Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969364

RESUMO

The transmembrane E3 ligases RNF43 and ZNRF3 perform key tumour suppressor roles by inducing endocytosis of members of the Frizzled (FZD) family, the primary receptors for WNT. Loss-of-function mutations in RNF43 and ZNRF3 mediate FZD stabilisation and a WNT-hypersensitive growth state in various cancer types. Strikingly, RNF43 and ZNRF3 mutations are differentially distributed across cancer types, raising questions about their functional redundancy. Here, we compare the efficacy of RNF43 and ZNRF3 of targeting different FZDs for endocytosis. We find that RNF43 preferentially down-regulates FZD1/FZD5/FZD7, whereas ZNRF3 displays a preference towards FZD6. We show that the RNF43 transmembrane domain (TMD) is a key molecular determinant for inducing FZD5 endocytosis. Furthermore, a TMD swap between RNF43 and ZNRF3 re-directs their preference for FZD5 down-regulation. We conclude that RNF43 and ZNRF3 preferentially down-regulate specific FZDs, in part by a TMD-dependent mechanism. In accordance, tissue-specific expression patterns of FZD homologues correlate with the incidence of RNF43 or ZNRF3 cancer mutations in those tissues. Consequently, our data point to druggable vulnerabilities of specific FZD receptors in RNF43- or ZNRF3-mutant human cancers.


Assuntos
Endocitose , Receptores Frizzled , Ubiquitina-Proteína Ligases , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Humanos , Endocitose/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Mutação , Via de Sinalização Wnt/genética , Regulação para Baixo/genética
2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928134

RESUMO

Wnt/ß-catenin signaling dysregulation is associated with the pathogenesis of many human diseases, including hypertension and heart disease. The aim of this study was to immunohistochemically evaluate and compare the expression of the Fzd8, WNT1, GSK-3ß, and ß-catenin genes in the hearts of rats with spontaneous hypertension (SHRs) and deoxycorticosterone acetate (DOCA)-salt-induced hypertension. The myocardial expression of Fzd8, WNT1, GSK-3ß, and ß-catenin was detected by immunohistochemistry, and the gene expression was assessed with a real-time PCR method. In SHRs, the immunoreactivity of Fzd8, WNT1, GSK-3ß, and ß-catenin was attenuated in comparison to that in normotensive animals. In DOCA-salt-induced hypertension, the immunoreactivity of Fzd8, WNT1, GSK-3ß, and ß-catenin was enhanced. In SHRs, decreases in the expression of the genes encoding Fzd8, WNT1, GSK-3ß, and ß-catenin were observed compared to the control group. Increased expression of the genes encoding Fzd8, WNT1, GSK-3ß, and ß-catenin was demonstrated in the hearts of rats with DOCA-salt-induced hypertension. Wnt signaling may play an essential role in the pathogenesis of arterial hypertension and the accompanying heart damage. The obtained results may constitute the basis for further research aimed at better understanding the role of the Wnt/ß-catenin pathway in the functioning of the heart.


Assuntos
Glicogênio Sintase Quinase 3 beta , Hipertensão , Miocárdio , Via de Sinalização Wnt , beta Catenina , Animais , Hipertensão/metabolismo , Hipertensão/etiologia , Hipertensão/induzido quimicamente , Hipertensão/patologia , Ratos , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , beta Catenina/metabolismo , beta Catenina/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Ratos Endogâmicos SHR , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Acetato de Desoxicorticosterona
3.
J Exp Clin Cancer Res ; 43(1): 156, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822429

RESUMO

BACKGROUND: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. METHODS: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. RESULTS: In response to increased fibronectin secretion and integrin ß1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/ß-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. CONCLUSIONS: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores Frizzled , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Animais , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Linhagem Celular Tumoral , Platina/farmacologia , Platina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos
4.
Genomics ; 116(3): 110851, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692440

RESUMO

Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-ß and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Ovinos/genética , Desenvolvimento Muscular/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , RNA-Seq , Transdução de Sinais , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proliferação de Células
5.
J Biochem Mol Toxicol ; 38(6): e23742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38780005

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the gastrointestinal malignancies with high prevalence and poor prognosis. Previous reports suggested that circular ribose nucleic acids might exert regulatory functions in ESCC. This study aims to explore the role of circ_0000592 in ESCC progression, providing novel insights into the diagnosis and therapeutic avenues for ESCC. The GSE131969 data set was utilized to assess circ_0000592 expression in ESCC. The validation was performed in the tumorous tissues of ESCC patients (n = 80) and human-immortalized ESCC cell lines. The correlation between circ_0000592 expression and prognosis was analyzed. The impact of circ_0000592 on ESCC cell activity was evaluated through downregulating circ_0000592, as well as encompassing cell viability, migration, and invasion abilities. The downstream pathway of circ_0000592 was explored by binding site prediction from the TargetScan database, followed by in vitro and in vivo experiments. An in vivo xenograft tumor model was established to highlight the role of circ_0000592 in ESCC. Patients with ESCC exhibited higher circ_0000592 expression levels compared to noncancerous patients, which were associated with reduced survival time, higher TNM stage, and increased lymph node metastasis. The circ_0000592 downregulation suppressed cell viability, migration, and invasion abilities in vitro. Mechanistically, circ_0000592 countered the inhibitory effects on the target gene Frizzled 5 (FZD5) through interactions with miR-155-5p. The overexpression of miR-155-5p curtailed the luciferase activity of circ_0000592 in ESCC cells, inhibiting downstream molecule FZD5 protein expression and subsequently mitigating the detrimental consequences of escalated circ_0000592 expression in ESCC cells. Consistently, circ_0000592 downregulation curbed proliferation and metastasis of ESCC tumors in vivo. In summary, circ_0000592 promoted the progress of ESCC by counteracting the inhibitory impact on FZD5 through its interaction with miR-155-5p. Together, our findings highlighted circ_0000592 as a prospective therapeutic target for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptores Frizzled , MicroRNAs , RNA Circular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Animais , Linhagem Celular Tumoral , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Masculino , Camundongos , Progressão da Doença , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos Endogâmicos BALB C , Movimento Celular
6.
Invest Ophthalmol Vis Sci ; 65(4): 1, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558095

RESUMO

Purpose: The purpose of this study is to report five novel FZD4 mutations identified in familial exudative vitreoretinopathy (FEVR) and to analyze and summarize the pathogenic mechanisms of 34 of 96 reported missense mutations in FZD4. Methods: Five probands diagnosed with FEVR and their family members were enrolled in the study. Ocular examinations and targeted gene panel sequencing were conducted on all participants. Plasmids, each carrying 29 previously reported FZD4 missense mutations and five novel mutations, were constructed based on the selection of mutations from each domain of FZD4. These plasmids were used to investigate the effects of mutations on protein expression levels, Norrin/ß-catenin activation capacity, membrane localization, norrin binding ability, and DVL2 recruitment ability in HEK293T, HEK293STF, and HeLa cells. Results: All five novel mutations (S91F, V103E, C145S, E160K, C377F) responsible for FEVR were found to compromise Norrin/ß-catenin activation of FZD4 protein. After reviewing a total of 34 reported missense mutations, we categorized all mutations based on their functional changes: signal peptide mutations, cysteine mutations affecting disulfide bonds, extracellular domain mutations influencing norrin binding, transmembrane domain (TM) 1 and TM7 mutations impacting membrane localization, and intracellular domain mutations affecting DVL2 recruitment. Conclusions: We expanded the spectrum of FZD4 mutations relevant to FEVR and experimentally demonstrated that missense mutations in FZD4 can be classified into five categories based on different functional changes.


Assuntos
Doenças Retinianas , beta Catenina , Humanos , Vitreorretinopatias Exsudativas Familiares , beta Catenina/metabolismo , Doenças Retinianas/patologia , Células HEK293 , Células HeLa , Receptores Frizzled/genética , Mutação , Linhagem , Análise Mutacional de DNA , Tetraspaninas/genética
7.
EMBO Mol Med ; 16(5): 1063-1090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589650

RESUMO

Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/ß-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/ß-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/ß-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.


Assuntos
Células Endoteliais , Fatores de Transcrição Forkhead , Receptores Frizzled , Neoplasias Pulmonares , Animais , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Humanos , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Via de Sinalização Wnt , Progressão da Doença , Neovascularização Patológica/genética
8.
Trends Pharmacol Sci ; 45(5): 419-429, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594145

RESUMO

The Frizzled family of transmembrane receptors (FZD1-10) belongs to the class F of G protein-coupled receptors (GPCRs). FZDs bind to and are activated by Wingless/Int1 (WNT) proteins. The WNT/FZD signaling system regulates crucial aspects of developmental biology and stem-cell regulation. Dysregulation of WNT/FZD communication can lead to developmental defects and diseases such as cancer and fibrosis. Recent insight into the activation mechanisms of FZDs has underlined that protein dynamics and conserved microswitches are essential for FZD-mediated information flow and build the basis for targeting these receptors pharmacologically. In this review, we summarize recent advances in our understanding of FZD activation, and how novel concepts merge and collide with existing dogmas in the field.


Assuntos
Receptores Frizzled , Humanos , Receptores Frizzled/metabolismo , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Wnt/metabolismo
9.
Int J Oral Sci ; 16(1): 7, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246919

RESUMO

Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-ß-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression. These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.


Assuntos
Carcinogênese , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinogênese/genética , Transformação Celular Neoplásica , Via de Sinalização Wnt , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/genética , Proteínas Wnt , Receptores Frizzled/genética , Janus Quinase 1 , Fator de Transcrição STAT3
10.
J Chemother ; 36(2): 143-155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37300277

RESUMO

A major challenge in platinum-based cancer therapy, including cisplatin (DDP), is the clinical management of chemo-resistant tumours, which have unknown pathogenesis at the level of epigenetic mechanism. To identify potential resistance mechanisms, we integrated ovarian cancers (OC)-related GEO database retrieval and prognostic analyses. The results of bioinformatics prediction showed that frizzled class receptor 3 (FZD3) was a DDP-associated gene and closely related to the prognosis of OC. DDP resistance in OC inhibited FZD3 expression. FZD3 reduced DDP resistance in OC cells, increased the inhibitory effect of DDP on the growth and aggressiveness of DDP-resistant cells, and promoted apoptosis and DNA damage. TET2 was reduced in OC. TET2 promoted the transcription of FZD3 through DNA hydroxymethylation. TET2 sensitized the drug-resistant cells to DDP in vitro and in vivo, and the ameliorating effect of TET2 on drug resistance was significantly reversed after the inhibition of FZD3. Our findings reveal a previously unknown epigenetic axis TET2/FZD3 suppression as a potential resistance mechanism to DDP in OC.


Assuntos
Dioxigenases , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Epigênese Genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proliferação de Células , Apoptose , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/uso terapêutico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Dioxigenases/farmacologia
11.
J Nutr Biochem ; 124: 109489, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926400

RESUMO

Epidemiological studies suggest an association between folate deficiency (FD) and cervical squamous cell carcinoma (SCC) progression. However, the underlying mechanism is unclear. Our study showed that FD-driven downregulation of miR-375 promoted proliferation of SCC SiHa cells and progression of xenograft tumors developed from SiHa; however, the exact mechanism of this process remained unclear. The current study aimed to elucidate the underlying mechanisms by which FD promotes the progression of SiHa cells by downregulating miR-375 expression. The results showed that miR-375 acted as a suppressor of SCC and inhibited the proliferation, migration, and invasion of SiHa cells. The FZD4 gene was identified as a target gene of miR-375, which can reverse the anti-onco effect of miR-375 and promote the proliferation and migration of SiHa cells. Furthermore, the regulatory effects of miR-375 and FZD4 on SiHa cells may be achieved by activating the ß-catenin signaling pathway. Moreover, FD may regulate the expression of miR-375 by regulating its DNA methylation level in the promoter region. In conclusion, our study reveals that FD regulates the miR-375/FZD4 axis by increasing the methylation of the miR-375 promoter, thereby activating ß-catenin signaling to promote SiHa cells progression. This study may provide new insights into the role of folic acid in the prevention and treatment of SCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo do Útero/genética , Via de Sinalização Wnt , Ácido Fólico/farmacologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Receptores Frizzled/genética
12.
J Gene Med ; 26(1): e3636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009760

RESUMO

BACKGROUND: Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A. METHODS: The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/ß-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay. RESULTS: The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/ß-catenin signalling pathway, promoting cell proliferation in CRC. CONCLUSIONS: Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Via de Sinalização Wnt , Animais , Humanos , Adenina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro
13.
Dev Cell ; 59(2): 244-261.e6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38154460

RESUMO

WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.


Assuntos
Glipicanas , Proteínas Wnt , Proteínas Wnt/metabolismo , Glipicanas/metabolismo , Via de Sinalização Wnt , Desenvolvimento Embrionário , Lipídeos , Receptores Frizzled/química , Receptores Frizzled/metabolismo
14.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060684

RESUMO

During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.


Assuntos
Endométrio , Placenta , Feminino , Humanos , Gravidez , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Receptores Frizzled/metabolismo , Células Estromais/metabolismo , Útero
15.
Cell Rep ; 42(11): 113354, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917586

RESUMO

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Assuntos
Tubas Uterinas , beta Catenina , Feminino , Humanos , beta Catenina/metabolismo , Tubas Uterinas/metabolismo , Transcriptoma/genética , Células-Tronco/metabolismo , Via de Sinalização Wnt , Organoides/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Frizzled/metabolismo
16.
Medicine (Baltimore) ; 102(40): e35406, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800830

RESUMO

BACKGROUND: Endometriosis is a chronic inflammatory, benign disorder that often co-occurs with adenomyosis and/or leiomyoma. The overall incidence of endometriosis in reproductive period women was nearly 10%. However, the exact mechanisms of endometriosis-associated pathogenesis are still unknown. METHODS: In this study, we aimed to investigate whether Frizzled-7 (FZD7) would effectively promote the development of endometriosis. The microarray-based data analysis was performed to screen endometriosis-related differentially expressed genes. This process uncovered specific hub genes, and the nexus of vital genes and ferroptosis-related genes were pinpointed. Then, we collected human endometrial and endometriotic tissues from patients with endometriosis of the ovary (n = 39) and control patients without endometriosis (n = 10, who underwent hysterectomy for uterine fibroids) to compare the expression of FZD7. RESULTS: These findings indicated that the expression of FZD7 was high compared with normal endometrium, and FZD7 may promote the progression of endometriosis. CONCLUSION: FZD7 may serve as a potential therapeutic target for endometriosis treatment.


Assuntos
Endometriose , Feminino , Humanos , Biomarcadores/metabolismo , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Leiomioma/patologia , Ovário/patologia
17.
J Med Chem ; 66(17): 11855-11868, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669317

RESUMO

Despite the essential roles of Frizzled receptors (FZDs) in mediating Wnt signaling in embryonic development and tissue homeostasis, ligands targeting FZDs are rare. A few antibodies and peptide modulators have been developed that mainly bind to the family-conserved extracellular cysteine-rich domain of FZDs, while the canonical binding sites in the transmembrane domain (TMD) are far from sufficiently addressed. Based on the recent structures of FZDs, we explored small-molecule ligand discovery by targeting TMD. From the ChemDiv library with ∼1.6 million compounds, we identified compound F7H as an antagonist of FZD7 with an IC50 at 1.25 ± 0.38 µM. Focusing on this hit, the structural dissection study, together with computing studies such as molecular docking, molecular dynamics simulation, and free energy perturbation calculations, defined the binding pocket with key residue recognition. Our results revealed the structural basis of ligand recognition and demonstrated the feasibility of structure-guided ligand discovery for FZD7-TMD.


Assuntos
Anticorpos , Receptores Frizzled , Feminino , Gravidez , Humanos , Ligantes , Simulação de Acoplamento Molecular , Sítios de Ligação
18.
Biomed Pharmacother ; 166: 115344, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634472

RESUMO

The Wnt signaling system is a critical pathway that regulates embryonic development and adult homeostasis. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or Frizzled receptors. SFRPs can act as anti-Wnt agents and suppress cancer growth by blocking the action of Wnt ligands. However, SFRPs are often silenced by promoter methylation in cancer cells, resulting in hyperactivation of the Wnt pathway. Epigenetic modifiers can reverse this silencing and restore SFRPs expression. Despite the potential of SFRPs as a therapeutic target, the effects of SFRPs on tumor development remain unclear. Therefore, a review of the expression of various members of the SFRPs family in different cancers and their potential as therapeutic targets is warranted. This review aims to summarize the current knowledge of SFRPs in cancer, focusing on their expression patterns and their potential as novel therapeutic targets.


Assuntos
Neoplasias , Via de Sinalização Wnt , Adulto , Feminino , Gravidez , Humanos , Proteínas Secretadas Relacionadas a Receptores Frizzled , Ligantes , Homeostase , Receptores Frizzled/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
19.
Cancer Treat Res Commun ; 36: 100751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37595345

RESUMO

INTRODUCTION: In this study, we aimed to elucidate the crosstalk between the Wnt/ß-catenin signaling pathway and colorectal cancer (CRC) associated with inflammatory bowel disease (IBD) using a bioinformatics analysis of putative common biomarkers and a systems biology approach. MATERIALS AND METHODS: The following criteria were used to search the GEO and ArrayExpress databases for terms related to CRC and IBD: 1. The dataset containing the transcriptomic data, and 2. Untreated samples by medications or drugs. A total of 42 datasets were selected for additional analysis. The GEO2R identified the differentially expressed genes. The genes involved in the Wnt signaling pathway were extracted from the KEGG database. Enrichment analysis and miRNA target prediction were conducted through the ToppGene online tool. RESULTS: In CRC datasets, there were 1168 up- and 998 down-regulated probes, whereas, in IBD datasets, there were 256 up- and 200 down-regulated probes. There were 65 upregulated and 57 downregulated genes shared by CRC and IBD. According to KEGG, there were 166 genes in the Wnt pathway. FriZZled5 (FZD5) was a down-regulated gene in both CRC and IBD, as determined by the intersection of CRC- and IBD-related DEGs with the Wnt pathway. It was also demonstrated that miR-191, miR-885-5p, miR-378a-3p, and miR-396-3p affect the FriZZled5 gene expression. CONCLUSION: It is possible that increased expression of miR-191 and miR-885-5p, or decreased expression of miR-378a -3p and miR396-3, in IBD and CRC results in decreased expression of the FZD5 gene. Based on the function of this gene, FZD5 may be a potential therapeutic target in IBD that progresses to CRC.


Assuntos
Neoplasias Colorretais , Receptores Frizzled , Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , Neoplasias Colorretais/genética , Regulação da Expressão Gênica de Plantas , Doenças Inflamatórias Intestinais/genética , MicroRNAs/genética , Plantas Geneticamente Modificadas , Receptores Frizzled/genética
20.
FASEB J ; 37(9): e23147, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585277

RESUMO

Long-term spaceflight can result in bone loss and osteoblast dysfunction. Frizzled-9 (Fzd9) is a Wnt receptor of the frizzled family that is vital for osteoblast differentiation and bone formation. In the present study, we elucidated whether Fzd9 plays a role in osteoblast dysfunction induced by simulated microgravity (SMG). After 1-7 days of SMG, osteogenic markers such as alkaline phosphatase (ALP), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2) were decreased, accompanied by a decrease in Fzd9 expression. Furthermore, Fzd9 expression decreased in the rat femur after 3 weeks of hindlimb unloading. In contrast, Fzd9 overexpression counteracted the decrease in ALP, OPN, and RUNX2 induced by SMG in osteoblasts. Moreover, SMG regulated phosphorylated glycogen synthase kinase-3ß (pGSK3ß) and ß-catenin expression or sublocalization. However, Fzd9 overexpression did not affect pGSK3ß and ß-catenin expression or sublocalization induced by SMG. In addition, Fzd9 overexpression regulated protein kinase B also known as Akt and extracellular signal-regulated kinase (ERK) phosphorylation and induced F-actin polymerization to form the actin cap, press the nuclei, and increase nuclear pore size, thereby promoting the nuclear translocation of Yes-associated protein (YAP). Our study findings provide mechanistic insights into the role of Fzd9 in triggering actin polymerization and activating YAP to rescue SMG-induced osteoblast dysfunction and suggest that Fzd9 is a potential target to restore osteoblast function in individuals with bone diseases and after spaceflight.


Assuntos
Actinas , Receptores Frizzled , Osteoblastos , Ausência de Peso , Proteínas de Sinalização YAP , Animais , Ratos , Actinas/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Polimerização , Ausência de Peso/efeitos adversos , Receptores Frizzled/metabolismo , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA