Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.547
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38862137

RESUMO

The inhibition of hepatic macrophage and Kupfer cell recruitment and activation is a potential strategy for treating insulin resistance and nonalcoholic steatohepatitis (NASH). Cenicriviroc (CVC), a dual C-C chemokine receptor 2 (CCR2) and CCR5 antagonist, has shown antifibrotic activity in murine models of NASH and has been evaluated in clinical trials on patients with NASH. This study investigated the effects of CVC on macrophage infiltration and polarization in a lipotoxic model of NASH. C57BL/6 mice were fed a high-cholesterol, high-fat (CL) diet or a CL diet containing 0.015% CVC (CL + CVC) for 12 weeks. Macrophage recruitment and activation were assayed by immunohistochemistry and flow cytometry. CVC supplementation attenuated excessive hepatic lipid accumulation and peroxidation and alleviated glucose intolerance and hyperinsulinemia in the mice that were fed the CL diet. Flow cytometry analysis revealed that compared with the CL group, mice fed the CL + CVC diet had fewer M1-like macrophages, more M2-like macrophages, and fewer T cell counts, indicating that CVC caused an M2-dominant shift of macrophages in the liver. Similarly, CVC decreased lipopolysaccharide-stimulated M1-like macrophage activation, whereas it increased interleukin-4-induced M2-type macrophage polarization in vitro. In addition, CVC attenuated hepatic fibrosis by repressing hepatic stellate cell activation. Lastly, CVC reversed insulin resistance as well as steatosis, inflammation, and fibrosis of the liver in mice with pre-existing NASH. In conclusion, CVC prevented and reversed hepatic steatosis, insulin resistance, inflammation, and fibrogenesis in the liver of NASH mice via M2 macrophage polarization.


Assuntos
Fígado , Macrófagos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Receptores CCR2/metabolismo , Sulfóxidos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , Resistência à Insulina , Imidazóis
2.
Pharmacol Res ; 205: 107242, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823470

RESUMO

Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.


Assuntos
Dor Crônica , Gânglios Espinais , Neuralgia , Receptores CCR2 , Animais , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Dor Crônica/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Humanos , Dor do Câncer/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Camundongos , Feminino , Camundongos Endogâmicos C57BL
3.
Clin Transl Sci ; 17(6): e13811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814167

RESUMO

Immune checkpoint inhibitors remained the standard-of-care treatment for advanced non-small cell lung cancer (NSCLC) for the past decade. In unselected patients, anti-PD-(L)1 monotherapy achieved an overall response rate of about 20%. In this analysis, we developed a pharmacokinetic and pharmacodynamic module for our previously calibrated quantitative systems pharmacology model (QSP) to simulate the effectiveness of macrophage-targeted therapies in combination with PD-L1 inhibition in advanced NSCLC. By conducting in silico clinical trials, the model confirmed that anti-CD47 treatment is not an optimal option of second- and later-line treatment for advanced NSCLC resistant to PD-(L)1 blockade. Furthermore, the model predicted that inhibition of macrophage recruitment, such as using CCR2 inhibitors, can potentially improve tumor size reduction when combined with anti-PD-(L)1 therapy, especially in patients who are likely to respond to anti-PD-(L)1 monotherapy and those with a high level of tumor-associated macrophages. Here, we demonstrate the application of the QSP platform on predicting the effectiveness of novel drug combinations involving immune checkpoint inhibitors based on preclinical or early-stage clinical trial data.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacocinética , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Farmacologia em Rede/métodos , Simulação por Computador , Modelos Biológicos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
4.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775688

RESUMO

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Assuntos
Neovascularização de Coroide , Indenos , Inflamassomos , Interleucina-1beta , Microglia , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Camundongos Knockout , Sulfonas/farmacologia , Camundongos Endogâmicos C57BL , Furanos/farmacologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Sulfonamidas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Lasers/efeitos adversos , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/genética
5.
Phytomedicine ; 129: 155694, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733904

RESUMO

BACKGROUND: Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE: The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS: CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS: Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS: Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.


Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Macrófagos , Camundongos Endogâmicos C57BL , Receptores CCR2 , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Masculino , Camundongos , Doença Crônica , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Neurosci Lett ; 833: 137829, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788796

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has been reported to be affected by inflammatory cells, such as microglia and macrophages, through the concept of non-cell autonomous neuronal death. Resident microglia in the human brain and monocyte-derived macrophages (MoDM) infiltrating in tissues are difficult to distinguish. Therefore, the effects of microglia and MoDMs in ALS remain poorly understood. This study aimed to investigate the role of resident microglia and MoDMs in the pathogenesis of ALS using postmortem brain and spinal cord samples. The samples used for immunohistochemical analysis included 11 cases of sporadic ALS and 11 age-matched controls. We stained the cells with TMEM119 to detect resident microglia and CCR2 to detect MoDMs. In ALS cases, TMEM119-immunopositive resident microglia were abundant in the motor cortex and subcortical white matter (SWM) of the motor area, whereas CCR2-immunopositive MoDM was similar to control cases. In addition, the mean density of CD68-immunopositive cells in the SWM significantly correlated with the mean density of pTDP-43-positive GCIs. These results suggest that resident microglial activation plays an important role in the cerebral pathogenesis of ALS and may provide novel therapeutic strategies to target excessive activation of resident microglia in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Encéfalo , Proteínas de Membrana , Microglia , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Microglia/metabolismo , Microglia/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Proteínas de Membrana/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Receptores CCR2/metabolismo , Substância Branca/patologia , Substância Branca/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Idoso de 80 Anos ou mais
7.
J Neuroinflammation ; 21(1): 134, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802868

RESUMO

BACKGROUND: Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS: Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS: Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS: Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.


Assuntos
Macrófagos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Receptores CCR2 , Degeneração Walleriana , Animais , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Regeneração Nervosa/fisiologia , Degeneração Walleriana/patologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/deficiência , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropatia Ciática/patologia , Axônios/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
8.
Front Immunol ; 15: 1372957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779688

RESUMO

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Assuntos
Hipertensão Pulmonar , Macrófagos , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/parasitologia , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/patologia , Camundongos , Macrófagos/imunologia , Macrófagos/parasitologia , Fenótipo , Schistosoma mansoni/imunologia , Camundongos Endogâmicos C57BL , Esquistossomose/imunologia , Esquistossomose/complicações , Esquistossomose/parasitologia , Modelos Animais de Doenças , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/complicações , Esquistossomose mansoni/patologia , Trombospondina 1/genética , Trombospondina 1/metabolismo , Monócitos/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Feminino , Schistosoma/imunologia , Schistosoma/fisiologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia
9.
Cell Mol Life Sci ; 81(1): 220, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763956

RESUMO

Cardiovascular diseases are an array of age-related disorders, and accumulating evidence suggests a link between cardiac resident macrophages (CRMs) and the age-related disorders. However, how does CRMs alter with aging remains elusive. In the present study, aged mice (20 months old) have been employed to check for their cardiac structural and functional alterations, and the changes in the proportion of CRM subsets as well, followed by sorting of CRMs, including C-C Motif Chemokine Receptor 2 (CCR2)+ and CCR2- CRMs, which were subjected to Smart-Seq. Integrated analysis of the Smart-Seq data with three publicly available single-cell RNA-seq datasets revealed that inflammatory genes were drastic upregulated for both CCR2+ and CCR2- CRMs with aging, but genes germane to wound healing were downregulated for CCR2- CRMs, suggesting the differential functions of these two subsets. More importantly, inflammatory genes involved in damage sensing, complement cascades, and phagocytosis were largely upregulated in CCR2- CRMs, implying the imbalance of inflammatory response upon aging. Our work provides a comprehensive framework and transcriptional resource for assessing the impact of aging on CRMs with a potential for further understanding cardiac aging.


Assuntos
Envelhecimento , Perfilação da Expressão Gênica , Macrófagos , Camundongos Endogâmicos C57BL , Receptores CCR2 , Animais , Macrófagos/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Camundongos , Receptores CCR2/metabolismo , Receptores CCR2/genética , Transcriptoma , Miocárdio/metabolismo , Masculino , Análise de Célula Única , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Fagocitose
10.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755605

RESUMO

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Fenótipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Receptores CCR2/genética , Linfócitos T CD8-Positivos/imunologia , Antígenos CD28/genética
11.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747296

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Assuntos
Desmogleína 2 , Macrófagos , Receptores CCR2 , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmogleína 2/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo
12.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
13.
Brain Behav Immun ; 119: 818-835, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735403

RESUMO

Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.


Assuntos
Encéfalo , Disfunção Cognitiva , Monócitos , Infarto do Miocárdio , Substância Branca , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/complicações , Substância Branca/metabolismo , Substância Branca/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Monócitos/metabolismo , Camundongos , Masculino , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Receptores CCR2/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Macrófagos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Demência Vascular/metabolismo , Demência Vascular/patologia , Oligodendroglia/metabolismo
14.
J Clin Invest ; 134(10)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564300

RESUMO

Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.


Assuntos
Desmogleína 2 , Modelos Animais de Doenças , Macrófagos , NF-kappa B , Receptores CCR2 , Transdução de Sinais , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/imunologia , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia
15.
Int Immunopharmacol ; 133: 111877, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608440

RESUMO

The gut microbiome plays an important role in tumor growth by regulating immune cell function. However, the role of the gut microbiome-mediated monocytes in liver metastasis remains unclear. In this study, we found that fecal microbiome transplantation (FMT) from the stool of patients with liver metastasis (LM) significantly promoted liver metastasis compared with healthy donors (HD). Monocytes were upregulated in liver tissues by the CCL2/CCR2 axis in LM patients' stool transplanted mouse model. CCL2/CCR2 inhibition and monocyte depletion significantly suppress liver metastasis. FMT using LM patients' stool enhanced the plasma lipopolysaccharides (LPS) concentration. The LPS/TLR4 signaling pathway is crucial for gut microbiome-mediated liver metastasis. These results indicated that monocytes contribute to liver metastasis via the CCL2/CCR2 axis.


Assuntos
Quimiocina CCL2 , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Neoplasias Hepáticas , Monócitos , Receptores CCR2 , Receptor 4 Toll-Like , Microbioma Gastrointestinal/imunologia , Animais , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Monócitos/imunologia , Quimiocina CCL2/metabolismo , Camundongos , Receptores CCR2/metabolismo , Receptor 4 Toll-Like/metabolismo , Masculino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais , Linhagem Celular Tumoral , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo
16.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38608702

RESUMO

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Assuntos
Caquexia , Citocina TWEAK , Macrófagos , Neoplasias Pancreáticas , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/complicações , Citocina TWEAK/metabolismo , Animais , Humanos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Quimiocina CCL5/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Receptores CCR2/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL
17.
Nat Immunol ; 25(5): 802-819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684922

RESUMO

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Assuntos
Macrófagos , Neoplasias , Sepse , Humanos , Sepse/imunologia , Macrófagos/imunologia , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animais , Linfócitos T/imunologia , Receptores CCR2/metabolismo , Pessoa de Meia-Idade , Camundongos , Idoso , Quimiocinas/metabolismo , Adulto
18.
Adv Drug Deliv Rev ; 209: 115318, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38643840

RESUMO

The communication between cells and their microenvironment represents an intrinsic and essential attribute that takes place in several biological processes, including tissue homeostasis and tissue repair. Among these interactions, inflammation is certainly a central biological response that occurs through cytokines and the crosstalk with their respective receptors. In particular, the interaction between CCL2 and its main receptor, CCR2, plays a pivotal role in both harmful and protective inflammatory states, including cancer-mediated inflammation. The activation of the CCL2/CCR2 axis was shown to dictate the migration of macrophages with immune-suppressive phenotype and to aggravate the progression of different cancer types. In addition, this interaction mediates metastasis formation, further limiting the potential therapeutic outcome of anti-cancer drugs. Attempts to inhibit pharmacologically the CCL2/CCR2 axis have yet to show its anti-cancer efficacy as a single agent, but it sheds light on its role as a powerful tool to selectively alleviate pro-tumorigenic and anti-repair inflammation. In this review, we will elucidate the role of CCL2/CCR2 axis in promoting cancer inflammation by activating the host pro-tumorigenic phenotype. Moreover, we will provide some insight into the potential therapeutic benefit of targeting the CCL2/CCR2 axis for cancer and inflammation using novel delivery systems, aiming to sensitize non-responders to currently approved immunotherapies and offer new combinatory approaches.


Assuntos
Quimiocina CCL2 , Inflamação , Nanomedicina , Neoplasias , Receptores CCR2 , Humanos , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/antagonistas & inibidores , Animais , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos
19.
PLoS Negl Trop Dis ; 18(4): e0012112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669292

RESUMO

Visceral leishmaniasis (VL) is a potentially fatal parasitic infection caused by Leishmania donovani in India. L. donovani is an obligate intracellular protozoan residing mostly in macrophages of the reticuloendothelial system throughout chronic infection. Monocytic phagocytes are critical in the pathogenesis of different forms of leishmaniasis. Subsets of monocytes are distinguished by their surface markers into CD14+CD16- classical monocytes, CD14+CD16+ intermediate monocytes, and CD16++CD14low non-classical monocyte subsets. During cutaneous leishmaniasis (CL), intermediate monocyte are reported to be a source of inflammatory cytokines IL-1ß and TNF, and they express CCR2 attracting them to sites of inflammatory pathology. We examined monocyte subsets in the blood and bone marrow of patients with VL from an endemic site in Bihar, India, and found these contrasted with the roles of monocytes in CL. During VL, intermediate and non-classical CD16+ monocyte subsets expressed instead a non-inflammatory phenotype with low CCR2, high CX3CR1 and low microbicidal oxidant generation, making them more similar to patrolling monocytes than inflammatory cells. Bone marrow CD16+ monocyte subsets expressed a phenotype that might be more similar to the inflammatory subsets of CL, although our inability to obtain bone marrow from healthy donors in the endemic region hampered this interpretation Overall the data suggest that CD16+ intermediate monocyte subsets in VL patients express a phenotypes that contributes to an immunosuppressed pathologic immune state, but in contrast to CL, these do not mediate localized inflammatory responses.


Assuntos
Medula Óssea , Leishmaniose Visceral , Monócitos , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Humanos , Monócitos/imunologia , Índia , Adulto , Masculino , Medula Óssea/parasitologia , Feminino , Receptores de IgG/análise , Receptores de IgG/metabolismo , Leishmania donovani/imunologia , Leishmania donovani/fisiologia , Adulto Jovem , Adolescente , Receptores CCR2/metabolismo , Pessoa de Meia-Idade , Criança , Receptores de Quimiocinas/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo
20.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629806

RESUMO

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Assuntos
Receptor 1 de Quimiocina CX3C , Colo , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocinas , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Colo/microbiologia , Colo/imunologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos Endogâmicos C57BL , Linfonodos/microbiologia , Linfonodos/imunologia , Receptores CCR7/metabolismo , Receptores CCR7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA