PD regulates cancer development remains unknown. In our study, the effect of metabotropic glutamate receptor 5 (mGlu5) on hepatoma was explored in a rotenone-induced PD model both in vitro and in vivo. We found that conditioned media derived from MN9D dopaminergic neuronal cells by rotenone-induced toxicity inhibited the growth, migration, invasion and promoted apoptosis of Hepa1-6 cells, which corresponded with decreased expression of mGlu5. Furthermore, treatment with 2-methyl-6-(phenylethynyl)pyridine (MPEP), a mGlu5 antagonist and knockdown of mGlu5, further reduced ATP levels and migration distance, and increased cleavage of caspase-3 in Hepa1-6 cells. Additionally, we found that conditioned media derived from rotenone-treated MN9D dopaminergic neuronal cells enhanced reactive oxygen species (ROS) generation and JNK phosphorylation, which could be further increased by MPEP treatment, and attenuated by mGlu5 agonist, (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and ROS scavenger, N-acetyl-l-cysteine (NAC). The results indicated that down-regulation of mGlu5 promoted cell apoptosis through the intracellular ROS/JNK signaling pathway in a rotenone-induced cellular PD model. These findings were confirmed in vivo in a rotenone-induced rat model of PD combined with diethylnitrosamine (DEN)-induced hepatoma. Expression of Ki67 was decreased, and the levels of caspase-3 and p-JNK were increased in this model, which was accompanied by a decrease in protein expression of mGlu5. The study suggest that negative regulation of mGlu5 may inhibit hepatoma development in a rotenone-induced PD model, and as such may help with our further understanding of the correlation between PD and cancer.


Assuntos
Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/prevenção & controle , Síndromes Neurotóxicas/patologia , Doença de Parkinson Secundária/patologia , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/psicologia , Piridinas/toxicidade , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Nitrogênio/metabolismo , Receptor de Glutamato Metabotrópico 5/biossíntese , Receptor de Glutamato Metabotrópico 5/genética , Rotenona , Transdução de Sinais/efeitos dos fármacos , Desacopladores
13.
Glia ; 66(1): 94-107, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887860

RESUMO

Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Neurregulinas/metabolismo , Receptor ErbB-4/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Embrião de Mamíferos , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurregulinas/genética , RNA Mensageiro/metabolismo , Receptor ErbB-4/genética , Receptor de Glutamato Metabotrópico 5/genética , Transdução de Sinais/fisiologia , Canais de Cátion TRPC/genética
14.
Pigment Cell Melanoma Res ; 31(1): 115-119, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646617

RESUMO

Large-scale sequencing studies have revealed several genes that are recurrently mutated in melanomas. To annotate the melanoma genome, we have expressed tumor-associated variants of these genes in zebrafish and characterized their effects on melanocyte development and function. Here, we describe expression of tumor-associated variants of the recurrently mutated metabotropic glutamate receptor 3 (GRM3) gene. Unlike wild-type GRM3, tumor-associated GRM3 variants disrupted trafficking of melanosomes, causing their aggregation in the cell body. Melanosomes are trafficked in a cAMP-dependent manner, and drugs that directly or indirectly increased cAMP levels were able to suppress melanosome aggregation in mutant GRM3-expressing melanocytes. Our data show that oncogenic GRM3 variants dysregulate cAMP signaling, a heretofore unknown role for these oncogenes. cAMP signaling has been implicated in melanoma progression and drug resistance, and our data show that oncogenic properties of GRM3 could be mediated, at least in part, by alterations in cAMP signaling.


Assuntos
AMP Cíclico/metabolismo , Variação Genética , Melanócitos/patologia , Melanoma/patologia , Melanossomas/patologia , Receptor de Glutamato Metabotrópico 5/genética , Peixe-Zebra/metabolismo , Animais , Humanos , Melanócitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanossomas/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento
15.
Neuropharmacology ; 128: 301-313, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29079293

RESUMO

mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.


Assuntos
Sistema Nervoso Central/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Sistema Nervoso Central/citologia , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hidrólise/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/genética
16.
Pain ; 158(1): 130-139, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749604

RESUMO

Accumulating evidence has demonstrated that epigenetic modification-mediated changes in pain-related gene expressions play an important role in the development and maintenance of neuropathic pain. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is involved in the development of chronic pain. Moreover, SIRT1 may be a novel therapeutic target for the prevention of type 2 diabetes mellitus (T2DM). But the role of SIRT1 in T2DM-induced neuropathic pain remains unknown. In this study, we found that spinal SIRT1 expression and activity were downregulated significantly in high-fat-fed/low-dose streptozotocin-induced neuropathic pain rats. SIRT1 localized in spinal neurons but not in astrocytes or microglia. Furthermore, the expressions of metabotropic glutamate receptor (mGluR1) and mGluR5, which play a key role in central sensitization and neuropathic pain, and H3 acetylation levels at Grm1/5 (encoding mGluR1/5) promoter regions were increased in diabetic neuropathic pain rats. SIRT1 activator SRT1720 reversed thermal hyperalgesia and mechanical allodynia and spinal neuronal activation in diabetic neuropathic pain rats. Concurrently, increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions were reversed by SIRT1 activation. In addition, knockdown of SIRT1 by Ad-SIRT1-shRNA induced pain behaviors and spinal neuronal activation in normal rats, which was accompanied by the increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions. Therefore, we concluded that SIRT1-mediated epigenetic regulation of mGluR1/5 expressions was involved in the development of neuropathic pain in type 2 diabetic rats.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Regulação da Expressão Gênica/genética , Neuralgia/etiologia , Neuralgia/patologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sirtuína 1/metabolismo , Animais , Astrócitos/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Hiperalgesia/diagnóstico , Hiperalgesia/etiologia , Hiperglicemia/etiologia , Hiperglicemia/fisiopatologia , Masculino , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/genética , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Estreptozocina/toxicidade
17.
Biochim Biophys Acta ; 1859(8): 1056-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27206966

RESUMO

MAP kinase phosphatase (MKP)-1 plays a pivotal role in controlling MAP kinase (MAPK)-dependent (patho) physiological processes. Although MKP-1 gene expression is tightly regulated at multiple levels, the underlying mechanistic details remain largely unknown. In this study, we demonstrate that MKP-1 expression is regulated at the post-transcriptional level by 22(R)-hydroxycholesterol [22(R)-HC] through a novel mechanism. 22(R)-HC induces Hu antigen R (HuR) phosphorylation, cytoplasmic translocation and binding to MKP-1 mRNA, resulting in stabilization of MKP-1 mRNA. The resulting increase in MKP-1 leads to suppression of JNK-mediated inflammatory responses in brain astrocytes. We further demonstrate that 22(R)-HC-induced phosphorylation of nuclear HuR is mediated by PKCα, which is activated in the cytosol by increases in intracellular Ca(2+) levels mediated by the phospholipase C/inositol 1,4,5-triphosphate receptor (PLC/IP3R) pathway and translocates from cytoplasm to nucleus. In addition, pharmacological interventions reveal that metabotropic glutamate receptor5 (mGluR5) is responsible for the increases in intracellular Ca(2+) that underlie these actions of 22(R)-HC. Collectively, our findings identify a novel anti-inflammatory mechanism of 22(R)-HC, which acts through PKCα-mediated cytoplasmic shuttling of HuR to post-transcriptionally regulate MKP-1 expression. These findings provide an experimental basis for the development of a RNA-targeted therapeutic agent to control MAPK-dependent inflammatory responses.


Assuntos
Astrócitos/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Proteína Semelhante a ELAV 1/genética , Hidroxicolesteróis/farmacologia , Proteína Quinase C-alfa/genética , RNA Mensageiro/genética , Receptor de Glutamato Metabotrópico 5/genética , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteína Semelhante a ELAV 1/agonistas , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
18.
Neuroscience ; 322: 138-51, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26902516

RESUMO

The metabotropic glutamate receptor 5 (mGluR5) regulates neurogenesis in the brain, but the effect of mGluR5 on retinal progenitor cells (RPCs) remains unknown. In this study, we found that mGluR5 promoted the proliferation of rat RPCs with activation of the phosphatidylinositol-3-kinase (PI-3-K) and mitogen-activated protein kinase (MAPK) signaling pathways in vitro. The mGluR5 agonist (S)-3,5-dihydroxyphenylglycine hydrate (DHPG) increased the cellular viability in a concentration- and time-dependent manner, whereas the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine hydrochloride (MTEP) had the opposite effect, as shown by 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTT) assay. Treatment with DHPG (100 µM) also promoted the proliferation of RPCs, as indicated by 5-Bromo-2-deoxyUridine (BrdU) staining and flow cytometry, and likewise, MTEP (100 µM) and mGluR5 knockdown abolished the action of mGluR5 activity. Western blot demonstrated that the activation of mGluR5 enhanced the expression of Cyclin D1 and the phosphorylation level of PKC however, MTEP or mGluR5 knockdown also abrogated the effect of DHPG on RPCs. Furthermore, we found that activation of the extracellular signal-regulated protein kinase (ERK) and protein kinase B (AKT) signaling pathways was involved in the proliferation of RPC. After DHPG treatment, the levels of both p-ERK1/2 and p-AKT increased in a time-dependent manner. Then we used MTEP, mGluR5 knockdown, the ERK1/2 inhibitor U0126 and the AKT inhibitor LY294002 to pretreat the cells, and all of them clearly eliminated the influence of DHPG. These results demonstrated that mGluR5 regulates neurogenesis in RPCs through the MAPK and PI-3-K signaling pathways, and these findings may motivate a pharmacological study investigating a potential mechanism for the treatment of retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD).


Assuntos
Proliferação de Células/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Neurais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Retina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/genética , Retina/efeitos dos fármacos
19.
Neurochem Res ; 41(4): 924-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26700429

RESUMO

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Animais , Bovinos , Glicina/análogos & derivados , Glicina/farmacologia , Hidrólise , Fosfatos de Inositol/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinóis/farmacologia , Transdução de Sinais
20.
J Neurochem ; 135(4): 714-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303340

RESUMO

A great body of evidence points toward a functional interaction between metabotropic glutamate 5 receptors (mGluR5) and NMDA receptors (NMDAR) that enhances synaptic plasticity and cognition. However, the molecular mechanism underlying this interaction remains unclear. Here, we show that co-activation of mGluR5 and NMDAR in hippocampal slices synergistically leads to a robust phosphorylation of NR2B (Tyr1472), which is Src kinase dependent and is enabled by endogenous adenosine acting on A2A receptors. As it is well known, NR2B (Tyr1472) phosphorylation anchors NR2B-containing NMDARs to the surface of post-synaptic membranes, preventing their internalization. This is supported by our electrophysiological experiments showing that co-activation of mGluR5 and NMDARs robustly enhances NMDAR-dependent neuronal excitability recorded in CA1 hippocampal region, which temporally coincides with the robust increase in NR2B (Tyr1472) phosphorylation, depends on Src kinases and is also permitted by A2A receptors. Thus, we strongly suggest that NR2B (Tyr1472) phosphorylation constitutes, at least to some extent, the molecular mechanism underlying the mGluR5-mediated enhancement of NMDAR-dependent responses, which is modulated by A2A receptors. A better understanding of the molecular basis of mGluR5/NMDAR interaction would elucidate their role in synaptic plasticity processes as well as in pathological conditions. We propose the following molecular mechanism by which metabotropic Glutamate Receptor 5 (mGluR5) potentiate ionotropic Glutamate N-Methyl-D-Aspartate Receptor (NMDAR) responses in rat hippocampus. Co-activation of mGLUR5/NMDAR activates Src kinases, leading to NR2B(Tyr1472) phosphorylation, which anchors NR2B-containing NMDAR to the plasma membrane, thus inducing a robust increase in the NMDA-dependent excitability. Interestingly, adenosine A2A receptors license the mGluR5-induced NR2B(Tyr1472) phosphorylation.


Assuntos
Hipocampo/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores A2 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Purinérgicos/farmacologia , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/genética , Receptores A2 de Adenosina/genética , Receptores de N-Metil-D-Aspartato/genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA