Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2338965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590799

RESUMO

Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Glioma/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Receptores CCR2 , Receptores CCR5/uso terapêutico
2.
Oncoimmunology ; 9(1): 1802176, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32923162

RESUMO

Our previous studies revealed tumor-infiltrating neutrophils (TINs) played dichotomous roles in different cancers, indicating diverse TINs subtypes might orchestrate anti-tumor immunity or immune evasion, respectively. This study aimed to investigate the clinical significance and immune characteristics of CCR5+TINs in muscle-invasive bladder cancer (MIBC). Two hundred and fifty-seven MIBC patients from two clinical centers and 95 fresh MIBC samples were included. CCR5+TINs were stained by immunohistochemistry, and the relationship between patients' clinic-pathological features and prognosis was evaluated, respectively. Immunohistochemistry and flow cytometry were applied to assess the immune features of CCR5+TINs and their correlations with other immune cells. In vitro study was conducted to estimate immune characteristics of CCR5+TINs and their predictive potential for pembrolizumab therapeutic response. In the two MIBC cohorts, we found that high CCR5+TINs infiltration could predict better overall survival (OS, P= .032, 0.039) and recurrence-free survival (RFS, P= .001, 0.006) and be associated with survival benefit from adjuvant chemotherapy (ACT, P< .001 for OS and P= .022 for RFS, respectively) in merely pT2N0 MIBC. Maraviroc could partly reduce IFN-γ secretion by CCR5+TINs (P< .001). CCR5+TINs correlated with higher expression of effector molecules within CD8+T cells. Notably, pembrolizumab treatment could only elevate the apoptosis status of tumor cells in the CCR5+TINs high subgroup (P < .001), other than CCR5+TINs low subgroup (P= .481). Our results indicate that CCR5+TINs could prime anti-tumor immune response through autonomous IFN-γ release, thus leading to favorable prognosis and superior therapeutic response to ACT and immunotherapy in MIBC.


Assuntos
Neoplasias da Bexiga Urinária , Quimioterapia Adjuvante , Humanos , Músculos , Neutrófilos , Prognóstico , Receptores CCR5/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
Protein Expr Purif ; 89(2): 124-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23542826

RESUMO

Cysteine-cysteine chemokine receptor type 5 (CCR5) is an important co-receptor for human immunodeficiency virus (HIV) infection and CCR5 neutralizing agents have proven efficient in patients suffering from HIV infection. Here, we expressed and purified various CCR5 vaccines named rCCR5, PADRE-rCCR5, GST-C1 and GST-C2 composed of different epitopes of CCR5. Results showed that vaccines containing multiple epitopes (rCCR5 and PADRE-rCCR5) induced stronger immune responses than single-epitope ones (GST-C1 and GST-C2). In addition, the elicited antibodies can specifically bind CCR5(+) U937 but not CCR5(-) Wish cells. These results demonstrate that the CCR5 vaccines are useful for further research, especially for the in vitro preclinical evaluation of their potential as biological CCR5 neutralizing agents.


Assuntos
Vacinas contra a AIDS/genética , Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Receptores CCR5/genética , Receptores CCR5/uso terapêutico , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Células 3T3 BALB , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Epitopos/uso terapêutico , Escherichia coli/genética , Infecções por HIV/imunologia , Humanos , Camundongos , Dados de Sequência Molecular , Plasmídeos/genética , Receptores CCR5/química , Receptores CCR5/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico
7.
Mol Ther ; 12(5): 900-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16115802

RESUMO

Combinatorial therapies for the treatment of HIV-1 infection have proven to be effective in reducing patient viral loads and slowing the progression to AIDS. We have developed a series of RNA-based inhibitors for use in a gene therapy-based treatment for HIV-1 infection. The transcriptional units have been inserted into the backbone of a replication-defective lentiviral vector capable of transducing a wide array of cell types, including CD34+ hematopoietic progenitor cells. The combinatorial therapeutic RNA vector harbors a U6 Pol III promoter-driven short hairpin RNA (shRNA) targeting the rev and tat mRNAs of HIV-1, a U6 transcribed nucleolar-localizing TAR RNA decoy, and a VA1-derived Pol III cassette that expresses an anti-CCR5 ribozyme. Each of these therapeutic RNAs targets a different gene product and blocks HIV infection by a distinct mechanism. Our results demonstrate that the combinatorial vector suppresses HIV replication long term in a more-than-additive fashion relative to the single shRNA or double shRNA/ribozyme or decoy combinations. Our data demonstrate the validity and efficacy of a combinatorial RNA-based gene therapy for the treatment of HIV-1 infection.


Assuntos
DNA Polimerase III/genética , Vetores Genéticos , Infecções por HIV/terapia , HIV-1/genética , Lentivirus/genética , Receptores CCR5/uso terapêutico , Células Cultivadas , Expressão Gênica , Técnicas de Transferência de Genes , Genes tat , Infecções por HIV/genética , Humanos , Linfócitos , Regiões Promotoras Genéticas , RNA Catalítico , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA