Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
Bioengineered ; 13(1): 624-633, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898375

RESUMO

Ovarian cancer (OC) is the main type of cancer that affects the female reproductive system and has a high morbidity and mortality rate. This study aimed to explore the regulatory effect of the chromosomal region maintenance 1 (CRM1)-survivin axis on the progression of OC. Ovarian cancer cells were transfected with pcDNA3.1-survivin and short hairpin RNA (sh)-CRM1. Cell proliferation was analyzed by cell counting kit-8 (CCK8), 5-ethynyl-2´-deoxyuridine (EdU) staining, and colony formation assays. Apoptosis was detected using flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to analyze the expression of RNA and protein, respectively. qRT-PCR and prognostic correlation analyses revealed that CRM1 is highly expressed in OC cells and related to survival. The results of qRT-PCR, CCK8, colony formation test, EdU staining, flow cytometry, and Western blotting showed that CRM1 silencing inhibited the proliferation and colony formation of OVCAR 3 and SKOV3 cells and promoted cell apoptosis by promoting Caspase-3 activation. Survivin was positively regulated by CRM1 and promoted the development of OC. The results of the rescue experiment showed that overexpression of survivin reversed the inhibitory effect of CRM1 knockdown on the proliferation of ovarian cancer cells and its inhibitory effect on apoptosis. Our findings confirm the role of the CRM1-survivin signal transduction axis in OC by regulating the proliferation and apoptosis of OC cells, and may thus serve as a potential therapeutic target for OC.


Assuntos
Apoptose , Proliferação de Células , Regulação da Expressão Gênica , Carioferinas/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias Ovarianas/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais , Linhagem Celular Tumoral , Feminino , Humanos , Carioferinas/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
2.
Front Immunol ; 12: 753681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819934

RESUMO

The mall heterodimer partner (SHP) plays an important regulatory role in mammal inflammation. The main objective of this study was to investigate the response of SHP to inflammatory stimulation and its underlying mechanism. The shp gene from large yellow croakers, was cloned, and this gene is mainly expressed in the liver and intestine. Lipopolysaccharide (LPS) stimulation induced the mRNA expression and protein level of SHP in macrophages of large yellow croakers. Overexpression of SHP significantly decreased mRNA expression of tnfα, il-1ß, il-6 and cox2 induced by LPS treatment in macrophages. LPS stimulation increased the phosphorylation level of Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in macrophages. AMPK inhibitor treatment significantly decreased the expression of SHP induced by LPS while AMPK activator significantly increased the expression of SHP. The nuclear factor-erythroid 2-related factor 2 (NRF2) increased the promoter activity of SHP in large yellow croakers and the level of nuclear NRF2 was increased by LPS stimulation and AMPK activation. NRF2 inhibitor treatment significantly decreased mRNA expression of shp induced by LPS and AMPK activator. In conclusion, LPS can induce SHP expression by activating the AMPK-NRF2 pathway while SHP could negatively regulate LPS-induced inflammation in large yellow croakers. This study may be benefit to the development of immunology of marine fish and provide new ideas for inflammation-related diseases.


Assuntos
Adenilato Quinase/fisiologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/fisiologia , Perciformes/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Especificidade de Órgãos , Perciformes/genética , Filogenia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vertebrados/genética
3.
Eur J Pharmacol ; 890: 173653, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068587

RESUMO

Chronic alcohol assumption has been recognized as a major cause of alcoholic liver disease (ALD), which ranges from alcoholic steatohepatitis to fibrosis and hepatocellular carcinoma. Alcoholic liver disease has become the leading cause of liver-related health problem in the world. Herewith, effective therapeutic strategy for alcoholic liver disease is necessary. Yangonin (Yan), a bioactive compound extract from Kava, has been reported to exert hepatoprotective effects via Farnesoid X receptor (FXR) activation. The present study aims to investigate whether Yan ameliorated the ethanol-stimulated liver injury and further to elucidate the mechanisms in vivo and in vitro. Yan improved cell viabilities via cell count kit-8 (CCK-8) methods and obviously reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and total triglyceride (TG) levels. We detected miR-194 levels in ethanol-induced LO2 cells and male C57BL/6 mice by quantitative real-time PCR. Also, the effects of miR-194 on modulating cellular senescence via targeting FXR were further verified. The cellular senescence markers p16, p21, telomerase activity and senescence-related ß-galactosidase (SA-ß-gal) were evaluated by quantitative real-time PCR and Western blot. Also, LO2 cells or liver tissues were stained with special primary antibodies and 4',6'-Diamidino-2-phenylindole (DAPI). The cell cycle was detected by flow cytometry. We observed that Yan significantly inhibited ethanol-induced cellular senescence via FXR activation (P < 0.05). Our results demonstrate that Yan significantly reduced the cellular markers p16, p21 and Hmga1 expression and inhibited the cell cycle arrest (P < 0.05). MiR-194 was upregulated in the alcoholic liver disease, which was significantly suppressed by Yan (P < 0.05). Moreover, miR-194 mimic inhibited FXR expression in vitro. In summary, these aggregated data demonstrate that Yan alleviates chronic ethanol-induced liver injury through inhibition of cellular senescence via regulating miR-194/FXR axis.


Assuntos
Senescência Celular/efeitos dos fármacos , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , MicroRNAs/biossíntese , Pironas/farmacologia , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Linhagem Celular , Senescência Celular/fisiologia , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Pironas/uso terapêutico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores
4.
Clin Transl Oncol ; 23(7): 1292-1303, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33210236

RESUMO

BACKGROUND: Breast cancer (BRCA) is a malignant cancer that threatened the life of female with unsatisfactory prognosis. The aim of this study was to identify prognostic nuclear receptors (NRs) signature of BRCA. METHODS: BRCA patient samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Consensus clustering analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed to evaluate, select NRs as prognostic factors and build Risk Score model. GSEA analysis was explored to check signaling differences between High- and Low-Risk group. Nomogram model basing on age and Risk Score was established to predict the 1-, 3- and 5-year survival. Model performance was assessed by a time-dependent receiver operating characteristic (ROC) curve and calibration plot. CIBERSORT, ESTIMATE and TIMER algorithm were introduced to evaluate the immune landscape. RESULTS: NR3C1, NR4A3, THRA, RXRG, NR2F6, NR1D2 and RORB were optimized as a prognostic signature for BRCA. This seven-NR-based Risk Score could effectively predict overall survival status. The area under the curve (AUC) of 1-, 3- and 5-year overall survival are 0.702, 0.734 and 0.722 in TCGA training cohort, and 0.630, 0.721 and 0.823 in GEO validation cohort, respectively. Calibration plot demonstrated satisfactory agreement between predictive and observed outcomes. Nomogram model worked well on predicting survival probabilities. Multiple cancer-related pathways were highly enriched in High-Risk group. High- and Low-Risk groups showed significant differed immune cell infiltration. There exists an obvious connection between Risk Score and immune checkpoints LAG3, PD1 and TIM3. CONCLUSION: The seven-NR-based Risk Score represents a promising signature for estimating overall survival in patients with BRCA, and is correlated with the immune microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Receptores Citoplasmáticos e Nucleares/biossíntese , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores Citoplasmáticos e Nucleares/genética , Taxa de Sobrevida
5.
Front Endocrinol (Lausanne) ; 11: 568375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117284

RESUMO

The estrogen receptor alpha (ERα) is a ligand-activated transcription factor whose activity is modulated by its interaction with multiple protein complexes. In this work, we have identified the protein interferon alpha inducible protein 27 (IFI27/ISG12) as a novel ERα-associated protein. IFI27/ISG12 transcription is regulated by interferon and estradiol and its overexpression is associated to reduced overall survival in ER+ breast cancer patients but its function in mammary gland tissue remains elusive. In this study we showed that overexpression of IFI27/ISG12 in breast cancer cells attenuates ERα transactivation activity and the expression of ERα-dependent genes. Our results demonstrated that IFI27/ISG12 overexpression in MCF-7 cells reduced their proliferation rate in 2-D and 3-D cell culture assays and impaired their ability to migrate in a wound-healing assay. We show that IFI27/ISG12 downregulation of ERα transactivation activity is mediated by its ability to facilitate the interaction between ERα and CRM1/XPO1 that mediates the nuclear export of large macromolecules to the cytoplasm. IFI27/ISG12 overexpression was shown to impair the estradiol-dependent proliferation and tamoxifen-induced apoptosis in breast cancer cells. Our results suggest that IFI27/ISG12 may be an important factor in regulating ERα activity in breast cancer cells by modifying its nuclear versus cytoplasmic protein levels. We propose that IFI27/ISG12 may be a potential target of future strategies to control the growth and proliferation of ERα-positive breast cancer tumors.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo/fisiologia , Receptor alfa de Estrogênio/biossíntese , Carioferinas/biossíntese , Proteínas de Membrana/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Ativação Transcricional/fisiologia , Neoplasias da Mama/genética , Bases de Dados Genéticas , Regulação para Baixo/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Carioferinas/genética , Células MCF-7 , Proteínas de Membrana/genética , Receptores Citoplasmáticos e Nucleares/genética , Tamoxifeno/farmacologia , Ativação Transcricional/efeitos dos fármacos , Proteína Exportina 1
6.
Dev Dyn ; 249(10): 1172-1181, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406963

RESUMO

Spatially restricted expression of genes by global circulating inducers (hormones, secreted proteins, growth factors, neuromodulators, etc.) was a prerequisite for the evolution of animals. Far from a random occurrence, it is a systematically occurring, certain event, implying that specific information is invested for it to happen. In this minireview, we show for the first time that the expression and regionalization takes place at the level of receptors via a neural mechanism and make an attempt to reconstruct the causal chain from neural signaling to expression of nuclear receptors.


Assuntos
Receptores Citoplasmáticos e Nucleares/biossíntese , Processamento Alternativo , Animais , Encéfalo/metabolismo , Borboletas , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glucocorticoides/metabolismo , Humanos , Manduca , Camundongos , Sistema Nervoso , Neurônios/metabolismo , Isoformas de Proteínas , Transdução de Sinais
7.
J Biol Chem ; 295(20): 7003-7017, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32273342

RESUMO

Cholelithiasis is one of the most prevalent gastroenterological diseases and is characterized by the formation of gallstones in the gallbladder. Both clinical and preclinical data indicate that obesity, along with comorbidity insulin resistance, is a predisposing factor for cholelithiasis. Forkhead box O1 (FoxO1) is a key transcription factor that integrates insulin signaling with hepatic metabolism and becomes deregulated in the insulin-resistant liver, contributing to dyslipidemia in obesity. To gain mechanistic insights into how insulin resistance is linked to cholelithiasis, here we determined FoxO1's role in bile acid homeostasis and its contribution to cholelithiasis. We hypothesized that hepatic FoxO1 deregulation links insulin resistance to impaired bile acid metabolism and cholelithiasis. To address this hypothesis, we used the FoxO1LoxP/LoxP-Albumin-Cre system to generate liver-specific FoxO1-knockout mice. FoxO1-knockout mice and age- and sex-matched WT littermates were fed a lithogenic diet, and bile acid metabolism and gallstone formation were assessed in these animals. We showed that FoxO1 affected bile acid homeostasis by regulating hepatic expression of key enzymes in bile acid synthesis and in biliary cholesterol and phospholipid secretion. Furthermore, FoxO1 inhibited hepatic expression of the bile acid receptor farnesoid X receptor and thereby counteracted hepatic farnesoid X receptor signaling. Nonetheless, hepatic FoxO1 depletion neither affected the onset of gallstone disease nor impacted the disease progression, as FoxO1-knockout and control mice of both sexes had similar gallstone weights and incidence rates. These results argue against the notion that FoxO1 is a link between insulin resistance and cholelithiasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteína Forkhead Box O1/metabolismo , Cálculos Biliares/metabolismo , Resistência à Insulina , Transdução de Sinais , Animais , Ácidos e Sais Biliares/genética , Colesterol/genética , Colesterol/metabolismo , Feminino , Proteína Forkhead Box O1/genética , Cálculos Biliares/genética , Deleção de Genes , Regulação da Expressão Gênica , Fígado , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética
8.
Cell Immunol ; 349: 104047, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019673

RESUMO

The polarization of macrophages is critical to inflammation and tissue repair, with unbalanced macrophage polarization associated with critical dysfunctions of the immune system. Cytochrome P450 1A1 (CYP1A1) is a hydroxylase mainly controlled by the inflammation-limiting aryl hydrocarbon receptor (AhR), which plays a critical role in mycoplasma infection, oxidative stress injury, and cancer. Arginase-1 (Arg-1) is a surrogate for polarized alternative macrophages and is important to the production of nitric oxide (NO) by the modulation of arginine. In the present study, we found CYP1A1 to be upregulated in IL-4-stimulated mouse peritoneal macrophages (PMs) and human peripheral blood monocytes. Using CYP1A1-overexpressing RAW264.7 cells (CYP1A1/RAW) we found that CYP1A1 augmented Arg-1 expression by strengthening the activation of the JAK1/STAT6 signaling pathway in macrophages treated with IL-4. 15(S)-HETE, a metabolite of CYP1A1 hydroxylase, was elevated in IL-4-induced CYP1A1/RAW cells. Further, in macrophages, the loss-of-CYP1A1-hydroxylase activity was associated with reduced IL-4-induced Arg-1 expression due to impaired 15(S)-HETE generation. Of importance, CYP1A1 overexpressing macrophages reduced the inflammation associated with LPS-induced peritonitis. Taken together, these findings identified a novel signaling axis, CYP1A1-15(S)-HETE-JAK1-STAT6, that may be a promising target for the proper maintenance of macrophage polarization and may also be a means by which to treat immune-related disease due to macrophage dysfunction.


Assuntos
Arginase/biossíntese , Citocromo P-450 CYP1A1/fisiologia , Janus Quinase 1/antagonistas & inibidores , Macrófagos Peritoneais/efeitos dos fármacos , Peritonite/prevenção & controle , Fator de Transcrição STAT6/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Transferência Adotiva , Animais , Araquidonato 15-Lipoxigenase/fisiologia , Arginase/genética , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Endotoxinas/toxicidade , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/genética , Ácidos Hidroxieicosatetraenoicos/farmacologia , Interleucina-4/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/transplante , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Células RAW 264.7 , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Células THP-1 , Regulação para Cima/efeitos dos fármacos
9.
Clin Neurol Neurosurg ; 186: 105488, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31505435

RESUMO

OBJECTIVE: The aim of this work was to evaluate a pediatric ependymoma protein expression that may be useful as a molecular biomarker candidate for prognosis, correlated with clinical features such as age, gender, histopathological grade, ependymal tumor recurrence and patient survival. PATIENTS AND METHODS: Immunohistochemistry assays were performed for GNAO1, ASAH1, IMMT, IPO7, Cyclin D1, P53 and Ki-67 proteins. Kaplan-Meier and Cox analysis were performed for age, gender, histopathological grade, relapse and survival correlation. RESULTS: We found that three proteins correlate with histopathological grade and relapse; two proteins correlate with survival; one protein does not correlate with any clinical feature. CONCLUSION: Our results suggest that, out of the proteins analyzed, five may be considered suitable prognostic biomarkers and one may be considered a predictive biomarker for response to treatment of pediatric ependymoma.


Assuntos
Ceramidase Ácida/biossíntese , Neoplasias Encefálicas/metabolismo , Ependimoma/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/biossíntese , Carioferinas/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas Musculares/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Ceramidase Ácida/genética , Adolescente , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Estudos de Coortes , Ependimoma/diagnóstico , Ependimoma/genética , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Carioferinas/genética , Masculino , Proteínas Mitocondriais/genética , Proteínas Musculares/genética , Prognóstico , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo
10.
Prostate ; 79(9): 1032-1042, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018022

RESUMO

BACKGROUND: Proteomic profiling of extracellular vesicles (EVs) from prostate cancer (PCa) and normal prostate cell lines, led to the identification of new candidate PCa markers. These proteins included the nuclear exportin proteins XPO1 (also known as CRM1), the EV-associated PDCD6IP (also known as ALIX), and the previously published fatty acid synthase FASN. In this study, we investigated differences in expression of XPO1 and PDCD6IP on well-characterized prostate cancer cohorts using mass spectrometry and tissue microarray (TMA) immunohistochemistry to determine their diagnostic and prognostic value. METHODS: Protein fractions from 67 tissue samples (n = 33 normal adjacent prostate [NAP] and n = 34 PCa) were analyzed by mass spectrometry (nano-LC-MS-MS). Label-free quantification of EVs was performed to identify differentially expressed proteins between PCa and NAP. Prognostic evaluation of the candidate markers was performed with a TMA, containing 481 radical prostatectomy samples. Samples were stained for the candidate markers and correlated with patient information and clinicopathological outcome. RESULTS: XPO1 was higher expressed in PCa compared to NAP in the MS data analysis (P > 0.0001). PDCD6IP was not significantly higher expressed (P = 0.0501). High cytoplasmic XPO1 staining in the TMA immunohistochemistry, correlated in a multivariable model with high Gleason scores (P = 0.002) and PCa-related death (P = 0.009). CONCLUSION: High expression of cytoplasmic XPO1 shows correlation with prostate cancer and has added clinical value in tissue samples. Furthermore, as an extracellular vesicles-associated protein, it might be a novel relevant liquid biomarker.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Vesículas Extracelulares/metabolismo , Carioferinas/biossíntese , Neoplasias da Próstata/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Idoso , Vesículas Extracelulares/patologia , Ácido Graxo Sintase Tipo I/biossíntese , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Análise Serial de Tecidos , Proteína Exportina 1
11.
Cancer Res ; 79(5): 954-969, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30679176

RESUMO

APC mutations activate aberrant ß-catenin signaling to drive initiation of colorectal cancer; however, colorectal cancer progression requires additional molecular mechanisms. PPAR-delta (PPARD), a downstream target of ß-catenin, is upregulated in colorectal cancer. However, promotion of intestinal tumorigenesis following deletion of PPARD in Apcmin mice has raised questions about the effects of PPARD on aberrant ß-catenin activation and colorectal cancer. In this study, we used mouse models of PPARD overexpression or deletion combined with APC mutation (ApcΔ580 ) in intestinal epithelial cells (IEC) to elucidate the contributions of PPARD in colorectal cancer. Overexpression or deletion of PPARD in IEC augmented or suppressed ß-catenin activation via up- or downregulation of BMP7/TAK1 signaling and strongly promoted or suppressed colorectal cancer, respectively. Depletion of PPARD in human colorectal cancer organoid cells inhibited BMP7/ß-catenin signaling and suppressed organoid self-renewal. Treatment with PPARD agonist GW501516 enhanced colorectal cancer tumorigenesis in ApcΔ580 mice, whereas treatment with PPARD antagonist GSK3787 suppressed tumorigenesis. PPARD expression was significantly higher in human colorectal cancer-invasive fronts versus their paired tumor centers and adenomas. Reverse-phase protein microarray and validation studies identified PPARD-mediated upregulation of other proinvasive pathways: connexin 43, PDGFRß, AKT1, EIF4G1, and CDK1. Our data demonstrate that PPARD strongly potentiates multiple tumorigenic pathways to promote colorectal cancer progression and invasiveness. SIGNIFICANCE: These findings address long-standing, important, and unresolved questions related to the potential role of PPARD in APC mutation-dependent colorectal tumorigenesis by showing PPARD activation enhances APC mutation-dependent tumorigenesis.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , PPAR delta/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Benzamidas/farmacologia , Carcinogênese , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Progressão da Doença , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica , PPAR delta/biossíntese , PPAR delta/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Sulfonas/farmacologia , Tiazóis/farmacologia
12.
Biomed Pharmacother ; 110: 656-666, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30551118

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a most common kidney malignancy, with atypical symptoms in the early stage and poor outcome in the late stage. Recently, emerging evidence revealed that some miRNAs play an essential role in the tumorigenesis and progression of RCC. Therefore, the aim of this study is that understand the detailed molecular mechanism of miR-23a-3p in RCC and identify its potential clinical value. METHODS: In this study, RT-qPCR, wound scratch assay, cell proliferation assay, transwell assay and flow cytometry assay were performed to detect miR-23a-3p expression and its proliferation, migration and apoptosis in RCC. The bioinformatics analysis, RT-qPCR, western blot and luciferase reporter assay were performed to discern and examine the relationship between miR-23a-3p and its potential targets. Moreover, we analyzed the relationship between miR-23a-3p expression and clinicopathological variables or overall survival (OS) from 118 formalin-fixed paraffin-embedded RCC samples. RESULTS: miR-23a-3p is significantly up-regulated in RCC tissue samples, RCC cell lines and the TCGA database. Upregulating miR-23a-3p enhances, while silencing miR-23a-3p suppresses cell viability, proliferation and mobility in ACHN and 786-O cell lines. Besides, overexpression of miR-23a-3p inhibits the cell apoptosis. Then our study further reveals that miR-23a-3p regulates tumorigenesis by targeting Proline-Rich Nuclear Receptor Coactivator 2 (PNRC2). Also, the cox proportional hazard regression analysis indicates that low expression of miR-23a-3p patients has a remarkable longer OS. CONCLUSIONS: Our results reveals that miR-23a-3p may not only serve as a new biomarker for prognosis but also serve as a new therapeutic strategy in the RCC treatment.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , MicroRNAs/biossíntese , Oncogenes/fisiologia , Receptores Citoplasmáticos e Nucleares/biossíntese , Transativadores/biossíntese , Adulto , Idoso , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Prognóstico , Receptores Citoplasmáticos e Nucleares/genética , Taxa de Sobrevida/tendências , Transativadores/genética
13.
BMC Cancer ; 18(1): 1027, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352570

RESUMO

BACKGROUND: P38 mitogen activated protein kinase is an intermediary signal transduction factor with context-specific roles in breast cancer. Recent mechanistic studies add to the growing consensus that P38 is a tumour suppressor, and it may represent a novel target for breast cancer treatment. The aim of this study is to add definitive data on the prognostic value of P38 and its link with biomarkers in primary breast cancer. METHODS: A large, well-characterised series of 1332 primary breast cancer patients with long-term clinical follow-up was assessed for P38 expression by immunohistochemistry. Association of clinicopathological factors and a panel of breast cancer biomarkers was determined by chi-squared test, and multivariate survival analysis was performed using Cox Proportional Hazards regression modelling. RESULTS: This study shows that nuclear P38 is co-expressed with nuclear hormone receptors (p < 0.001) and is an independent prognostic marker of good long-term clinical outcome in primary breast cancer (hazard ratio 0.796, 95% confidence interval 0.662-0.957, p = 0.015). Significant association was found between expression of P38 and markers of DNA repair including nuclear BRCA1 and RAD51, and cleaved PARP1 (all p < 0.001). CONCLUSIONS: The findings support the proposed role for P38 as a tumour suppressor in breast cancer via upregulation of DNA repair proteins and provide novel hypothesis-generating information on the potential role of P38 in adjuvant therapy decision making.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Reparo do DNA , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Adulto , Idoso , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
Mol Biol (Mosk) ; 52(3): 482-488, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29989580

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common urologic malignancy. Understanding of the transcriptional regulation of oncogenes and tumor suppressor genes involved is critical for the development of the treatments for renal tumors. Using ccRCC subdivision of the TCGA dataset, we identified NR0B2 encoding orphan nuclear receptor as a tumor suppressor candidate in renal tissue. In independent cohort of primary renal tumors, quantitative PCR experiments confirmed significant suppression of NR0B2 mRNA in 86% of ccRCC samples studied. In 80% of these cases, we detected the hypermethylation of the NR0B2 pro-moter region. These results suggest that NR0B2 is a tumor suppressor gene in ccRCC, and that the hypermethylation of promoter region is the main mechanism of its downregulation.


Assuntos
Carcinoma de Células Renais/metabolismo , Metilação de DNA , DNA de Neoplasias/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , DNA de Neoplasias/genética , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Supressoras de Tumor/genética
15.
Eur J Drug Metab Pharmacokinet ; 43(6): 655-664, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29721716

RESUMO

BACKGROUND AND OBJECTIVES: Gambogenic acid (GNA), which possesses diverse antitumor activities both in vitro and in vivo, is regarded as a potential anticancer compound. Cytochrome P450 (CYP) enzymes play an important role in the metabolism of most xenobiotics; constitutive androstane receptor (CAR), a nuclear receptor that might be activated by xenobiotics and associated with the expression of some CYPs. In this study, we determined the effect of GNA on multiple rat liver CYP isoforms (CYP1A2, 2B1, and 2E1) and CAR as well as the potential of GNA to interact with co-administered drugs. METHODS: Male SD rats were randomly divided into the control, and the low (5 mg/kg)-, medium (25 mg/kg)-, and high- (100 mg/kg) dose GNA groups. After the intragastric administration of GNA for 14 consecutive days, a cocktail method was adopted to evaluate the activities of CYP1A2, 2B1, and 2E1. The liver expression of CYP1A2, 2B1, and 2E1 and CAR was analyzed by Western blotting (WB) and quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR). RESULTS: The 14-day administration of GNA significantly increased both the mRNA and protein expressions and the activity of CYP2E1. Additionally, the mRNA and protein expressions of CYP1A2 were clearly induced, while only the high GNA dose increased the activity of liver CYP1A2. Moreover, the mRNA expression levels of CYP2B1 and CAR were increased, but their protein levels and the activity parameters of CYP2B1 did not show significant changes. CONCLUSIONS: The obtained results suggest that the CYP1A2 and CYP2E1 enzymes could be induced in rats after treatment with GNA. Therefore, when GNA is administrated with other drugs, potential drug-drug interactions (DDI) mediated by CYP1A2 and CYP2E1 induction should be taken into consideration.


Assuntos
Citocromo P-450 CYP1A2/biossíntese , Citocromo P-450 CYP2B1/biossíntese , Citocromo P-450 CYP2E1/biossíntese , Fenacetina/farmacocinética , Receptores Citoplasmáticos e Nucleares/biossíntese , Xantenos/farmacologia , Animais , Bupropiona/sangue , Bupropiona/farmacocinética , Clorzoxazona/sangue , Clorzoxazona/farmacocinética , Receptor Constitutivo de Androstano , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Indutores das Enzimas do Citocromo P-450/sangue , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fígado/metabolismo , Masculino , Fenacetina/sangue , Ratos
16.
Cancer Biomark ; 22(1): 19-28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29562494

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second most common cancer in men worldwide. Currently, prostate-specific antigen (PSA) test and digital rectal exam are the main screening tests used for PCa diagnosis. However, due to the low specificity of these tests, new alternative biomarkers such as deregulated RNAs and microRNAs have been implemented. OBJECTIVES: Aberrant expressions of small heterodimer partner gene (SHP, NR0B2) and mir-141 are reported in various cancers. The aim of this study was to investigate the SHP and miR-141 expression level in tissue samples of prostate cancer. METHODS: The expression level of SHP gene and miR-141 was assessed by real time PCR and their relative amounts were calculated by the Δ⁢ΔCT method. Also, IHC technique was used to determine the expression level of SHP protein. RESULTS: The miR-141 was significantly up-regulated in the samples of metastatic tumors compared to localized tumor samples (P< 0.001, 31.17-fold change). Tumor samples showed lower SHP mRNA expression levels than BPH samples (p= 0.014, 4.7-fold change). The results of paired t-test analysis showed there was no significant difference between the SHP gene expression in PCa samples and their matched tumor-adjacent normal tissue (p= 0.5). CONCLUSIONS: The data obtained in our study confirm the involvement of miR-141 in PCa progression and metastasis. These effects could be mediated by AR via down-regulation of its co-repressor protein, i.e., SHP.


Assuntos
MicroRNAs/biossíntese , Neoplasias da Próstata/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Progressão da Doença , Humanos , Imuno-Histoquímica , Masculino , MicroRNAs/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Citoplasmáticos e Nucleares/genética , Regulação para Cima
17.
Angew Chem Int Ed Engl ; 56(36): 10924-10927, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28714148

RESUMO

The palladium(II)-catalyzed C(sp3 )-H alkynylation of oligopeptides was developed with tetrabutylammonium acetate as a key additive. Through molecular design, the acetylene motif served as a linchpin to introduce a broad range of carbonyl-containing pharmacophores onto oligopeptides, thus providing a chemical tool for the synthesis and modification of novel oligopeptide-pharmacophore conjugates by C-H functionalization. Dipeptide conjugates with coprostanol and estradiol were synthesized by this method for potential application in targeted drug delivery to tumor cells with overexpressed nuclear hormone receptors.


Assuntos
Alcinos/síntese química , Colestanol/química , Estradiol/química , Oligopeptídeos/química , Paládio/química , Alcinos/química , Catálise , Sistemas de Liberação de Medicamentos , Receptores Citoplasmáticos e Nucleares/biossíntese
18.
J Cutan Pathol ; 44(9): 790-793, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28605142

RESUMO

Friend leukemia integration site 1 (FLI-1) nuclear transcription factor has been proposed as a suitable tool in the differential diagnosis of small round cell sarcomas. It has also been described as a nuclear marker of endothelial differentiation. Expression of FLI-1 has been demonstrated in Ewing's sarcoma/primitive neuroectodermal tumor (ES/PNET) and vascular neoplasms. In the present study, we describe 2 cases of metastatic melanoma with small round blue cell morphology that showed strong nuclear expression of FLI-1. Because of the small round blue cell morphology and negative immunohistochemical staining for pan-melanocytic cocktail (HMB45, anti MART1 and anti-tyrosinase) and SOX10 in both cases, FLI-1 immunostaining was requested as part of the tumors workup. Ultimately, both cases were established as being metastatic melanoma. Dermatopathologists should be aware that melanoma can be strongly positive for FLI-1 and not misinterpret these cases for ES/PNET or vascular lesions, especially when melanomas show unusual morphology.


Assuntos
Biomarcadores Tumorais/análise , Melanoma/patologia , Proteínas dos Microfilamentos/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Neoplasias Cutâneas/patologia , Idoso , Humanos , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Neoplasias Cutâneas/metabolismo , Transativadores , Melanoma Maligno Cutâneo
19.
Carcinogenesis ; 38(7): 738-747, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535186

RESUMO

The development of hepatoblastoma (HBL) is associated with failure of hepatic stem cells (HSC) to differentiate into hepatocytes. Despite intensive investigations, mechanisms of the failure of HSC to differentiate are not known. We found that oncogene Gankyrin (Gank) is involved in the inhibition of differentiation of HSC via triggering degradation of tumor suppressor proteins (TSPs) Rb, p53, C/EBPα and HNF4α. Our data show that the activation of a repressor of Gank, farnesoid X receptor, FXR, after initiation of liver cancer by Diethylnitrosamine (DEN) prevents the development of liver cancer by inhibiting Gank and rescuing tumor suppressor proteins. We next analyzed FXR-Gank-Tumor suppressor pathways in a large cohort of HBL patients which include 6 controls and 53 HBL samples. Systemic analysis of these samples and RNA-Seq approach revealed that the FXR-Gank axis is activated; markers of hepatic stem cells are dramatically elevated and hepatocyte markers are reduced in HBL samples. In the course of these studies, we found that RNA binding protein CUGBP1 is a new tumor suppressor protein which is reduced in all HBL samples. Therefore, we generated CUGBP1 KO mice and examined HBL signatures in the liver of these mice. Micro-array studies revealed that the HBL-specific molecular signature is developed in livers of CUGBP1 KO mice at very early ages. Thus, we conclude that FXR-Gank-TSPs-Stem cells pathway is a key determinant of liver cancer in animal models and in pediatric liver cancer. Our data provide a strong basis for development of FXR-Gank-based therapy for treatment of patients with hepatoblastoma.


Assuntos
Proteínas CELF1/genética , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Proteínas CELF1/biossíntese , Diferenciação Celular/genética , Linhagem Celular Tumoral , Dietilnitrosamina/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatoblastoma/induzido quimicamente , Hepatoblastoma/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Pediatria , Receptores Citoplasmáticos e Nucleares/biossíntese
20.
Toxicol Lett ; 264: 1-11, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27818225

RESUMO

Sirtuin 1 (SIRT1) is the most conserved mammalian NAD+-dependent protein deacetylase and is a member of the silent information regulator 2 (Sir2) families of proteins (also known as Sirtuins). In the liver, hepatic SIRT1 modulates bile acid metabolism through the regulation of farnesoid X receptor (FXR) expression. FXR is one of the most important nuclear receptors involved in the regulation of bile acid metabolism. SIRT1 modulates the FXR expression at multiple levels, including direct deacetylation of this transcription factor and transcriptional regulation through hepatocyte nuclear factor 1α (HNF1α). Therefore, hepatic SIRT1 is a vital regulator of the HNF1α/FXR signalling pathway and hepatic bile acid metabolism. However, whether SIRT1 is a suitable therapeutic target for the treatment of cholestasis is unknown. In the present study, we examined the protective effect of SRT1720, which is a specific activator of SIRT1, against 17α-ethinylestradiol (EE)-induced cholestasis in mice. Our data demonstrated that SRT1720 significantly prevented EE-induced changes in the serum levels of total bile acids (TBA), total bilirubin (TBIL), γ-glutamyltranspeptidase (γ-GGT) and alkaline phosphatase (ALP). SRT1720 also relieved EE-induced liver pathological injuries as indicated by haematoxylin and eosin (H&E) staining. SRT1720 treatment protected against EE-induced liver injury through the HNF1α/FXR signalling pathway, which up-regulated the expression of hepatic efflux transporter (Bsep and Mrp2) and hepatic uptake transporters (Ntcp and Oatp1b2). Moreover, SRT1720 significantly inhibited the TNF-α and IL-6 levels induced by EE. These findings indicate that SRT1720 exerts a dose-dependent protective effect on EE-induced cholestatic liver injury in mice and that the mechanism underlying this activity is related to the activation of the HNF1α/FXR signalling pathway and anti-inflammatory mechanisms.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colestase/tratamento farmacológico , Etinilestradiol/toxicidade , Fator 1-alfa Nuclear de Hepatócito/biossíntese , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Substâncias Protetoras/uso terapêutico , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Expressão Gênica/efeitos dos fármacos , Fator 1-alfa Nuclear de Hepatócito/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA