Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.642
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pflugers Arch ; 474(12): 1311-1321, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36131146

RESUMO

Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and ß-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (ß1 + ß2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (ß1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (ß2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating ß1- and α1-ARs in both human and rabbit, with a ß2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.


Assuntos
Canais de Cálcio Tipo L , Miócitos Cardíacos , Norepinefrina , Receptores Adrenérgicos alfa , Receptores Adrenérgicos beta , Animais , Humanos , Coelhos , Fibrilação Atrial/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Norepinefrina/farmacologia , Norepinefrina/fisiologia , Prazosina/farmacologia , Receptores Adrenérgicos alfa 2 , Átrios do Coração/citologia , Receptores Adrenérgicos beta/fisiologia , Receptores Adrenérgicos alfa/fisiologia , Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Canais de Cálcio Tipo L/fisiologia
2.
Pharmacol Res Perspect ; 10(3): e00975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35643970

RESUMO

A2A and A2B adenosine receptors produce regionally selective regulation of vascular tone and elicit differing effects on mean arterial pressure (MAP), whilst inducing tachycardia. The tachycardia induced by the stimulation of A2A or A2B receptors has been suggested to be mediated by a reflex increase in sympathetic activity. Here, we have investigated the role of ß1 - and ß2 -adrenoceptors in mediating the different cardiovascular responses to selective A2A and A2B receptor stimulation. Hemodynamic variables were measured in conscious male Sprague-Dawley rats (350-450 g) via pulsed Doppler flowmetry. The effect of intravenous infusion (3 min per dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1.0 µg.kg-1 .min-1 ) or the A2B -selective agonist BAY 60-6583 (4.0, 13.3, 40.0 µg.kg-1 .min-1 ) in the absence or following pre-treatment with the non-selective ß-antagonist propranolol (1.0 mg.kg-1 ), the selective ß1 -antagonist CGP 20712A (200 µg.kg-1 ), or the selective ß2 -antagonist ICI 118,551 (2.0 mg.kg-1 ) was investigated (maintenance doses also administered). CGP 20712A and propranolol significantly reduced the tachycardic response to CGS 21680, with no change in the effect on MAP. ICI 118,551 increased BAY 60-6583-mediated renal and mesenteric flows, but did not affect the heart rate response. CGP 20712A attenuated the BAY 60-6583-induced tachycardia. These data imply a direct stimulation of the sympathetic activity via cardiac ß1 -adrenoceptors as a mechanism for the A2A - and A2B -induced tachycardia. However, the regionally selective effects of A2B agonists on vascular conductance were independent of sympathetic activity and may be exploitable for the treatment of acute kidney injury and mesenteric ischemia.


Assuntos
Antagonistas Adrenérgicos beta , Propranolol , Adenosina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea , Masculino , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/fisiologia , Taquicardia/induzido quimicamente
3.
J Pharmacol Sci ; 145(3): 228-240, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602503

RESUMO

Astrocytes are glial cells with numerous fine processes which are important for the functions of the central nervous system. The activation of ß-adrenoceptors induces process formation of astrocytes via cyclic AMP (cAMP) signaling. However, the role of α-adrenoceptors in the astrocyte morphology has not been elucidated. Here, we examined it by using cultured astrocytes from neonatal rat spinal cords and cortices. Exposure of these cells to noradrenaline and the ß-adrenoceptor agonist isoproterenol increased intracellular cAMP levels and induced the formation of processes. Noradrenaline-induced process formation was enhanced with the α1-adrenoceptor antagonist prazosin and α2-adrenoceptor antagonist atipamezole. Atipamezole also enhanced noradrenaline-induced cAMP elevation. Isoproterenol-induced process formation was not inhibited by the α1-adrenoceptor agonist phenylephrine but was inhibited by the α2-adrenoceptor agonist dexmedetomidine. Dexmedetomidine also inhibited process formation induced by the adenylate cyclase activator forskolin and the membrane-permeable cAMP analog dibutyryl-cAMP. Moreover, dexmedetomidine inhibited cAMP-independent process formation induced by adenosine or the Rho-associated kinase inhibitor Y27632. In the presence of propranolol, noradrenaline inhibited Y27632-induced process formation, which was abolished by prazosin or atipamezole. These results demonstrate that α-adrenoceptors inhibit both cAMP-dependent and -independent astrocytic process formation.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Receptores Adrenérgicos alfa/fisiologia , Receptores Adrenérgicos beta/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Dexmedetomidina/farmacologia , Imidazóis/farmacologia , Isoproterenol/farmacologia , Norepinefrina/farmacologia , Prazosina/farmacologia , Ratos Wistar , Transdução de Sinais
4.
J Pharmacol Sci ; 145(3): 253-261, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602505

RESUMO

Facilitation of cardiac function in response to signals from the sympathetic nervous system is initiated by the phosphorylation of L-type voltage-dependent Ca2+ channels (VDCCs) by protein kinase A (PKA), which in turn is activated by ß-adrenoceptors. Among the five subunits (α1, ß, α2/δ, and γ) of VDCCs, the α1 subunit and the family of ß subunits are substrates for PKA-catalyzed phosphorylation; however, the subunit responsible for ß-adrenergic augmentation of Ca2+ channel function has yet to be specifically identified. Here we show that the VDCC ß2 subunit is required for PKA phosphorylation upon sympathetic acceleration. In mice with ß2 subunit-null mutations, cardiac muscle contraction in response to isoproterenol was reduced and there was no significant increase in Ca2+ channel currents upon PKA-dependent phosphorylation. These findings indicate that within the sympathetic nervous system the ß2 subunit of VDCCs is required for physiological PKA-dependent channel phosphorylation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Catálise , Células Cultivadas , Isoproterenol/farmacologia , Camundongos , Mutação , Contração Miocárdica/efeitos dos fármacos , Fosforilação , Receptores Adrenérgicos beta/genética
5.
FEBS J ; 288(23): 6603-6622, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33415835

RESUMO

Heart failure with preserved ejection fraction (HFpEF) will soon take over as the predominant form of heart failure. This is largely driven by the continuing increased incidences of obesity and type 2 diabetes (T2D), which promote HFpEF in the absence of pressure overload stresses. With beta-blockers showing little effectiveness in treating obesity/T2D HFpEF and with no HFpEF-targeted drugs currently available, we are in urgent need of a better understanding of how obesity/T2D HFpEF develops and how we may treat this condition. An exciting emerging field aiming to do this focuses on the investigation of 3',5'-cyclic adenosine monophosphate (cAMP) microdomains in the heart. The previous work has largely focused on the investigation of cAMP microdomain remodelling in heart failure with reduced ejection fraction (HFrEF), with this work uncovering potential new targets for intervention strategies that otherwise would have been overlooked when studying changes in cAMP dynamics at the whole-cell level. In this review, we aimed to discuss current advancements in our understanding of cAMP microdomain remodelling in HFrEF vs that in obesity/T2D-associated HFpEF, with particular focus on the unresolved questions and limitations we face in being able to translate this knowledge.


Assuntos
AMP Cíclico/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Obesidade/fisiopatologia , Volume Sistólico/fisiologia , Remodelação Ventricular/fisiologia , Animais , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/complicações , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Humanos , Modelos Cardiovasculares , Obesidade/complicações , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta/fisiologia
6.
Front Immunol ; 12: 715102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987499

RESUMO

Background: Epstein-Barr virus (EBV) causes infectious mononucleosis (IM) that can lead to chronic fatigue syndrome. The CEBA-project (Chronic fatigue following acute EBV infection in Adolescents) has followed 200 patients with IM and here we present an immunological profiling of adolescents with IM related to clinical characteristics. Methods: Patients were sampled within 6 weeks of debut of symptoms and after 6 months. Peripheral blood mononuclear cells (PBMC) were cultured and stimulated in vitro (n=68), and supernatants analyzed for cytokine release. Plasma was analyzed for inflammatory markers (n=200). The Chalder Fatigue Questionnaire diagnosed patients with and without chronic fatigue at 6 months (CF+ and CF- group, respectively) (n=32 and n=91, in vitro and plasma cohorts, respectively. Results: Broad activation of PBMC at baseline, with high levels of RANTES (Regulated on activation, normal T-cell expressed and secreted) in the CF+ group, and broad inflammatory response in plasma with high levels of T-cell markers was obeserved. At 6 months, there was an increased ß-agonist response and RANTES was still elevated in cultures from the CF+ group. Plasma showed decrease of inflammatory markers except for CRP which was consistently elevated in the CF+ group. Conclusion: Patients developing chronic fatigue after IM have signs of T-cell activation and low-grade chronic inflammation at baseline and after 6 months. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT02335437.


Assuntos
Quimiocina CCL5/sangue , Síndrome de Fadiga Crônica/etiologia , Mononucleose Infecciosa/imunologia , Inflamação/etiologia , Ativação Linfocitária , Linfócitos T/imunologia , Adolescente , Anticorpos Antivirais/sangue , Biomarcadores , Células Cultivadas , Quimiocina CCL5/biossíntese , Doença Crônica , Convalescença , Estudos Transversais , Citocinas/sangue , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/imunologia , Feminino , Seguimentos , Herpesvirus Humano 4/imunologia , Humanos , Mononucleose Infecciosa/sangue , Mononucleose Infecciosa/complicações , Inflamação/sangue , Inflamação/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Estudos Prospectivos , Receptores Adrenérgicos beta/fisiologia , Linfócitos T/metabolismo
7.
Sci Rep ; 10(1): 18801, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139790

RESUMO

Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.


Assuntos
Eletrofisiologia Cardíaca , Coração/inervação , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo
8.
J Neurosci ; 40(45): 8604-8617, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046543

RESUMO

The second messenger cAMP is an important determinant of synaptic plasticity that is associated with enhanced neurotransmitter release. Long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell (PC) synapses depends on a Ca2+-induced increase in presynaptic cAMP that is mediated by Ca2+-sensitive adenylyl cyclases. However, the upstream signaling and the downstream targets of cAMP involved in these events remain poorly understood. It is unclear whether cAMP generated by ß-adrenergic receptors (ßARs) is required for PF-PC LTP, although noradrenergic varicosities are apposed in PF-PC contacts. Guanine nucleotide exchange proteins directly activated by cAMP [Epac proteins (Epac 1-2)] are alternative cAMP targets to protein kinase A (PKA) and Epac2 is abundant in the cerebellum. However, whether Epac proteins participate in PF-PC LTP is not known. Immunoelectron microscopy demonstrated that ßARs are expressed in PF boutons. Moreover, activation of these receptors through their agonist isoproterenol potentiated synaptic transmission in cerebellar slices from mice of either sex, an effect that was insensitive to the PKA inhibitors (H-89, KT270) but that was blocked by the Epac inhibitor ESI 05. Interestingly, prior activation of these ßARs occluded PF-PC LTP, while the ß1AR antagonist metoprolol blocked PF-PC LTP, which was also absent in Epac2-/- mice. PF-PC LTP is associated with an increase in the size of the readily releasable pool (RRP) of synaptic vesicles, consistent with the isoproterenol-induced increase in vesicle docking in cerebellar slices. Thus, the ßAR-mediated modulation of the release machinery and the subsequent increase in the size of the RRP contributes to PF-PC LTP.SIGNIFICANCE STATEMENT G-protein-coupled receptors modulate the release machinery, causing long-lasting changes in synaptic transmission that influence synaptic plasticity. Nevertheless, the mechanisms underlying synaptic responses to ß-adrenergic receptor (ßAR) activation remain poorly understood. An increase in the number of synaptic vesicles primed for exocytosis accounts for the potentiation of neurotransmitter release driven by ßARs. This effect is not mediated by the canonical protein kinase A pathway but rather, through direct activation of the guanine nucleotide exchange protein Epac by cAMP. Interestingly, this ßAR signaling via Epac is involved in long term potentiation at cerebellar granule cell-to-Purkinje cell synapses. Thus, the pharmacological activation of ßARs modulates synaptic plasticity and opens therapeutic opportunities to control this phenomenon.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Vesículas Sinápticas/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cerebelo/citologia , Cerebelo/metabolismo , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Células de Purkinje/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
9.
Cell Physiol Biochem ; 54(4): 665-681, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32639114

RESUMO

BACKGROUND/AIMS: Aortic stenosis-induced chronic pressure overload leads to cardiac dysfunction and congestive heart failure. The pathophysiological mechanisms of the myocardial impairment are multifactorial and include maladaptive ß-adrenergic signaling. Exercise training (ET) has been used as a non-pharmacological therapy for heart failure management. The present study tested the hypothesis that exercise training attenuates diastolic dysfunction through ß-adrenergic signaling preservation. METHODS: Wistar rats were submitted to ascending aortic stenosis (AS) surgery, and after 18 weeks, a moderate aerobic exercise training protocol was performed for ten weeks. RESULTS: ET attenuated diastolic dysfunction, evaluated by echocardiogram and isolated papillary muscle (IPM) assay. Also, ET reduced features of heart failure, cross-sectional cardiomyocyte area, and exercise intolerance, assessed by treadmill exercise testing. The ß2 adrenergic receptor protein expression was increased in AS rats independently of exercise. Interestingly, ET restored the protein levels of phosphorylated phospholamban at Serine 16 and preserved the ß-adrenergic receptor responsiveness as visualized by the lower myocardial compliance decline and time to 50% tension development and relaxation during ß-adrenergic stimulation in the IPM than untrained rats. Additionally, AS rats presented higher levels of TNFα and iNOS, which were attenuated by ET. CONCLUSION: Moderate ET improves exercise tolerance, reduces heart failure features, and attenuates diastolic dysfunction. In the myocardium, ET decreases the cross-sectional area of the cardiomyocyte and preserves the ß-adrenergic responsiveness, which reveals that the adjustments in ß-adrenergic signaling contribute to the amelioration of cardiac dysfunction by mild exercise training in aortic stenosis rats.


Assuntos
Estenose Aórtica Supravalvular/metabolismo , Insuficiência Cardíaca Diastólica/terapia , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores Adrenérgicos beta/metabolismo , Animais , Estenose Aórtica Supravalvular/terapia , Proteínas de Ligação ao Cálcio/metabolismo , Ecocardiografia , Teste de Esforço , Masculino , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Músculos Papilares/fisiologia , Fosforilação , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Bull Exp Biol Med ; 169(1): 24-28, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32495169

RESUMO

We studied the effect of metformin (100 and 200 mg/kg/day, 4 weeks) on the adenylyl cyclasestimulating effects of ß-agonists and relaxin in the myocardial membranes and on activities of Akt-kinase, an effector component of insulin signaling, and AMP-activated protein kinase (AMPK), a cellular energy sensor, in the myocardium of rats with type 2 diabetes mellitus induced by high-fat diet and streptozotocin. Metformin normalized the ratio of adenylyl cyclase effects of ß1/2- and ß3-agonists in the myocardial membranes, that is reduced in DM2, and restored phosphorylation of Akt-kinase by Ser473 and AMPK by Thr172 in the myocardium of diabetic rats. The effect of metformin in a dose of 200 mg/kg/day was more pronounced. Thus, the cardioprotective effect of metformin is due to its ability to restore the adrenergic and insulin regulation in cardiomyocytes and their energy status.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/uso terapêutico , Miocárdio/metabolismo , Receptores Adrenérgicos beta/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Coração/efeitos dos fármacos , Masculino , Metformina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
11.
Shock ; 53(4): 476-484, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31232864

RESUMO

Severely burned patients suffer from a hypermetabolic syndrome that can last for years after the injury has resolved. The underlying cause of these metabolic alterations most likely involves the persistent elevated catecholamine levels that follow the surge induced by thermal injury. At the cellular level, endoplasmic reticulum (ER) stress in metabolic tissues is a hallmark observed in patients following burn injury and is associated with several detrimental effects. Therefore, ER stress could be the underlying cellular mechanism of persistent hypermetabolism in burned patients. Here, we show that catecholamines induce ER stress and that adreno-receptor blockers reduce stress responses in the HepG2 hepatocyte cell line. Our results also indicate that norepinephrine (NE) significantly induces ER stress in HepG2 cells and 3T3L1 mouse adipocytes. Furthermore, we demonstrate that the alpha-1 blocker, prazosin, and beta blocker, propranolol, block ER stress induced by NE. We also show that the effects of catecholamines in inducing ER stress are cell type-specific, as NE treatment failed to evoke ER stress in human fibroblasts. Thus, these findings reveal the mechanisms used by catecholamines to alter metabolism and suggest inhibition of the receptors utilized by these agents should be further explored as a potential target for the treatment of ER stress-mediated disease.


Assuntos
Catecolaminas/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Fibroblastos/fisiologia , Células Hep G2/fisiologia , Receptores Adrenérgicos alfa/fisiologia , Receptores Adrenérgicos beta/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Técnicas de Cultura de Células , Fibroblastos/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Prazosina/farmacologia , Propranolol/farmacologia
12.
J Physiol Pharmacol ; 70(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31741459

RESUMO

Umbilical vessels have a low sensitivity to dilate, and this property is speculated to have physiological implications. We aimed to investigate the different relaxing responses of human umbilical arteries (HUAs) and veins (HUVs) to agonists acting through the cAMP and cGMP pathways. Vascular rings were suspended in organ baths for isometric force measurement. Following precontraction with the thromboxane prostanoid (TP) receptor agonist U44069, concentration-response curves to the nitric oxide (NO) donor sodium nitroprusside (SNP), the soluble guanylate cyclase (sGC) stimulator BAY 41-2272, the adenylate cyclase (AC) activator forskolin, the ß-adrenergic receptor agonists isoproterenol (ADRB1), salmeterol (ADRB2), and BRL37344 (ADRB3), and the phosphodiesterase (PDE) inhibitors milrinone (PDE3), rolipram (PDE4), and sildenafil (PDE5) were performed. None of the tested drugs induced a relaxation higher than 30% of the U44069-induced tone. Rings from HUAs and HUVs showed a similar relaxation to forskolin, SNP, PDE inhibitors, and ADRB agonists. BAY 41-2272 was significantly more efficient in relaxing veins than arteries. ADRB agonists evoked weak relaxations (< 20%), which were impaired in endothelium-removed vessels or in the presence of the NO synthase inhibitor L-NAME, sGC inhibitor ODQ. PKA and PKG inhibitors impaired ADBR1-mediated relaxation but did not affect ADRB2-mediated relaxation. ADRB3-mediated relaxation was impaired by PKG inhibition in HUAs and by PKA inhibition in HUVs. Although HUA and HUV rings were relaxed by BRL37344, immunohistochemistry and RT-qPCR analysis showed that, compared to ADRB1 and ADRB2, ADRB3 receptors are weakly or not expressed in umbilical vessels. In conclusion, our study confirmed the low relaxing capacity of HUAs and HUVs from term infants. ADRB-induced relaxation is partially mediated by endothelium-derived NO pathway in human umbilical vessels.


Assuntos
AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Artérias Umbilicais/fisiologia , Veias Umbilicais/fisiologia , Vasodilatação/fisiologia , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Recém-Nascido , Receptores Adrenérgicos beta/fisiologia , Artérias Umbilicais/efeitos dos fármacos , Veias Umbilicais/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
13.
Learn Mem ; 26(6): 187-190, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31109969

RESUMO

Beta-adrenergic receptors (ß-ARs) prime hippocampal synapses to stabilize long-term potentiation (LTP). This "metaplasticity" can persist for 1-2 h after pharmacologic activation of ß-ARs. It requires activation of PKA (cAMP-dependent protein kinase) during ß-AR priming. A-kinase anchoring proteins (AKAPs) tether PKA to downstream signaling proteins. We hypothesized that induction of this metaplasticity requires intact functioning of AKAPs. Acute application of stearated ht31, a membrane-permeant inhibitor of AKAPs, either during ß-AR activation 30 min prior to LTP induction or during LTP induction, attenuated the persistence of LTP. A control, inactive ht31 peptide did not affect ß-AR-mediated metaplasticity. These findings implicate PKA anchoring in the induction of ß-adrenergic metaplasticity of LTP.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores Adrenérgicos beta/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos Endogâmicos C57BL , Sinapses/fisiologia
14.
Can J Cardiol ; 35(4): 511-522, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30935642

RESUMO

The slow delayed rectifier potassium current (IKs) significantly contributes to cardiac repolarization under specific conditions, particularly at stimulation by the protein kinase A (PKA) during increased sympathetic tone. Impaired PKA-mediated stimulation of IKs channels may considerably aggravate dysfunction of the channels induced by mutations in the KCNQ1 gene that encodes the structure of the α-subunit of IKs channels. These mutations are associated with several subtypes of inherited arrhythmias, mainly long QT syndrome type 1, less commonly short QT syndrome type 2, and atrial fibrillation. The impaired PKA reactivity of IKs channels may significantly increase the risk of arrhythmia in these patients. Unfortunately, only approximately 2.7% of the KCNQ1 variants identified as putatively clinically significant have been studied with respect to this problem. This review summarizes the current knowledge in the field to stress the importance of the PKA-mediated regulation of IKs channels, and to appeal for further analysis of this regulation in KCNQ1 mutations associated with inherited arrhythmogenic syndromes. On the basis of the facts summarized in our review, we suggest several new regions of the α-subunit of the IKs channels as potential contributors to PKA stimulation, namely the S4 and S5 segments, and the S2-S3 and S4-S5 linkers. Deeper knowledge of mechanisms of the impaired PKA response in mutated IKs channels may help to better understand this regulation, and may improve risk stratification and management of patients suffering from related pathologies.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Canais de Potássio de Retificação Tardia/fisiologia , Síndrome do QT Longo/fisiopatologia , Receptores Adrenérgicos beta/fisiologia , Sistema de Condução Cardíaco/fisiologia , Humanos , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Mutação , Fosforilação
15.
Ann Palliat Med ; 8(1): 13-23, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30525767

RESUMO

Cancer cachexia, characterized by losses in muscle and adipose tissue (AT), is associated with poor quality of life and prognosis, and lacks effective therapies. Both tumor- and host- derived factors disrupt normal metabolism and are vital to the catabolic drive in cancer cachexia. While muscle loss has long dominated cachexia research, recent work conducted predominantly in rodent models has begun to recognize the significance of AT lipid metabolism alterations in the development and progression of cancer cachexia. AT losses are mainly attributed to the activation of lipolytic pathways. An important recent discovery has been in the demonstration of white AT (WAT) "browning" conferring thermogenic properties to adipocytes that results in wasteful energy expenditure. Collectively, both elevated lipolysis and WAT thermogenesis play an important role in AT depletion in cancer. The purpose of this review is to highlight current knowledge related to the regulation of AT function in cancer cachexia.


Assuntos
Caquexia/metabolismo , Metabolismo dos Lipídeos/fisiologia , Neoplasias/metabolismo , Adipócitos/patologia , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Citocinas/fisiologia , Modelos Animais de Doenças , Hormônios/fisiologia , Humanos , Lipogênese/fisiologia , Camundongos , Músculo Esquelético/metabolismo , Receptores Adrenérgicos beta/fisiologia , Termogênese/fisiologia
17.
Anesthesiology ; 128(6): 1175-1186, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547406

RESUMO

BACKGROUND: Systemic toxicity of local anesthetics is predominantly complicated by their myocardial toxicity. Especially long-acting local anesthetics exert a negative inotropic effect that has been described at lower concentrations than defined for blockade of myocardial ion channels. We evaluated the negative inotropic effect of bupivacaine at a concentration described for clinical toxicity testing the hypothesis that negative inotropy is a result of reduced Ca sensitivity rather than blockade of ion channels. METHODS: We simultaneously measured force development and action potentials in guinea pig right papillary muscles (n = 5 to 7). L-type Ca currents (n = 8 to 16) and Ca transients (n = 10 to 11) were measured in isolated cardiomyocytes. Sensitivity of myofilaments to Ca was assessed in skinned fibers (n = 10). Potential effects of bupivacaine on 3',5'-cyclic adenosine monophosphate concentrations were measured using Förster Resonance Energy Transfer (n = 12 to 14) microscopy. RESULTS: Bupivacaine reduced force in a concentration-dependent manner from 173 ± 119 µN at baseline to 28 ± 13 µN at 300 µM (mean ± SD). At concentrations giving half-maximum negative inotropic effects (5 µM), the maximum upstroke velocity of action potentials, as a surrogate of sodium channel activity, was unaffected. Maximum positive inotropic effects of isoprenaline were also reduced to 50%. Neither basal nor isoprenaline-induced 3',5'-cyclic adenosine monophosphate accumulation, L-type Ca currents, or Ca transients were affected by 5 µM bupivacaine, but this concentration significantly decreased Ca sensitivity of myofilaments, changing the negative logarithm of the half-maximum effective Ca concentrations from 5.66 to 5.56 -log[M]. CONCLUSIONS: We provide evidence that the negative inotropic effect of bupivacaine may be caused mainly by a reduction in myofilament sensitivity to Ca.


Assuntos
Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Cálcio/metabolismo , Contração Miocárdica/fisiologia , Receptores Adrenérgicos beta/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Cobaias , Masculino , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos
18.
Br J Dermatol ; 178(6): 1246-1256, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28714085

RESUMO

BACKGROUND: Humans have 4 million exocrine sweat glands, which can be classified into two types: eccrine and apocrine glands. Sweat secretion, a constitutive feature, is directly involved in thermoregulation and metabolism, and is regulated by both the central nervous system (CNS) and autonomic nervous system (ANS). OBJECTIVES: To explore how sweat secretion is controlled by both the CNS and the ANS and the mechanisms behind the neural control of sweat secretion. METHODS: We conducted a literature search on PubMed for reports in English from 1 January 1950 to 31 December 2016. RESULTS AND CONCLUSIONS: Acetylcholine acts as a potent stimulator for sweat secretion, which is released by sympathetic nerves. ß-adrenoceptors are found in adipocytes as well as apocrine glands, and these receptors may mediate lipid secretion from apocrine glands for sweat secretion. The activation of ß-adrenoceptors could increase sweat secretion through opening of Ca2+ channels to elevate intracellular Ca2+ concentration. Ca2+ and cyclic adenosine monophosphate play a part in the secretion of lipids and proteins from apocrine glands for sweat secretion. The translocation of aquaporin 5 plays an important role in sweat secretion from eccrine glands. Dysfunction of the ANS, especially the sympathetic nervous system, may cause sweating disorders, such as hypohidrosis and hyperhidrosis.


Assuntos
Glândulas Apócrinas/metabolismo , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Central/fisiologia , Glândulas Écrinas/metabolismo , Suor/metabolismo , Acetilcolina/fisiologia , Glândulas Apócrinas/inervação , Regulação da Temperatura Corporal/fisiologia , Canais de Cálcio/fisiologia , AMP Cíclico/fisiologia , Glândulas Écrinas/inervação , Humanos , Sistema Límbico/fisiologia , Norepinefrina/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Via Secretória/fisiologia , Doenças das Glândulas Sudoríparas/fisiopatologia
19.
Cell Mol Neurobiol ; 38(1): 109-120, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29063982

RESUMO

In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (ß-ARs), mainly the beta 1 (ß1-AR) and beta 2 (ß2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The ß2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the ß1/ß2-AR ratio and activation of the ß2-AR-Gi-PI3K-Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K-Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and ß2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the ß2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by ß2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.


Assuntos
Envelhecimento/metabolismo , Insuficiência Cardíaca/metabolismo , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/fisiologia , Sirtuínas/metabolismo , Estresse Psicológico/metabolismo , Adaptação Fisiológica/fisiologia , Adaptação Psicológica/fisiologia , Envelhecimento/psicologia , Animais , Insuficiência Cardíaca/psicologia , Humanos , Miócitos Cardíacos/metabolismo , Estresse Psicológico/psicologia
20.
Cell Mol Neurobiol ; 38(2): 441-457, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28353187

RESUMO

Rapid eye movement sleep deprivation-associated elevated noradrenaline increases and decreases neuronal and glial Na-K ATPase activity, respectively. In this study, using C6 cell-line as a model, we investigated the possible intracellular molecular mechanism of noradrenaline-induced decreased glial Na-K ATPase activity. The cells were treated with noradrenaline in the presence or absence of adrenoceptor antagonists, modulators of extra- and intracellular Ca++ and modulators of intracellular signalling pathways. We observed that noradrenaline acting on ß-adrenoceptor decreased Na-K ATPase activity and mRNA expression of the catalytic α2-Na-K ATPase subunit in the C6 cells. Further, cAMP and protein kinase-A mediated release of intracellular Ca++ played a critical role in such decreased α2-Na-K ATPase expression. In contrast, noradrenaline acting on ß-adrenoceptor up-regulated the expression of regulatory ß2-Na-K ATPase subunit, which although was cAMP and Ca++ dependent, was independent of protein kinase-A and protein kinase-C. Combining these with previous findings (including ours) we have proposed a working model for noradrenaline-induced suppression of glial Na-K ATPase activity and alteration in its subunit expression. The findings help understanding noradrenaline-associated maintenance of brain excitability during health and altered states, particularly in relation to rapid eye movement sleep and its deprivation when the noradrenaline level is naturally altered.


Assuntos
Regulação Enzimológica da Expressão Gênica , Líquido Intracelular/enzimologia , Receptores Adrenérgicos beta/fisiologia , ATPase Trocadora de Sódio-Potássio/biossíntese , ATPase Trocadora de Sódio-Potássio/genética , Animais , Carbazóis/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Líquido Intracelular/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Pirróis/farmacologia , Ratos , Sódio/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA