Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
BMC Med Genomics ; 17(1): 138, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778378

RESUMO

PURPOSE: This comprehensive investigation delved into the intricate causal interplay existing between cardiovascular-related plasma proteins and the susceptibility to colorectal cancer, leveraging the robust framework of Mendelian randomization, and employed expression profiling and survival analysis to unravel the latent clinical worth embedded within pertinent gene expressions. METHODS: Protein quantitative trait loci (pQTLs) of 85 cardiovascular proteins were employed as instrumental variables to investigate the causal relationship between proteins and CRC risk using a Mendelian randomization approach. Causal inferences were graded as strong, intermediate or weak based on statistical checks. Drug-target MR examined VEGF receptors for their potential as therapeutic targets for colorectal cancer. Differential expression analysis, diagnostic ROC curves, and survival analyses were performed for identified proteins using RNA-seq data from The Cancer Genome Atlas (TCGA) colorectal cancer cohort. RESULTS: Using cis-pQTLs, LOX-1, VEGF-A and OPG were associated with increased CRC risk (strong evidence), while PTX3, TNF-R2 and MMP-7 were protective (strong evidence). Pan-pQTL analysis found MMP-10 increased risk (intermediate evidence) and ADM increased risk (weak evidence). Drug-target MR found VEGF R1 may be promising therapeutic targets. Differential expression analysis revealed seven genes encoding the identified proteins were dysregulated in tumors. ROC analysis showed five gene expression had high diagnostic accuracy. KM analysis showed four genes had prognostic value. CONCLUSIONS: This large-scale MR study implicates several cardiovascular proteins in CRC susceptibility and progression. Findings highlight roles for VEGF signaling and extracellular matrix regulation. Results nominate specific proteins as potential diagnostic biomarkers or therapeutic targets warranting further investigation.


Assuntos
Neoplasias Colorretais , Perfilação da Expressão Gênica , Análise da Randomização Mendeliana , Humanos , Neoplasias Colorretais/genética , Locos de Características Quantitativas , Análise de Sobrevida , Biomarcadores Tumorais/genética , Fatores de Risco , Receptores Depuradores Classe E/genética , Feminino , Predisposição Genética para Doença , Masculino
2.
J Innate Immun ; 16(1): 105-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232720

RESUMO

BACKGROUND: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY: This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES: The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.


Assuntos
Interações Hospedeiro-Patógeno , Inflamação , Receptores Depuradores Classe E , Animais , Humanos , Camundongos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Lipoproteínas LDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genética
3.
Acta Diabetol ; 61(4): 515-524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244081

RESUMO

AIMS: Diabetic osteoporosis (DOP) is the most common secondary form of osteoporosis. Diabetes mellitus affects bone metabolism; however, the underlying pathophysiological mechanisms remain unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression is upregulated in conditions characterized by vascular injury, such as atherosclerosis, hypertension, and diabetes. Additionally, Notch, HIF-1α, and VEGF are involved in angiogenesis and bone formation. Therefore, we aimed to investigate the expression of Notch, HIF-1α, and VEGF in the LOX-1 silencing state. METHODS: Rat bone H-type vascular endothelial cells (THVECs) were isolated and cultured in vitro. Cell identification was performed using immunofluorescent co-expression of CD31 and Emcn. Lentiviral silencing vector (LV-LOX-1) targeting LOX-1 was constructed using genetic recombination technology and transfected into the cells. The experimental groups included the following: NC group, HG group, LV-LOX-1 group, LV-CON group, HG + LV-LOX-1 group, HG + LV-CON group, HG + LV-LOX-1 + FLI-06 group, HG + LV-CON + FLI-06 group, HG + LV-LOX-1 + LW6 group, and HG + LV-CON + LW6 group. The levels of LOX-1, Notch, Hif-1α, and VEGF were detected using PCR and WB techniques to investigate whether the expression of LOX-1 under high glucose conditions has a regulatory effect on downstream molecules at the gene and protein levels, as well as the specific molecular mechanisms involved. RESULTS: High glucose (HG) conditions led to a significant increase in LOX-1 expression, leading to inhibition of angiogenesis, whereas silencing LOX-1 can reverse this phenomenon. Further analysis reveals that changes in LOX-1 will promote changes in Notch/HIF-1α and VEGF. Moreover, Notch mediates the activation of HIF-1α and VEGF. CONCLUSIONS: The activation of LOX-1 and the inhibition of Notch/HIF-1α/VEGF in THVECs are the main causes of DOP. These findings contribute to our understanding of the pathogenesis of DOP and offer a novel approach for preventing and treating osteoporosis.


Assuntos
Diabetes Mellitus , Hiperglicemia , Osteoporose , Animais , Ratos , Células Endoteliais/metabolismo , Glucose , Hiperglicemia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores Depuradores Classe E/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Nat Commun ; 15(1): 669, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253620

RESUMO

The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.


Assuntos
Adenosina , Infecções por Helicobacter , Helicobacter pylori , Receptores Depuradores Classe E , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Catalase/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , RNA Mensageiro/genética , Receptores Depuradores Classe E/genética
5.
Inflamm Res ; 72(12): 2145-2153, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874359

RESUMO

OBJECTIVE AND DESIGN: 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS: Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS: Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION: The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.


Assuntos
Araquidonato 15-Lipoxigenase , Osteoartrite , Humanos , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Osteoartrite/genética , Osteoartrite/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
6.
Mol Cell Biol ; 43(7): 354-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427890

RESUMO

Glioma, originating from neuroglial progenitor cells, is a type of intrinsic brain tumor with poor prognosis. temozolomide (TMZ) is the first-line chemotherapeutic agent for glioma. Exploring the mechanisms of circTTLL13 underlying TMZ resistance in glioma is of great significance to improve glioma treatment. Bioinformatics was adopted to identify target genes. The circular structure of circTTLL13 and its high expression in glioma cells were disclosed by quantitative real time-PCR (qRT-PCR) and PCR-agarose gel electrophoresis. Functional experiments proved that oxidized LDL receptor 1 (OLR1) promotes TMZ resistance of glioma cells. CircTTLL13 enhances TMZ resistance of glioma cells via modulating OLR1. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), RNA pulldown, mRNA stability, N6-methyladenosine (m6A) dot blot and RNA total m6A quantification assays were implemented, indicating that circTTLL13 stabilizes OLR1 mRNA via recruiting YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and promotes m6A methylation of OLR1 pre-mRNA through recruiting methyltransferase-like 3 (METTL3). TOP/FOP-flash reporter assay and western blot verified that circTTLL13 activates Wnt/ß-catenin signaling pathway by regulating OLR1. CircTTLL13 promotes TMZ resistance in glioma through regulating OLR1-mediated Wnt/ß-catenin pathway activation. This study offers an insight into the efficacy improvement of TMZ for glioma treatment.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , beta Catenina/genética , Via de Sinalização Wnt , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , RNA , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Metiltransferases/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166805, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37468019

RESUMO

Neoatherosclerosis (NA), the main pathological basis of late stent failure, is the main limitation of interventional therapy. However, the specific pathogenesis and treatment remain unclear. In vivo, NA model was established by carotid wire injury and high-fat feeding in ApoE-/- mice. Oxidized low-density lipoprotein receptor-1/lectin-like oxidized low-density lipoprotein receptor-1 (OLR1/LOX-1), a specific receptor for oxidized low-density lipoprotein (ox-LDL), was specifically ectopically overexpressed in hepatocytes by portal vein injection of adeno-associated serotype 8 (AAV8)-thyroid binding globulin (TBG)-Olr1 and the protective effect against NA was examined. In vitro, LOX-1 was overexpressed on HHL5 using lentivirus (LV)-OLR1 and the vascular smooth muscle cells (VSMCs)-HHL5 indirect co-culture system was established to examine its protective effect on VSMCs and the molecular mechanism. Functionally, we found that specific ectopic overexpression of LOX-1 by hepatocytes competitively engulfed and metabolized ox-LDL, alleviating its resulting phenotypic transformation of VSMCs including migration, downregulation of contractile shape markers (smooth muscle α-actin (SMαA) and smooth muscle-22α (SM22α)), and upregulation of proliferative/migratory shape markers (osteopontin (OPN) and Vimentin) as well as foaminess and apoptosis, thereby alleviating NA, which independent of low-density lipoprotein (LDL) lowering treatment (evolocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9)). Mechanistically, we found that overexpression of LOX-1 in hepatocytes competitively engulfed and metabolized ox-LDL through upregulation of arachidonate-15-lipoxygenase (ALOX15), which further upregulated scavenger receptor class B type I (SRBI) and ATP-binding cassette transporter A1 (ABCA1). In conclusion, the overexpression of LOX-1 in liver protects VSMCs from phenotypic transformation and wire injury induced carotid neoatherosclerosis through ALOX15.


Assuntos
Músculo Liso Vascular , Pró-Proteína Convertase 9 , Animais , Camundongos , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Hepatócitos/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Fenótipo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
8.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982155

RESUMO

The oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for modified LDLs, such as oxidated (oxLDL) and acetylated (acLDL) low-density lipoprotein. LOX-1 and oxLDL are fundamental in atherosclerosis, where oxLDL/LOX1 promotes ROS generation and NF-κB activation inducing the expression of IL-6, a STAT3 activator. Furthermore, LOX-1/oxLDL function has been associated with other diseases, such as obesity, hypertension, and cancer. In prostate cancer (CaP), LOX-1 overexpression is associated with advanced stages, and its activation by oxLDL induces an epithelial-mesenchymal transition, increasing angiogenesis and proliferation. Interestingly, enzalutamide-resistant CaP cells increase the uptake of acLDL. Enzalutamide is an androgen receptor (AR) antagonist for castration-resistant prostate cancer (CRPC) treatment, and a high percentage of patients develop a resistance to this drug. The decreased cytotoxicity is promoted in part by STAT3 and NF-κB activation that induces the secretion of the pro-inflammatory program and the expression of AR and its splicing variant AR-V7. Here, we demonstrate for the first time that oxLDL/LOX-1 increases ROS levels and activates NF-κB, inducing IL-6 secretion and the activation of STAT3 in CRPC cells. Furthermore, oxLDL/LOX1 increases AR and AR-V7 expression and decreases enzalutamide cytotoxicity in CRPC. Thus, our investigation suggests that new factors associated with cardiovascular pathologies, such as LOX-1/oxLDL, may also promote important signaling axes for the progression of CRPC and its resistance to drugs used for its treatment.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , NF-kappa B/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Interleucina-6/genética , Interleucina-6/farmacologia , Antineoplásicos/farmacologia , Nitrilas/farmacologia , Lipoproteínas LDL/farmacologia , Transdução de Sinais , Antagonistas de Receptores de Andrógenos/farmacologia , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Linhagem Celular Tumoral
9.
J Investig Med ; 71(2): 113-123, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36647317

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age. The aim of this study was to investigate the association of oxidized low-density lipoprotein receptor 1 (OLR1) gene variations with the susceptibility of PCOS and to examine the relationship between the frequencies of OLR1 gene variations and atherosclerotic risk factors. Genomic DNA was extracted from blood samples collected from 49 patients with PCOS and 43 healthy controls. The variants in the OLR1 gene were identified using next-generation sequencing (NGS). Heterozygous rs11053646 (K167N), rs11611438, rs11611453, and rs35688880 genotype frequencies were significantly higher in the PCOS group than that of control group. Single nucleotide polymorphism (SNP) rs34163097 minor A allele increased the PCOS risk by ∼10-fold (p = 0.03). SNPs rs11053646, rs11611438, rs11611453, rs34163097, and rs35688880 were positively correlated with body mass index (BMI). The logistic regression model (area under the curve: 0.770, p = 0.000) further revealed a combination of 2-h plasma glucose (PG-2 h), dehydroepiandrosterone sulfate (DHEAS), and rs11053646 as predictors of PCOS phenotype. This is the first study reporting the NGS data of OLR1 gene variants which might be associated with the pathogenesis of PCOS and several atherosclerotic risk factors, particularly higher BMI and DHEAS. To fully understand the genetic basis of PCOS and the contribution of OLR1 gene variants to PCOS pathogenesis, additional large-scale studies are warranted.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Predisposição Genética para Doença , Genótipo , Fatores de Risco , Variação Genética , Polimorfismo de Nucleotídeo Único/genética , Frequência do Gene , Estudos de Casos e Controles , Receptores Depuradores Classe E/genética
10.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36264633

RESUMO

Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1-mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.


Assuntos
Lesão Pulmonar , Pneumonia , Receptores Depuradores Classe E , Animais , Camundongos , Receptores Depuradores Classe E/genética
11.
World J Gastroenterol ; 28(34): 4993-5006, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36160648

RESUMO

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL), which is abnormally increased in the serum of colorectal cancer (CRC) patients consuming a high-fat diet (HFD), may be one of the risk factors for the development of CRC. Ox-LDL exerts a regulatory effect on macrophages and may influence CRC through the tumor microenvironment. The role of ox-LDL in CRC remains unclear. AIM: To investigate the role of ox-LDL through macrophages in HFD associated CRC. METHODS: The expression of ox-LDL and CD206 was detected in colorectal tissues of CRC patients with hyperlipidemia and HFD-fed mice by immunofluorescence. We stimulated the macrophages with 20 µg/mL ox-LDL and assessed the expression levels of CD206 and the cytokines by cell fluorescence and quantitative polymerase chain reaction. We further knocked down LOX-1, the surface receptor of ox-LDL, to confirm the function of ox-LDL in macrophages. Then, LoVo cells were co-cultured with the stimulated macrophages to analyze the CD44 and CD133 expression by western blot. RESULTS: The expression of ox-LDL and the CD206 was significantly increased in the stroma of colorectal tissues of CRC patients with hyperlipidemia, and also upregulated in the HFD-fed mice. Moreover, an increased level of CD206 and decreased level of inducible nitric oxide synthase were observed in macrophages after ox-LDL continuous stimulation. Such effects were inhibited when the surface receptor LOX-1 was knocked down in macrophages. Ox-LDL could induce CD206+ macrophages, which resulted in high expression of CD44 and CD133 in co-cultured LoVo cells. CONCLUSION: Ox-LDL stimulates CD206+ macrophages to upregulate CD44 and CD133 expression in HFD related CRC.


Assuntos
Neoplasias Colorretais , Hiperlipidemias , Antígeno AC133 , Animais , Neoplasias Colorretais/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Receptores de Hialuronatos , Lipoproteínas LDL , Macrófagos/metabolismo , Receptor de Manose , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Microambiente Tumoral
12.
Curr Eye Res ; 47(10): 1366-1373, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35759617

RESUMO

PURPOSE: The purpose of this research was to explore the antifungal and anti-inflammatory effects of perillaldehyde (PAE) in Aspergillus fumigatus (A. fumigatus) keratitis and the underlying mechanism. METHODS: The biofilm formation, adherence assay, and propidium iodide uptake test were used to determine the possible mechanism of PAE in terms of antifungal effects in vitro. The severity of corneal infection was evaluated by clinical scores. The immunofluorescence staining (IFS) was adopted to detect the number of macrophages in infected corneas. Draize test was performed to assess the ocular toxicity of PAE. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot reflected the expression of inflammatory cytokines and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in mice corneas and RAW264.7 cells. RESULTS: PAE was able to inhibit the formation of biofilm, reduce conidial adhesion, and damage the integrity of membranes to exert antifungal activity. In C57BL/6 mice models, PAE alleviated the severity of infected corneas, reduced the recruitment of macrophages and had low ocular toxicity. In addition, the mRNA and protein levels of TNF-α, CCL-2, and LOX-1 could be significantly decreased by the application of PAE after A. fumigatus infection in vivo and in vitro. CONCLUSION: Our study indicated that PAE protected against A. fumigatus keratitis by reducing fungal load, accumulation of macrophages, and inhibiting the expression of inflammatory cytokines.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Anti-Inflamatórios , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Infecções Oculares Fúngicas/microbiologia , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos , Propídio/uso terapêutico , RNA Mensageiro , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/uso terapêutico , Neuropatia Óptica Tóxica , Fator de Necrose Tumoral alfa
13.
Int J Cancer ; 151(6): 944-956, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608341

RESUMO

Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known. In our study, we show the importance of the accumulation of LDL in tumor metastasis. We demonstrated that high metastatic-tumor tissue contains high amounts of LDL and forms more oxidized LDL (ox-LDL). Interestingly, lectin-like ox-LDL receptor 1 (LOX-1), a receptor for ox-LDL and a recognized key molecule for cardiovascular diseases, was highly expressed in tumor endothelial cells (TECs). Neutrophils are important for ox-LDL formation. Since we observed the accumulation and activation of neutrophils in HM-tumors, we evaluated the involvement of LOX-1 in neutrophil migration and activation. LOX-1 induced neutrophil migration via CCL2 secretion from TECs, which was enhanced by ox-LDL. Finally, we show genetic manipulation of LOX-1 expression in TECs or tumor stroma tended to reduce lung metastasis. Thus, the LOX-1/ox-LDL axis in TECs may lead to the formation of a high metastatic-tumor microenvironment via attracting neutrophils.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Células Endoteliais , Lipoproteínas LDL , Neoplasias , Neutrófilos , Receptores Depuradores Classe E , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Lipoproteínas LDL/metabolismo , Neoplasias/metabolismo , Neutrófilos/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Microambiente Tumoral
14.
Future Med Chem ; 14(10): 731-743, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35466695

RESUMO

Along with other scavenger receptors, splice variants of LOX-1 play an important role in modulating numerous subcellular mechanisms such as normal cell development, differentiation and growth in response to physiological stimuli. Thus, LOX-1 activity is a key regulator in determining the severity of many genetic, metabolic, cardiovascular, renal, and neurodegenerative diseases and/or cancer. Increased expression of LOX-1 precipitates pathological disorders during the aging process. Therefore, it becomes important to develop novel LOX-1 inhibitors based on its ligand binding polarity and/or affinity and disrupt the uptake of its ligand: oxidized low-density lipoproteins (ox-LDL). In this review, we shed light on the presently studied and developed novel LOX-1 inhibitors that may have potential for treatment of diseases characterized by LOX-1 activation.


Assuntos
Receptores Depuradores Classe E , Ligantes , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
15.
J Nat Med ; 76(2): 389-401, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064897

RESUMO

Corilagin, a natural polyphenol compound isolated from Phyllanthus urinaria L., exerts various pharmacological effects, such as antihyperglycemic, antitumor, and antioxidative stress properties, but the mechanisms underlying the antiatherosclerotic effects of corilagin have not been entirely elucidated. In the present study, we investigated the antiatherosclerotic effects of corilagin using a high-fat diet (HFD)-induced atherosclerotic rabbit model and ox-LDL-induced vascular smooth muscle cells (VSMCs) and explored the underlying molecular mechanisms. The serum lipid levels were measured through an enzymatic colorimetric assay. A histological analysis of rabbit aortas was performed after hematoxylin-eosin and oil red O staining. The proliferation of ox-LDL-induced VSMCs was detected using MTT assays, and the migration of cells was determined by wound scratch assays. In addition, the mRNA and protein expression levels of lectin-like ox-LDL receptor-1 (LOX-1), myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assays. Our results indicate that corilagin significantly reduced the serum levels of TC, TG and LDL-C, increased the HDL-C levels, decreased the intimal thickening in the thoracic aorta, and reduced the formation of foam cells in an HFD-induced rabbit atherosclerosis model. Moreover, corilagin suppressed the proliferation and migration of ox-LDL-induced VSMCs and reduced LOX-1, MyD88, NF-κB, MCP-1, and TNF-α mRNA and protein expression in vivo and in vitro. These data demonstrate that corilagin exerts antiatherosclerotic effects in vivo and in vitro and that the mechanisms may be closely associated with downregulation of the LOX-1/MyD88/NF-κB pathway.


Assuntos
Aterosclerose/tratamento farmacológico , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Coelhos , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
16.
Cell Death Differ ; 29(4): 697-708, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34611296

RESUMO

Autophagy is a highly conserved catabolic process to maintain cellular homeostasis. However, dysfunctional autophagy contributes to a context-dependent role in cancer. Here, we clarified the exact role of autophagy modulated by the scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in esophageal cancer (EC). A comprehensive analysis in various cancers displayed that LOX-1 was upregulated the most in EC tissues and associated with poor prognosis of patients. Deletion of LOX-1 ex vivo and in vivo suppresses EC development by inducing autophagic cell death. Receptor for activated C kinase 1 (RACK1) was identified as a signal adapter of LOX-1, which incented RAS/MEK/ERK pathway and TFEB nuclear export signal and safeguarded tumorigenesis. A sulfated polysaccharide fucoidan extracted from brown seaweed was found to bind with LOX-1 and mediate its proteasomal degradation but not the lysosome pathway, leading to autophagy-related cell death in EC. These results reveal a central contribution of LOX-1 to EC development and provide genetic ablation or bioactive polysaccharide as an effective intervention for EC therapy.


Assuntos
Neoplasias Esofágicas , Receptores Depuradores Classe E/metabolismo , Autofagia , Neoplasias Esofágicas/tratamento farmacológico , Humanos , Lipoproteínas LDL/metabolismo , Lisossomos/metabolismo , Receptores Depuradores Classe E/genética
17.
Cardiovasc Res ; 118(1): 254-266, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33483748

RESUMO

AIMS: Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA. METHODS AND RESULTS: Endothelium-dependent relaxations to acetylcholine were reduced in aortae of two tumour necrosis factor alpha (TNFα) transgenic mouse lines with either mild (Tg3647) or severe (Tg197) forms of RA in a time- and severity-dependent fashion as assessed by organ chamber myograph. In Tg197, TNFα plasma levels were associated with severe endothelial dysfunction. LOX-1 receptor was markedly up-regulated leading to increased vascular oxLDL uptake and NFκB-mediated enhanced Arg2 expression via direct binding to its promoter resulting in reduced NO bioavailability and vascular cGMP levels as shown by ELISA and chromatin immunoprecipitation. Anti-TNFα treatment with infliximab normalized endothelial function together with LOX-1 and Arg2 serum levels in mice. In RA patients, soluble LOX-1 serum levels were also markedly increased and closely related to serum levels of C-reactive protein. Similarly, ARG2 serum levels were increased. Similarly, anti-TNFα treatment restored LOX-1 and ARG2 serum levels in RA patients. CONCLUSIONS: Increased TNFα levels not only contribute to RA, but also to endothelial dysfunction by increasing vascular oxLDL content and activation of the LOX-1/NFκB/Arg2 pathway leading to reduced NO bioavailability and decreased cGMP levels. Anti-TNFα treatment improved both articular symptoms and endothelial function by reducing LOX-1, vascular oxLDL, and Arg2 levels.


Assuntos
Aorta Torácica/efeitos dos fármacos , Arginase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Receptores Depuradores Classe E/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação/efeitos dos fármacos , Adulto , Animais , Animais Geneticamente Modificados , Aorta Torácica/enzimologia , Aorta Torácica/imunologia , Aorta Torácica/fisiopatologia , Arginase/genética , Artrite Reumatoide/enzimologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores Depuradores Classe E/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
18.
Exp Cell Res ; 410(1): 112952, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848206

RESUMO

Septic arthritis induced by Staphylococcus aureus (S. aureus) causes irreversible cartilage degradation and subsequent permanent joint dysfunction. Recently, cartilage degradation in osteoarthritis is recognized to be associated with metabolic disorders. However, whether cholesterol metabolism is linked to septic arthritis pathology remains largely unknown. Here, we found that exposure to fermentation supernatant (FS) of S. aureus in chondrocytes resulted in a significant increase in expression of key modulators involved in cholesterol metabolism, including lectin-type oxidized low density lipoprotein receptor 1 (LOX1), cholesterol 25-hydroxylase (CH25H), 25- hydroxycholesterol 7α-hydroxylase (CYP7B1) as well as retinoic acid-related orphan receptor alpha (RORα), a binding receptor for cholesterol metabolites. We further demonstrated that enhancement of CH25H/CYP7B1/RORα axis resulted from FS exposure was mediated by activation of NF-κB signaling, along with upregulation in catabolic factors including matrix metallopeptidases (MMP3 and MMP13), aggrecanase-2 (ADAMTS5), and nitric oxide synthase-2 (NOS2) in chondrocytes. Exogenous cholesterol acts synergistically with FS in activating NF-κB pathway and increases cholesterol metabolism. While, the addition of tauroursodeoxycholic acid (TUDCA) which promotes cholesterol efflux, resulted in remarkable reduction of intracellular cholesterol level and restoration of balance between anabolism and catabolism in FS treated chondrocytes. Collectively, our data indicated that, in response to FS of S. aureus, NF-κB signaling activation coupled with increased cholesterol metabolism to stimulate catabolic factors in chondrocytes, highlighting cholesterol metabolism as a potential therapeutic target for treating septic arthritis.


Assuntos
Artrite Infecciosa/genética , Cartilagem/crescimento & desenvolvimento , Osteoartrite/genética , Staphylococcus aureus/patogenicidade , Proteína ADAMTS5/genética , Artrite Infecciosa/microbiologia , Artrite Infecciosa/patologia , Cartilagem/metabolismo , Cartilagem/microbiologia , Cartilagem/patologia , Células Cultivadas , Colesterol/genética , Condrócitos/metabolismo , Condrócitos/microbiologia , Condrócitos/patologia , Família 7 do Citocromo P450/genética , Regulação da Expressão Gênica/genética , Humanos , Metaloproteinase 13 da Matriz/genética , Metabolismo/genética , NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Osteoartrite/microbiologia , Osteoartrite/patologia , Receptores Depuradores Classe E/genética , Transdução de Sinais/genética , Esteroide Hidroxilases/genética , Ácido Tauroquenodesoxicólico/genética , Fator de Transcrição RelA/genética
19.
Int J Med Sci ; 18(16): 3652-3664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790037

RESUMO

Aim: In the late stage of atherosclerosis, the endothelial barrier of plaque is destroyed. The rapid deposition of oxidized lipids in the circulation leads to migration of numerous smooth muscle cells and macrophages, as well as foaming necrosis. The plaque progresses rapidly, and vulnerable plaques can easily induce adverse cardiovascular events. Here, we take the principle of gene editing to transfer the liver to express the LOX-1 receptor which is more sensitive to Ox-LDL by using AAV8 containing a liver-specific promoter. In this way, we want to explore whether the progress of advanced atherosclerosis and the stability of advanced plaque can be improved when the liver continues to clear Ox-LDL from the circulation. Methods and Results: In order to explore the effect of the physiological and continuous elimination of Ox-LDL through the liver on advanced atherosclerosis, we chose ApoE-/- mice in high-fat diet for 20 weeks. After 16 weeks of high-fat diet, the baseline group was sacrificed and the specimens were collected. The virus group and the control group were injected with the same amount of virus dilution and normal saline through the tail vein, and continued to feed until 20 weeks of high-fat diet, and then sacrificed to collect specimens. The results showed that LOX-1 was ectopically and functionally expressed in the liver as an Ox-LDL receptor, reducing the content of it in circulation. Compared with the control group, the degree of plaque progression in the virus group was significantly reduced, similar to the baseline group, the plaque necrosis core decreased, and the collagen fiber content increased. In addition, there are more contractile smooth muscle cells in the plaques of the virus group instead of synthetic ones, and the content of macrophages was also reduced. These data suggested that the virus group mice have greatly increased advanced plaque stability compared with the control group mice. Conclusions: Due to the destruction of endothelial barrier in advanced plaques, rapid deposition of Ox-LDL can result in fast plaque progression, increased necrotic cores, and decreased stability. Our research shows that the use of AAV8 through gene editing allows the liver to express LOX-1 receptors that are more sensitive to Ox-LDL, so that it can continue to bind Ox-LDL in the circulation and exploit the liver's strong lipid metabolism ability to physiologically clear Ox-LDL, which can inhibit the rapid progress of advanced plaque and increase the stability of plaque.


Assuntos
Aterosclerose/metabolismo , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Progressão da Doença , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Células THP-1
20.
Int Immunopharmacol ; 101(Pt B): 108275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688153

RESUMO

Oxidized low-density lipoprotein receptor 1 (OLR1), a key receptor for oxidized low-density lipoprotein (ox-LDL), plays a crucial role in cancer and inflammatory disease. However, the correlation between OLR1 expression and immune infiltration in breast cancer (BC) remain unclear. In this study, we comprehensively analyzed the expression level of OLR1 in BC tissues and explore the prognostic importance of OLR1 using quantitative real-time PCR, immunohistochemical analysis and different databases. The significantly enriched KEGG and GO pathways were used to identify the potential biological function of OLR1 via LinkedOmics analysis. Furthermore, we detected the correlation between OLR1 expression and a variety of immune infiltrating cells via Tumor Immune Estimation Resource database and GEPIA database. Our study revealed that OLR1 upregulation was observed in BC tissues and correlated with worse clinical outcomes and advanced clinicopathological factors. Meanwhile, OLR1 regulated various immunity-related pathways, especially the polarization of macrophages. Immunohistochemical analysis further confirmed the significant correlation between OLR1 expression and tumor infiltration of M2 macrophages as well as tumor-associated macrophages. OLR1 upregulation indicated poor prognosis in BC, possibly through inducing macrophage polarization and triggering immune evasion. Collectively, OLR1 may represent a potential therapeutic target for BC tailored therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Lipoproteínas LDL/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Receptores Depuradores Classe E/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Prognóstico , Receptores Depuradores Classe E/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA