Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
J Cancer Res Clin Oncol ; 150(6): 325, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914802

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is a critical global health concern, with existing treatments benefiting only a minority of patients. Recent findings implicate the chemokine ligand 17 (CCL17) and its receptor CCR4 as pivotal players in the tumor microenvironment (TME) of various cancers. This investigation aims to delineate the roles of CCL17 and CCR4 in modulating the tumor's immune landscape, assessing their potential as therapeutic interventions and prognostic markers in HCC. METHODS: 873 HCC patients post-radical surgery from 2008 to 2012 at Zhongshan Hospital, Fudan University were retrospectively examined. These individuals were stratified into a training cohort (n = 354) and a validation cohort (n = 519). Through immunohistochemical analysis on HCC tissue arrays, the expressions of CCL17, CCR4, CD73, CD47, HHLA2, and PD-L1 were quantified. Survival metrics were analyzed using the Cox model, and a prognostic nomogram was devised via R software. RESULTS: The investigation confirmed the presence of CCL17 and CCR4 within the cancerous and stromal compartments of HCC tissues, associating their heightened expression with adverse clinical markers and survival outcomes. Notably, the interplay between CD73 and CCR4 expression in tumor stroma highlighted a novel cellular entity, CCR4 + CD73 + stromal cells, impacting overall and relapse-free survival. A prognostic nomogram amalgamating these immunological markers and clinical variables was established, offering refined prognostic insights and aiding in the management of HCC. The findings suggest that reduced CCR4 and CCR4 + CD73 + cell prevalence may forecast improved outcomes post-TACE. CONCLUSION: This comprehensive evaluation of CCR4, CCL17, and associated markers introduces a nuanced understanding of the HCC immunological milieu, proposing CCR4 + CD73 + stromal cells as critical to HCC pathogenesis and patient stratification.


Assuntos
5'-Nucleotidase , Biomarcadores Tumorais , Carcinoma Hepatocelular , Quimiocina CCL17 , Proteínas Ligadas por GPI , Neoplasias Hepáticas , Receptores CCR4 , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Quimiocina CCL17/metabolismo , Feminino , Masculino , Prognóstico , Receptores CCR4/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , 5'-Nucleotidase/metabolismo , Estudos Retrospectivos , Microambiente Tumoral/imunologia , Proteínas Ligadas por GPI/metabolismo , Idoso , Adulto
2.
Hematol Oncol ; 42(4): e3292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847317

RESUMO

Mogamulizumab is a humanized antibody targeting CC chemokine receptor 4 (CCR4). This post-marketing surveillance was conducted in Japan as a regulatory requirement from 2014 to 2020 to ensure the safety and effectiveness of mogamulizumab in patients with relapsed or refractory (r/r) CCR4-positive peripheral T-cell lymphoma (PTCL) or r/r cutaneous T-cell lymphoma (CTCL). Safety and effectiveness data were collected for up to 31 weeks after treatment initiation. A total of 142 patients were registered; safety was evaluated in 136 patients. The median number of doses was 8.0 (range, 1-18). The main reasons for treatment termination were insufficient response (22.1%) and adverse events (13.2%). The frequency of any grade adverse drug reaction was 57.4%, including skin disorders (26.5%), infections and immune system disorders (16.2%), and infusion-related reactions (13.2%). Graft-versus-host disease, grade 2, developed in one of two patients who underwent allogeneic-hematopoietic stem cell transplantation after receiving mogamulizumab. Effectiveness was evaluated in 131 patients (103 with PTCL; 28 with CTCL). The best overall response rate was 45.8% (PTCL, 47.6%; CTCL, 39.3%). At week 31, the survival rate was 69.0% (95% confidence interval, 59.8%-76.5%) [PTCL, 64.4% (54.0%-73.0%); CTCL, 90.5% (67.0%-97.5%)]. Safety and effectiveness were comparable between patients <70 and ≥ 70 years old and between those with relapsed and refractory disease. The safety and effectiveness of mogamulizumab for PTCL and CTCL in the real world were comparable with the data reported in previous clinical trials. Clinical Trial Registration.


Assuntos
Anticorpos Monoclonais Humanizados , Linfoma Cutâneo de Células T , Linfoma de Células T Periférico , Receptores CCR4 , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Receptores CCR4/antagonistas & inibidores , Adulto , Japão , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Linfoma de Células T Periférico/tratamento farmacológico , Idoso de 80 Anos ou mais , Vigilância de Produtos Comercializados , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Adulto Jovem , Resistencia a Medicamentos Antineoplásicos
3.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924414

RESUMO

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Assuntos
Tecido Adiposo Branco , Quimiocina CCL22 , Metabolismo Energético , Linfonodos , Macrófagos , Termogênese , Quimiocina CCL22/metabolismo , Animais , Macrófagos/metabolismo , Camundongos , Humanos , Linfonodos/metabolismo , Tecido Adiposo Branco/metabolismo , Masculino , Receptores CCR4/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Eosinófilos/metabolismo , Feminino , Adipócitos Bege/metabolismo
4.
Blood Adv ; 8(10): 2384-2397, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489234

RESUMO

ABSTRACT: Sézary syndrome (SS) is an aggressive leukemic expansion of skin-derived malignant CD4+ T cells. Drug monotherapy often results in disease relapse because of the heterogenous nature of malignant CD4+ T cells, but how therapies can be optimally combined remains unclear because of limitations in understanding the disease pathogenesis. We identified immunologic transitions that interlink mycosis fungoides with SS using single-cell transcriptome analysis in parallel with high-throughput T-cell receptor sequencing. Nascent peripheral CD4+ T cells acquired a distinct profile of transcription factors and trafficking receptors that gave rise to antigenically mature Sézary cells. The emergence of malignant CD4+ T cells coincided with the accumulation of dysfunctional monocytes with impaired fragment crystallizable γ-dependent phagocytosis, decreased responsiveness to cytokine stimulation, and limited repertoire of intercellular interactions with Sézary cells. Type I interferon supplementation when combined with a monoclonal antibody targeting the chemokine receptor type 4 (CCR4), unleashed monocyte induced phagocytosis and eradication of Sézary cells in vitro. In turn, coadministration of interferon-α with the US Food and Drug Administration-approved anti-CCR4 antibody, mogamulizumab, in patients with SS induced marked depletion of peripheral malignant CD4+ T cells. Importantly, residual CD4+ T cells after Sézary cell ablation lacked any immunologic shifts. These findings collectively unveil an auxiliary role for augmenting monocytic activity during mogamulizumab therapy in the treatment of SS and underscore the importance of targeted combination therapy in this disease.


Assuntos
Interferon Tipo I , Monócitos , Receptores CCR4 , Síndrome de Sézary , Humanos , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Interferon Tipo I/metabolismo , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
5.
Nat Commun ; 15(1): 2340, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491013

RESUMO

Protein synthesis is frequently deregulated during tumorigenesis. However, the precise contexts of selective translational control and the regulators of such mechanisms in cancer is poorly understood. Here, we uncovered CNOT3, a subunit of the CCR4-NOT complex, as an essential modulator of translation in myeloid leukemia. Elevated CNOT3 expression correlates with unfavorable outcomes in patients with acute myeloid leukemia (AML). CNOT3 depletion induces differentiation and apoptosis and delayed leukemogenesis. Transcriptomic and proteomic profiling uncovers c-MYC as a critical downstream target which is translationally regulated by CNOT3. Global analysis of mRNA features demonstrates that CNOT3 selectively influences expression of target genes in a codon usage dependent manner. Furthermore, CNOT3 associates with the protein network largely consisting of ribosomal proteins and translation elongation factors in leukemia cells. Overall, our work elicits the direct requirement for translation efficiency in tumorigenesis and propose targeting the post-transcriptional circuitry via CNOT3 as a therapeutic vulnerability in AML.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Fatores de Transcrição , Humanos , Carcinogênese/genética , Diferenciação Celular , Leucemia Mieloide Aguda/genética , Receptores CCR4 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nat Struct Mol Biol ; 31(5): 826-834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374449

RESUMO

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.


Assuntos
Poli A , Estabilidade de RNA , RNA Mensageiro , Humanos , Cinética , Poli A/metabolismo , Poli A/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Adenosina/metabolismo , Receptores CCR4/metabolismo , Receptores CCR4/genética , Exorribonucleases/metabolismo , Exorribonucleases/química , RNA Nucleotidiltransferases
9.
Eur J Pharmacol ; 968: 176408, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38367684

RESUMO

We have developed a diphtheria toxin-based recombinant human CCR4-IL2 bispecific immunotoxin (CCR4-IL2-IT) for targeted therapy of cutaneous T-cell lymphoma (CTCL). CCR4-IL2-IT demonstrated superior efficacy in an immunodeficient mouse CTCL model. Recently, we have compared the in vivo efficacy of CCR4-IL2-IT versus Brentuximab (FDA approved leading drug in CTCL market) in the same immunodeficient mouse CTCL model. The comparison demonstrated that CCR4-IL2-IT was significantly more effective than Brentuximab. In this study, we have performed non-GLP (Good Laboratory Practice) toxicology, pharmacokinetics, immunogenicity studies of CCR4-IL2-IT in both rats and minipigs. CCR4-IL2-IT demonstrated excellent safety profiles in both rats and minipigs. The maximum tolerated dose of CCR4-IL2-IT was determined as 0.4 mg/kg in both rats and minipigs. Complete blood count and chemistry analysis did not show significant difference for all measured parameters between the blood samples of pre-injection versus post-injection from the five-day toxicology studies of CCT4-IL2-IT in both rats and minipigs. Histology analysis did not show difference between the PBS treatment group versus CCR4-IL2-IT treatment group at 50 µg/kg in both rats and minipigs. The half-life of CCR4-IL2-IT was determined as about 45 min in rats and 30 min in minipigs. The antibodies against CCR4-IL2-IT were detected in about two weeks after CCR4-IL2-IT treatment. CCR4-IL2-IT did not induce cytokine release syndrome in a peripheral blood mononuclear cell derived humanized mouse model. The depletion of CCR4+ cell and CD25+ cell (two target cell populations of CCR4-IL2-IT) was observed in minipigs. The excellent safety profile promoted us to further develop CCR4-IL2-IT towards clinical trials.


Assuntos
Antineoplásicos , Imunotoxinas , Camundongos , Ratos , Humanos , Animais , Suínos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Porco Miniatura , Interleucina-2 , Leucócitos Mononucleares , Receptores CCR4 , Anticorpos Monoclonais/farmacologia , Camundongos SCID , Antineoplásicos/uso terapêutico
10.
Eur J Cancer ; 198: 113521, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171115

RESUMO

PURPOSE: Our previous study revealed that elevated C-C motif chemokine ligand 2 (CCL2) secretion by irradiated cancer cells recruited C-C motif chemokine receptor 2 (CCR2)-positive myeloid cells and polarized M2-type tumor-associated macrophages (TAMs), promoting lung metastasis in an established mouse model. This study investigated the impact of CCL2 and TAMs on adaptive immunity. METHODS: We assessed the influence of CCL2 and TAMs on adaptive immunity through two ectopic allograft mouse models constructed with MB49 bladder cancer cells and Lewis lung carcinoma cells. Both models exhibited delayed primary tumor growth following radiation therapy (RT), but RT promoted the development of pulmonary metastases in C57BL/6 mice. Additionally, we employed a direct coculture system to investigate the interaction between macrophages and target cells in the context of adaptive immunity. RESULTS: C-C motif chemokine receptor 4 (CCR4)-positive regulatory T cells (Tregs) were recruited to the postirradiated tumor microenvironment (TME). Utilizing a CCR4 antagonist to inhibit CCL2-CCR4 activation reversed the infiltration of CCR4 + Tregs and reduced the incidence of pulmonary metastases. In addition, a positive feedback loop between M2-type TAMs and Tregs was observed. The combined blockade of the CCL2-CCR4 and CCL2-CCR2 signaling pathways further decreased the risk of RT-promoted lung metastasis. CONCLUSION: The recruitment of CCR4 + Tregs to the postirradiated TME increases the metastatic potential of tumor cells through increased interactions with M2-type TAMs. A significant reduction in post-RT lung metastases in ectopic mouse models was achieved by disrupting the recruitment of both CCR4 + Tregs and CCR2 + myeloid cells, which are TAM precursors.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Macrófagos Associados a Tumor , Quimiocinas CC , Linfócitos T Reguladores , Camundongos Endogâmicos C57BL , Carcinoma Pulmonar de Lewis/radioterapia , Receptores de Quimiocinas , Neoplasias Pulmonares/radioterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Receptores CCR4
11.
Arch Pathol Lab Med ; 148(4): 471-475, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522711

RESUMO

CONTEXT.­: Unlike B-cell acute lymphoblastic leukemia/lymphoma (ALL/LBL), there have been few therapeutic advances in T-cell ALL (T-ALL)/LBL, an aggressive ALL/LBL subtype. OBJECTIVE.­: To perform a focused tissue array study to elucidate tumor markers of therapeutic potential in T-ALL/LBL. DESIGN.­: Using immunohistochemistry, we evaluated expression of leukemic antigens of interest, specifically CC-chemokine receptor 4 (CCR4), among others, on available remnant diagnostic material, including tumor tissue slides obtained from formalin-fixed, paraffin-embedded preserved tissues. RESULTS.­: Our analysis identified, for the first time, expression of CCR4 in T-ALL/LBL in 11 of 27 cases (40.7%) and confirmed common expression of BCL2, CD38, and CD47, as reported previously. We also identified the expression of CD123 in 4 of 26 cases (15.4%), whereas BCL6 and PDL1 were expressed in a small number of T-ALL/LBL cases. The potential novel target CCR4 was significantly more common in the Pre/Pro-T immunophenotypic subtype, 6 of 9 (66.7%, P = .01). No additional differences in clinical and epidemiologic variables were noted among positive or negative CCR4 cases. CONCLUSIONS.­: These findings support preclinical and clinical testing of therapies targeting CCR4, CD47, BCL2, CD38, and CD123 in T-ALL/LBL, and may help guide the development of targeted clinical trials in T-ALL/LBL, a rare disease in urgent need of novel therapies.


Assuntos
Linfoma de Células B , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Antígeno CD47 , Receptores CCR4 , Subunidade alfa de Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/patologia , Proteínas Proto-Oncogênicas c-bcl-2
13.
Cell Death Dis ; 14(9): 582, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658050

RESUMO

Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.


Assuntos
Neoplasias Colorretais , Chaperona BiP do Retículo Endoplasmático , Humanos , Macrófagos Associados a Tumor , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fluoruracila/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fator 6 Ativador da Transcrição , Receptores CCR4 , Quimiocinas CXC
14.
Blood Adv ; 7(14): 3416-3430, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058474

RESUMO

A challenge when targeting T-cell lymphoma with chimeric antigen receptor (CAR) T-cell therapy is that target antigens are often shared between T cells and tumor cells, resulting in fratricide between CAR T cells and on-target cytotoxicity on normal T cells. CC chemokine receptor 4 (CCR4) is highly expressed in many mature T-cell malignancies, such as adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell lymphoma (CTCL), and has a unique expression profile in normal T cells. CCR4 is predominantly expressed by type-2 and type-17 helper T cells (Th2 and Th17) and regulatory T cells (Treg), but it is rarely expressed by other T helper (Th) subsets and CD8+ cells. Although fratricide in CAR T cells is generally thought to be detrimental to anticancer functions, in this study, we demonstrated that anti-CCR4 CAR T cells specifically depleted Th2 and Tregs, while sparing CD8+ and Th1 T cells. Moreover, fratricide increased the percentage of CAR+ T cells in the final product. CCR4-CAR T cells were characterized by high transduction efficiency, robust T-cell expansion, and rapid fratricidal depletion of CCR4-positive T cells during CAR transduction and expansion. Furthermore, mogamulizumab-based CCR4-CAR T cells induced superior antitumor efficacy and long-term remission in mice engrafted with human T-cell lymphoma cells. In summary, CCR4-depleted anti-CCR4 CAR T cells are enriched in Th1 and CD8+ T cells and exhibit high antitumor efficacy against CCR4-expressing T-cell malignancies.


Assuntos
Linfoma Cutâneo de Células T , Linfoma de Células T Periférico , Linfoma de Células T , Neoplasias Cutâneas , Adulto , Humanos , Animais , Camundongos , Receptores CCR4/metabolismo , Linfócitos T Reguladores
15.
Int Immunopharmacol ; 118: 110078, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001380

RESUMO

BACKGROUND: Chemokines are critical players in the local immune responses to tumors. CCL17 (thymus and activation-regulated chemokine, TARC) and CCL22 (macrophage-derived chemokine, MDC) can attract CCR4-bearing cells involving the immune landscape of cancer. However, their direct roles and functional states in tumors remain largely unclear. METHODS: We analyzed the lymphoma-related scRNA-seq and bulk RNA-seq datasets and identified the CCL17/CCL22-CCR4 axis as the unique participant of the tumor microenvironment. Then we edited the A20 lymphoma cell line to express CCL17 and CCL22 and assessed their function using three mouse models (Balb/C mouse, Nude mouse, and NSG mouse). In addition, we retrospectively checked the relationship between the CCL17/CCL22-CCR4 axis and the survival rates of cancer patients. RESULTS: The active CCL17/CCL22-CCR4 axis is a distinctive feature of the Hodgkin lymphoma microenvironment. CCR4 is widely expressed in immune cells but highly exists on the surface of NK, NKT, and Treg cells. The tumor model of Balb/C mice showed that CCL17 acts as an anti-tumor chemokine mediated by activated T cell response. In addition, the tumor model of Nude mice showed that CCL17 recruits NK cells for inhibiting lymphoma growth and enhances the NK-cDC1 interaction for resisting IL4i1-mediated immunosuppression. Interestingly, CCL17-mediated antitumor immune responses depend on lymphoid lineages but not mainly myeloid ones. Furthermore, we found CCL17/CCL22-CCR4 axis cannot be regarded as biomarkers of poor prognosis in most cancer types from the TCGA database. CONCLUSION: We provided direct evidence of antitumor functions of CCL17 mediated by the recruitment of conventional T cells, NKT cells, and NK cells. Clinical survival outcomes of target gene (CCL17, CCL22, and CCR4) expression also identified that CCL17/CCL22-CCR4 axis is not a marker of poor prognosis.


Assuntos
Quimiocina CCL17 , Quimiocinas , Humanos , Camundongos , Animais , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Camundongos Nus , Estudos Retrospectivos , Linfócitos/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo , L-Aminoácido Oxidase
16.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834542

RESUMO

Natural killer (NK) cells are a subset of lymphocytes that offer great potential for cancer immunotherapy due to their natural anti-tumor activity and the possibility to safely transplant cells from healthy donors to patients in a clinical setting. However, the efficacy of cell-based immunotherapies using both T and NK cells is often limited by a poor infiltration of immune cells into solid tumors. Importantly, regulatory immune cell subsets are frequently recruited to tumor sites. In this study, we overexpressed two chemokine receptors, CCR4 and CCR2B, that are naturally found on T regulatory cells and tumor-resident monocytes, respectively, on NK cells. Using the NK cell line NK-92 as well as primary NK cells from peripheral blood, we show that genetically engineered NK cells can be efficiently redirected using chemokine receptors from different immune cell lineages and migrate towards chemokines such as CCL22 or CCL2, without impairing the natural effector functions. This approach has the potential to enhance the therapeutic effect of immunotherapies in solid tumors by directing genetically engineered donor NK cells to tumor sites. As a future therapeutic option, the natural anti-tumor activity of NK cells at the tumor sites can be increased by co-expression of chemokine receptors with chimeric antigen receptors (CAR) or T cell receptors (TCR) on NK cells can be performed in the future.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR4/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores CCR2
17.
Sci Rep ; 12(1): 21678, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522365

RESUMO

Regulatory T-cells (Tregs) play a major role in suppressing anti-tumor immune responses. Mogamulizumab, an anti-CC chemokine receptor type 4 (CCR4) monoclonal antibody, depletes effector Tregs (eTregs). However, the clinical efficacy of mogamulizumab was limited in phase Ia/Ib studies for solid tumors (NCT01929486); the finding suggests that mogamulizumab may also deplete beneficial CCR4+CD8+ T-cells in patients. Therefore, we focused on CTLs and aimed to identify a way to protect CCR4+ CTLs. Here, we evaluated the association of CCR4 expression in cytotoxic T-lymphocytes (CTLs) with antigen and cytokine stimulations and kinase inhibition using cytomegalovirus antigen instead of tumor antigen. CCR4 expression in CTLs was induced by antigen stimulation (mean 3.14-29.0%), enhanced by transforming growth factor-ß1 (TGF-ß1) (mean 29.0-51.2%), and downregulated by trametinib with (mean 51.2-11.4%) or without TGF-ß1 treatment (mean 29.0-6.98%). Phosphorylation of ERK in CD8+ T-cells was suppressed by trametinib. Regarding the effect on immunological function of CTL, trametinib reduced cytokine production but not affected cytotoxicity. Importantly, trametinib alleviated CTL reduction by anti-CCR4 antibody without affecting eTreg depletion because CCR4 expression in eTregs was not downregulated. In conclusion, combination therapy with trametinib may improve the clinical efficacy of mogamulizumab.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Citotóxicos/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Receptores CCR4/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo
18.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555280

RESUMO

Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.


Assuntos
Esclerose Múltipla , Receptores CCR4 , Humanos , Quimiocinas
19.
Monoclon Antib Immunodiagn Immunother ; 41(4): 214-220, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35917564

RESUMO

C-C chemokine receptor 4 (CCR4) is one of G protein-coupled receptors, and interacts with chemokines, CCL17 and CCL22. CCR4 is expressed on T cells such as helper T type 2 cells, regulatory T cells, and interleukin 17-producing T helper cells. CCR4 is associated with T cells trafficking into the tumor microenvironment, and is associated with tumor progression or metastasis. Therefore, CCR4 may be a potential therapeutic option for T cell malignancies. C4Mab-1 is a novel anti-mouse CCR4 (mCCR4) monoclonal antibody produced by mCCR4 N-terminal peptide immunization. C4Mab-1 is useful for flow cytometric analysis. In this study, we conducted the epitope mapping of C4Mab-1 using enzyme-linked immunosorbent assay (ELISA) and peptide blocking assay. The result of ELISA indicated that Thr7, Asp8, and Gln11 of mCCR4 are the critical amino acids for the C4Mab-1 binding. Furthermore, peptide blocking assay by flow cytometry showed that Thr7, Asp8, and Gln11 of mCCR4 are essential for C4Mab-1 binding to mCCR4-overexpressed Chinese hamster ovary-K1 (CHO/mCCR4) cells, and Val6, Thr9, and Thr10 are involved in the C4Mab-1 binding to CHO/mCCR4 cells. These results indicate that the critical binding epitope of C4Mab-1 includes Thr7, Asp8, and Gln11 of mCCR4.


Assuntos
Anticorpos Monoclonais , Quimiocina CCL17 , Animais , Células CHO , Quimiocina CCL22 , Cricetinae , Cricetulus , Epitopos , Receptores CCR4
20.
Int Immunol ; 34(12): 635-642, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35997787

RESUMO

T helper 17 (Th17) cells express CC chemokine receptor 4 (CCR4) and secrete cytokines such as interleukin-17A (IL-17A) and granulocyte macrophage colony-stimulating factor (GM-CSF), while dendritic cells (DCs) produce CC chemokine ligand 22 (CCL22), a CCR4 ligand, upon stimulation with GM-CSF. Th17 cells are known to play a critical role in the pathogenesis of rheumatoid arthritis (RA). CCL22 has also been shown to be up-regulated in the synovial tissues of RA patients. Here, we investigated the role of CCR4 in collagen-induced arthritis (CIA), a mouse model of RA. DBA/1J mice efficiently developed CIA as shown by erythema, paw swelling, joint rigidity, and joint destruction. Th17 cells were increased in the arthritic joints and regional lymph nodes (LNs) of CIA mice. A fraction of Th17 cells were also shown to produce GM-CSF. On the other hand, we observed no significant increases of Th2 cells or Treg cells, the T cell subsets also known to express CCR4, in these tissues. We further observed clusters of CCR4-expressing memory Th17 cells and CCL22-producing DCs in the regional LNs of CIA mice, supporting the role of the CCR4-CCL22 axis in the expansion of Th17 cells in the regional LNs. Compound 22, a CCR4 inhibitor, ameliorated the disease severity with reduction of Th17 cells in the arthritic joints and regional LNs and Th17-DC clusters in the regional LNs. We further confirmed that CCR4-deficient mice in the C57BL/6J background were highly resistant to CIA induction compared with wild-type mice. Collectively, CCR4 contributes to the pathogenesis of CIA and may thus represent a new therapeutic target for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Receptores CCR4/fisiologia , Células Th17/patologia , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Artrite Experimental/patologia , Quimiocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA