Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int Immunopharmacol ; 84: 106496, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304995

RESUMO

Mucociliary clearance, the continuous removal of mucus-trapped particles by cilia-driven directed transport of the airway lining fluid, is the primary innate defense mechanism of the airways. It is potently activated by acetylcholine (ACh) addressing muscarinic receptors with a currently less defined role of nicotinic ACh receptors (nAChR). We here set out to determine their contribution in driving ciliary activity in an explanted mouse trachea preparation utilizing selected agonists and antagonists and nAChR-subunit deficient mice. Nicotine (100 µM) induced an increase in ciliary beat frequency, accompanied by a sharp, but not long lasting increase in particle transport speed (PTS) on the mucosal surface showing marked desensitization within the next 30 min. Nicotine-induced PTS acceleration was sensitive to the general nAChR inhibitors mecamylamine and d-tubocurarine as well as to the α3ß4-nAChR antagonist α-conotoxin AulB, but not to other antagonists primarily addressing α3ß2-nAChR or α4-, α7- and α9-containing nAChR. Agonists at α3ß*-nAChR (epibatidine, cytisine), but not cotinine mimicked the effect. Tracheas from mice with genetic deletion of nAChR subunits α5, α7, α9, α10, α9/10, and ß2 retained full PTS response to nicotine, whereas this was entirely lost in tracheas from mice lacking the ß4-subunit. Collectively, our data show that nicotinic stimulation of α3ß4-nAChR acutely increases PTS to the same extent as the established strong activator ATP. In view of the marked desensitization observed in the present setting, the physiological relevance of these receptors in adapting mucociliary clearance to rapidly changing endogenous or environmental stimuli remains open.


Assuntos
Cílios/efeitos dos fármacos , Cílios/metabolismo , Movimento/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Traqueia/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Subunidades Proteicas/fisiologia , Receptores Nicotínicos/deficiência
2.
Mar Drugs ; 18(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272701

RESUMO

The α9-containing nicotinic acetylcholine receptor (nAChR) is increasingly emerging as a new tumor target owing to its high expression specificity in breast cancer. αO-Conotoxin GeXIVA is a potent antagonist of α9α10 nAChR. Nevertheless, the anti-tumor effect of GeXIVA on breast cancer cells remains unclear. Cell Counting Kit-8 assay was used to study the cell viability of breast cancer MDA-MD-157 cells and human normal breast epithelial cells, which were exposed to different doses of GeXIVA. Flow cytometry was adopted to detect the cell cycle arrest and apoptosis of GeXIVA in breast cancer cells. Migration ability was analyzed by wound healing assay. Western blot (WB), quantitative real-time PCR (QRT-PCR) and flow cytometry were used to determine expression of α9-nAChR. Stable MDA-MB-157 breast cancer cell line, with the α9-nAChR subunit knocked out (KO), was established using the CRISPR/Cas9 technique. GeXIVA was able to significantly inhibit the proliferation and promote apoptosis of breast cancer MDA-MB-157 cells. Furthermore, the proliferation of breast cancer MDA-MB-157 cells was inhibited by GeXIVA, which caused cell cycle arrest through downregulating α9-nAChR. GeXIVA could suppress MDA-MB-157 cell migration as well. This demonstrates that GeXIVA induced a downregulation of α9-nAChR expression, and the growth of MDA-MB-157 α9-nAChR KO cell line was inhibited as well, due to α9-nAChR deletion. GeXIVA inhibits the growth of breast cancer cell MDA-MB-157 cells in vitro and may occur in a mechanism abolishing α9-nAChR.


Assuntos
Proliferação de Células/efeitos dos fármacos , Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/metabolismo
3.
PLoS One ; 13(12): e0208982, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30543688

RESUMO

Cholinergic Receptor Nicotinic Alpha 5 (CHRNA5) is an important susceptibility locus for nicotine addiction and lung cancer. Depletion of CHRNA5 has been associated with reduced cell viability, increased apoptosis and alterations in cellular motility in different cancers yet not in breast cancer. Herein we first showed the expression of CHRNA5 was variable and positively correlated with the fraction of total genomic alterations in breast cancer cell lines and tumors indicating its potential role in DNA damage response (DDR). Next, we demonstrated that silencing of CHRNA5 expression in MCF7 breast cancer cell line by RNAi affected expression of genes involved in cytoskeleton, TP53 signaling, DNA synthesis and repair, cell cycle, and apoptosis. The transcription profile of CHRNA5 depleted MCF7 cells showed a significant positive correlation with that of A549 lung cancer cell line while exhibiting a negative association with the CHRNA5 co-expression profile obtained from Cancer Cell Line Encylopedia (CCLE). Moreover, it exhibited high similarities with published MCF7 expression profiles obtained from exposure to TP53 inducer nutlin-3a and topoisomerase inhibitors. We then demonstrated that CHRNA5 siRNA treatment reduced cell viability and DNA synthesis indicating G1 arrest while it significantly increased apoptotic sub-G1 cell population. Accordingly, we observed lower levels of phosphorylated RB (Ser807/811) and an increased BAX/BCL2 ratio in RNAi treated MCF7 cells. We also showed that CHRNA5 RNAi transcriptome correlated negatively with DDR relevant gene expression profile in breast cancer gene expression datasets while the coexposure to topoisomerase inhibitors in the presence of CHRNA5 RNAi enhanced chemosensitivity potentially due to reduced DDR. CHRNA5 RNAi consistently lowered total CHEK1 mRNA and protein levels as well as phosphorylated CHEK1 (Ser345) in MCF7 cells. We also detected a significant positive correlation between the expression levels of CHRNA5 and CHEK1 in CCLE, TCGA and METABRIC breast cancer datasets. Our study suggests CHRNA5 RNAi is associated with cell cycle inhibition, apoptosis as well as reduced DDR and increased drug sensitivity in breast cancer yet future studies are warranted since dose- and cell line-specific differences exist in response to CHRNA5 depletion. Gene expression microarray data can be accessed from GEO database under the accession number GSE89333.


Assuntos
Apoptose/genética , Neoplasias da Mama/patologia , Ciclo Celular/genética , Dano ao DNA/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais/genética
4.
Genet Test Mol Biomarkers ; 22(12): 714-718, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30461311

RESUMO

Background: Escobar syndrome, a nonlethal variant of multiple pterygium syndromes (MPS), is a rare autosomal recessive disorder characterized by pterygia and multiple joint contractures along with other anomalies. Variants in cholinergic receptor nicotinic gamma subunit (CHRNG) have been previously reported in patients with Escobar syndrome. Objective: We studied a consanguineous Pakistani family affected with Escobar syndrome to identify the underlying genetic defect through short tandem repeat (STR) genotyping and direct DNA sequencing. Results: Genotyping with microsatellite markers (D2S427, D2S2344, and D2S206) revealed linkage of the disease phenotype in the family to the CHRNG locus. Using Sanger sequencing, we identified a homozygous nonsense CHRNG variant c.136C>T (p.R46*), predicted to produce a truncated protein that leads to acetylcholine receptor deficiency, causing MPS. The unaffected parents and siblings in the family were heterozygous carriers of this disease-causing variant. Conclusion: We report the identification of a nonsense CHRNG variant in a consanguineous Pakistani family affected with Escobar syndrome.


Assuntos
Anormalidades Múltiplas/genética , Códon sem Sentido , Hipertermia Maligna/genética , Receptores Nicotínicos/genética , Anormalidades da Pele/genética , Anormalidades Múltiplas/etnologia , Consanguinidade , Feminino , Genes Recessivos , Genótipo , Humanos , Masculino , Hipertermia Maligna/etnologia , Repetições de Microssatélites , Paquistão , Linhagem , Fenótipo , Receptores Nicotínicos/deficiência , Anormalidades da Pele/etnologia
5.
Basic Res Cardiol ; 113(5): 38, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097758

RESUMO

The CHRNA5 gene encodes a neurotransmitter receptor subunit involved in multiple processes, including cholinergic autonomic nerve activity and inflammation. Common variants in CHRNA5 have been linked with atherosclerotic cardiovascular disease. Association of variation in CHRNA5 and specific haplotypes with cardiovascular outcomes has not been described. The aim of this study was to examine the association of CHRNA5 haplotypes with gene expression and mortality among patients with acute myocardial infarction (AMI) and explore potential mechanisms of this association. Patients (N = 2054) hospitalized with AMI were genotyped for two common variants in CHRNA5. Proportional hazard models were used to estimate independent association of CHRNA5 haplotype with 1-year mortality. Both individual variants were associated with mortality (p = 0.0096 and 0.0004, respectively) and were in tight LD (D' = 0.99). One haplotype, HAP3, was associated with decreased mortality one year after AMI (adjusted HR = 0.42, 95% CI 0.26, 0.68; p = 0.0004). This association was validated in an independent cohort (N = 637) of post-MI patients (adjusted HR = 0.23, 95% CI 0.07, 0.79; p = 0.019). Differences in CHRNA5 expression by haplotype were investigated in human heart samples (n = 28). Compared with non-carriers, HAP3 carriers had threefold lower cardiac CHRNA5 mRNA expression (p = 0.023). Circulating levels of the inflammatory marker hsCRP were significantly lower in HAP3 carriers versus non-carriers (3.43 ± 4.2 versus 3.91 ± 5.1; p = 0.0379). Activation of the inflammasome, an important inflammatory complex involved in cardiovascular disease that is necessary for release of the pro-inflammatory cytokine IL-1 ß, was assessed in bone marrow-derived macrophages (BMDM) from CHRNA5 knockout mice and wild-type controls. In BMDM from CHRNA5 knockout mice, IL-1ß secretion was reduced by 50% compared to wild-type controls (p = 0.004). Therefore, a common haplotype of CHRNA5 that results in reduced cardiac expression of CHRNA5 and attenuated macrophage inflammasome activation is associated with lower mortality after AMI. These results implicate CHRNA5 and the cholinergic anti-inflammatory pathway in survival following AMI.


Assuntos
Infarto do Miocárdio/genética , Miocardite/genética , Proteínas do Tecido Nervoso/genética , Receptores Nicotínicos/genética , Idoso , Animais , Células Cultivadas , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Haplótipos , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Miocardite/diagnóstico , Miocardite/metabolismo , Miocardite/mortalidade , Fenótipo , Prognóstico , Estudos Prospectivos , Fatores de Proteção , Receptores Nicotínicos/deficiência , Fatores de Risco , Fatores de Tempo , Estados Unidos/epidemiologia
6.
J Neurosci ; 38(31): 6900-6920, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954848

RESUMO

Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and ß4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.


Assuntos
Aprendizagem da Esquiva/fisiologia , Núcleo Interpeduncular/fisiologia , Nicotina/farmacologia , Receptores Nicotínicos/fisiologia , Fumar/psicologia , Animais , Cruzamentos Genéticos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Genes Reporter , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nicotina/administração & dosagem , Nicotina/toxicidade , Optogenética , Técnicas de Patch-Clamp , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Proteínas Recombinantes de Fusão/metabolismo , Fumar/genética , Fumar/fisiopatologia , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/fisiopatologia
7.
Neuropharmacology ; 135: 529-535, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29677582

RESUMO

The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 µg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice.


Assuntos
Aprendizagem/fisiologia , Exposição Materna , Memória/fisiologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Receptores Nicotínicos/deficiência , Animais , Ansiedade/metabolismo , Feminino , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores Nicotínicos/genética
8.
Br J Pharmacol ; 175(11): 1944-1956, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585241

RESUMO

BACKGROUND AND PURPOSE: Genomic analysis has shown many variants in both CHRNA4 and CHRNB2, genes which encode the α4 and ß2 subunits of nicotinic ACh receptors (nAChR) respectively. Some variants influence receptor expression, raising the possibility that CHRNA4 variants may affect response to tobacco use in humans. Chronic exposure to nicotine increases expression of nAChRs, particularly α4ß2-nAChRs, in humans and laboratory animals. Here, we have evaluated whether the initial level of receptor expression affects the increase in expression. EXPERIMENTAL APPROACH: Mice differing in expression of α4 and/or ß2 nAChR subunits were chronically treated with saline, 0.25, 1.0 or 4.0 mg·kg-1 ·h-1 nicotine. Brain preparations were analysed autoradiographically by [125 I]-epibatidine binding, immunoprecipitation and Western blotting. KEY RESULTS: Immunochemical studies confirmed that most of the [3 H]-epibatidine binding corresponds to α4ß2*-nAChR and that increases in binding correspond to increases in α4 and ß2 proteins. Consistent with previous reports, the dose-dependent increase in nAChR in wild-type mice following chronic nicotine treatment, measured with any of the methods, reached a maximum. Although receptor expression was reduced by approximately 50% in ß2+- mice, the pattern of response to chronic treatment resembled that of wild-type mice. In contrast, both α4+- and α4+- /ß2+- exhibited relatively greater up-regulation. Consistent with previous reports, α4ß2α5-nAChR did not increase in response to nicotine. CONCLUSIONS AND IMPLICATIONS: These results indicate that mice with reduced expression of the α4 nAChR subunit have a more robust response to chronic nicotine than mice with normal expression of this subunit. LINKED ARTICLES: This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.


Assuntos
Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Relação Estrutura-Atividade
9.
Neurobiol Learn Mem ; 136: 13-20, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660076

RESUMO

Children of mothers who smoked during pregnancy are at significantly greater risk for cognitive impairments including memory deficits, but the mechanisms underlying this effect remain to be understood. In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired long-term hippocampus-dependent memory, functional loss of α2-containing nicotinic acetylcholine receptors (α2∗ nAChRs) in oriens-lacunosum moleculare (OLM) cells, increased CA1 network excitation, and unexpected facilitation of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses. Here we demonstrate that α2 knockout mice show the same pattern of memory impairment as previously observed in wild-type mice exposed to early postnatal nicotine. However, α2 knockout mice and α2 knockout mice exposed to early postnatal nicotine did not share all of the anomalies in hippocampal function observed in wild-type mice treated with nicotine during development. Unlike nicotine-treated wild-type mice, α2 knockout mice and nicotine-exposed α2 knockout mice did not demonstrate increased CA1 network excitation following Schaffer collateral stimulation and facilitated LTP, indicating that the effects are likely adaptive changes caused by activation of α2∗ nAChRs during nicotine exposure and are unlikely related to the associated memory impairment. Thus, the functional loss of α2∗ nAChRs in OLM cells likely plays a critical role in mediating this developmental-nicotine-induced hippocampal memory deficit.


Assuntos
Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Receptores Nicotínicos/fisiologia , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Feminino , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
10.
Alcohol ; 57: 65-70, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793544

RESUMO

The prevalent co-abuse of nicotine and alcohol suggests a common neural mechanism underlying the actions of the two drugs. Nicotine, the addictive component of tobacco, activates nicotinic acetylcholine receptors (nAChRs) containing the α6 subunit (α6* nAChRs) in dopaminergic (DAergic) neurons of the ventral tegmental area (VTA), a region known to be crucial for drug reward. Recent evidence suggests that ethanol may potentiate ACh activation of these receptors as well, although whether α6* nAChR expression is necessary for behavioral effects of acute ethanol exposure is unknown. We compared binge-like ethanol consumption and ethanol reward sensitivity between knockout (KO) mice that do not express chrna6 (the gene encoding the α6 nAChR subunit, the α6 KO line) and wild-type (WT) littermates using the Drinking-in-the-Dark (DID) and Conditioned Place Preference (CPP) assay, respectively. In the DID assay, α6 KO female and male mice consumed ethanol similarly to WT mice at all concentrations tested. In the CPP assay, 2.0-g/kg and 3.0-g/kg, but not 0.5-mg/kg, ethanol conditioned a place preference in WT female and male mice, whereas only 2.0-g/kg ethanol conditioned a place preference in α6 KO mice. Acute challenge with ethanol reduced locomotor activity, an effect that developed tolerance with repeated injections, similarly between genotypes in both female and male mice. Together, these data indicate that expression of α6* nAChRs is not required for binge-like ethanol consumption and reward, but modulate sensitivity to the rewarding properties of the drug.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Subunidades Proteicas/deficiência , Receptores Nicotínicos/deficiência , Recompensa , Consumo de Bebidas Alcoólicas/psicologia , Animais , Relação Dose-Resposta a Droga , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Eur J Pharmacol ; 753: 146-50, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107281

RESUMO

The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of ß2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using ß2 nACh receptor subunit knockout (ß2(-/-)) and wildtype (ß2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated ß2(+/+) mice compared with saline-treated ß2(+/+) mice and nicotine-treated ß2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing ß2(+/+) mice compared with saline-treated ß2(+/+) and nicotine-treated ß2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in ß2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in ß2(-/-) mice may have resulted from the lack of neuroadaptations in ß2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished function of the ß2 nACh receptor subunit may experience less anhedonia during nicotine withdrawal, which may facilitate smoking cessation.


Assuntos
Anedonia/efeitos dos fármacos , Deleção de Genes , Nicotina/farmacologia , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/psicologia , Animais , Masculino , Mecamilamina/farmacologia , Camundongos , Camundongos Knockout , Microinjeções , Nicotina/administração & dosagem , Recompensa , Autoestimulação/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia
12.
Neurobiol Aging ; 35(9): 2179.e1-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24731518

RESUMO

Cigarette smoking is protective in Parkinson's disease (PD), possibly because of nicotine action on brain nicotinic-acetylcholine receptors. The ß3 nicotinic-acetylcholine receptor subunit (encoded by CHRNB3) is depleted in the striatum of PD patients and associated with nicotine dependence. Herein, the CHRNB3 gene was sequenced, and the c.-57G allele frequency was 0.31 and 0.26 among patients (n = 596) and controls (n = 369), respectively (p = 0.02, odds ratio = 1.33, 95% confidence interval = 1.03-1.73). The c.-57G allele was strongly associated with smoking in patients, as 48.4% of c.-57G carriers compared with 32.6% of noncarriers reported smoking history (p < 0.0001). The transcription factor Oct-1 binding was almost eliminated in lymphoblasts with the c.-57G/G genotype, to only 6.5% percent, and the CHRNB3 promoter activity was reduced in cells with the c.-57G/G genotype by 96%-70%. These findings suggest that the CHRNB3 c.-57A>G alteration affects the promoter activity and is associated with PD and smoking in PD patients. It is therefore possible that nicotine may be valuable for patients who carry this alteration and beneficial in PD only for patients with specific genotypes.


Assuntos
Frequência do Gene/genética , Estudos de Associação Genética , Doença de Parkinson/genética , Regiões Promotoras Genéticas/genética , Receptores Nicotínicos/genética , Fumar/genética , Idoso , Corpo Estriado/metabolismo , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/uso terapêutico , Fator 1 de Transcrição de Octâmero , Doença de Parkinson/tratamento farmacológico , Receptores Nicotínicos/deficiência
13.
PLoS One ; 9(3): e90836, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621512

RESUMO

Cigarette smoking is an established risk factor for esophageal cancers. Yes-associated protein 1 (YAP1), the key transcription factor of the mammalian Hippo pathway, has been reported to be an oncogenic factor for many cancers. In this study, we find nicotine administration can induce nuclear translocation and activation of YAP1 in ESCC. Consistently, we observed nuclear translocation and activation of YAP1 by knockdown of CHRNA3, which is a negative regulator of nicotine signaling in bronchial and esophageal cancer cells. Nicotine administration or CHRNA3 depletion substantially increased proliferation and migration in esophageal cancer cells. Interestingly, we find that YAP1 physically interacts with nAChRs, and nAChRs-signaling dissociates YAP1 from its negative regulatory complex composed with α-catenin, ß-catenin and 14-3-3 in the cytoplasm, leading to upregulation and nuclear translocation of YAP1. This process likely requires PKC activation, as PKC specific inhibitor Enzastaurin can block nicotine induced YAP1 activation. In addition, we find nicotine signaling also inhibits the interaction of YAP1 with P63, which contributes to the inhibitory effect of nicotine on apoptosis. Using immunohistochemistry analysis we observed upregulation of YAP1 in a significant portion of esophageal cancer samples. Consistently, we have found a significant association between YAP1 upregulation and cigarette smoking in the clinical esophageal cancer samples. Together, these findings suggest that the nicotine activated nAChRs signaling pathway which further activates YAP1 plays an important role in the development of esophageal cancer, and this mechanism may be of a general significance for the carcinogenesis of smoking related cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Nicotina/farmacologia , Fosfoproteínas/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas do Esôfago , Técnicas de Silenciamento de Genes , Humanos , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Fatores de Transcrição , Proteínas de Sinalização YAP
14.
PLoS One ; 8(4): e62164, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637989

RESUMO

Despite aggressive research, central nervous system (CNS) disorders, including blood-brain barrier (BBB) injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH) and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs), which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker)/S100B+ (brain marker) circulating BMECs (cBMECs) and CD133+[progenitor cell (PC) marker]/CD146+ endothelial PCs (EPCs), along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1) (a new BBB marker) as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.


Assuntos
Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/patologia , Movimento Celular , Células Endoteliais/patologia , Microvasos/patologia , Animais , Biomarcadores/sangue , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/virologia , Movimento Celular/efeitos dos fármacos , Separação Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Magnetismo , Metanfetamina/farmacologia , Camundongos , Microesferas , Modelos Biológicos , Nicotina/farmacologia , Permeabilidade/efeitos dos fármacos , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Transcitose/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7
15.
J Neurosci ; 33(18): 7728-41, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637165

RESUMO

Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2(-/-) mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2(-/-) mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2(-/-) mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.


Assuntos
Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Receptores Nicotínicos/deficiência , Síndrome de Abstinência a Substâncias/fisiopatologia , Análise de Variância , Animais , Ansiedade/fisiopatologia , Condicionamento Clássico/efeitos dos fármacos , Esquema de Medicação , Reação de Fuga/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Medo/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/efeitos adversos , Neurotransmissores/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Tempo de Reação , Reflexo/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/etiologia
16.
Proc Natl Acad Sci U S A ; 110(10): 4099-104, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431157

RESUMO

Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.


Assuntos
Nicotina/toxicidade , Receptores Nicotínicos/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiopatologia , Animais , Bungarotoxinas/toxicidade , Cálcio/metabolismo , Células Cultivadas , Cloretos/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Nicotina/metabolismo , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7
17.
Oncogene ; 32(28): 3329-38, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22945651

RESUMO

Genome-wide association studies have highlighted three major lung cancer susceptibility regions at 15q25.1, 5p15.33 and 6p21.33. To gain insight into the possible mechanistic relevance of the genes in these regions, we investigated the regulation of candidate susceptibility gene expression by epigenetic alterations in healthy and lung tumor tissues. For genes up or downregulated in lung tumors, the influence of genetic variants on DNA methylation was investigated and in vitro studies were performed. We analyzed 394 CpG units within 19 CpG islands in the susceptibility regions in a screening set of 34 patients. Significant findings were validated in an independent patient set (n=50) with available DNA and RNA. The most consistent overall DNA methylation difference between tumor and adjacent normal tissue on 15q25 was tumor hypomethylation in the promoter region of CHRNB4 with a median difference of 8% (P<0.001), which resulted in overexpression of the transcript in tumors (P<0.001). Confirming previous studies, we also found hypermethylation in CHRNA3 and telomerase reverse transcriptase (TERT) with significant expression changes. Decitabine treatment of H1299 cells resulted in reduced methylation levels in gene promoters, elevated transcript levels of CHRNB4 and CHRNA3, and a slight downregulation of TERT demonstrating epigenetic regulation of lung cancer cells. Single-nucleotide polymorphisms rs421629 on 5p15.33 and rs1948, rs660652, rs8040868 and rs2036527 on 15q25.1, previously identified as lung cancer risk or nicotine-addiction modifiers, were associated with tumor DNA methylation levels in the promoters of TERT and CHRNB4 (P<0.001), respectively, in two independent sample sets (n=82; n=150). In addition, CHRNB4 knockdown in two different cell lines (A549 and H1299) resulted in reduced proliferation (PA549<0.05;PH1299<0.001) and propensity to form colonies in H1299 cells. These results suggest epigenetic deregulation of nicotinic acetylcholine receptor subunit (nAChR) genes which in the case of CHRNB4 is strongly associated with genetic lung cancer susceptibility variants and a functional impact on tumorigenic potential.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA/genética , Epigênese Genética/genética , Genótipo , Neoplasias Pulmonares/patologia , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/genética , Receptores Nicotínicos/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas do Tecido Nervoso/deficiência , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores Nicotínicos/deficiência
18.
J Neurosci ; 32(22): 7651-61, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649244

RESUMO

Glutamate is the primary excitatory transmitter in adult brain, acting through synapses on dendritic spines and shafts. Early in development, however, when glutamatergic synapses are only beginning to form, nicotinic cholinergic excitation is already widespread; it is mediated by acetylcholine activating nicotinic acetylcholine receptors (nAChRs) that generate waves of activity across brain regions. A major class of nAChRs contributing at this time is a species containing α7 subunits (α7-nAChRs). These receptors are highly permeable to calcium, influence a variety of calcium-dependent events, and are diversely distributed throughout the developing CNS. Here we show that α7-nAChRs unexpectedly promote formation of glutamatergic synapses during development. The dependence on α7-nAChRs becomes clear when comparing wild-type (WT) mice with mice constitutively lacking the α7-nAChR gene. Ultrastructural analysis, immunostaining, and patch-clamp recording all reveal synaptic deficits when α7-nAChR input is absent. Similarly, nicotinic activation of α7-nAChRs in WT organotypic culture, as well as cell culture, increases the number of glutamatergic synapses. RNA interference demonstrates that the α7-nAChRs must be expressed in the neuron being innervated for normal innervation to occur. Moreover, the deficits persist throughout the developmental period of major de novo synapse formation and are still fully apparent in the adult. GABAergic synapses, in contrast, are undiminished in number under such conditions. As a result, mice lacking α7-nAChRs have an altered balance in the excitatory/inhibitory input they receive. This ratio represents a fundamental feature of neural networks and shows for the first time that endogenous nicotinic cholinergic signaling plays a key role in network construction.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Receptores Nicotínicos/fisiologia , Sinapses/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Estimulação Elétrica , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanilato Quinases/metabolismo , Hipocampo/citologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Neuritos/metabolismo , Neuritos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Piridazinas/farmacologia , Compostos de Piridínio , Compostos de Amônio Quaternário , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de AMPA/metabolismo , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/ultraestrutura , Tetrodotoxina/farmacologia , Fatores de Tempo , Transdução Genética/métodos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Córtex Visual/citologia , Córtex Visual/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
19.
J Neurochem ; 122(1): 48-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22506481

RESUMO

Mouse superficial superior colliculus (SuSC) contains dense GABAergic innervation and diverse nicotinic acetylcholine receptor subtypes. Pharmacological and genetic approaches were used to investigate the subunit compositions of nicotinic acetylcholine receptors (nAChR) expressed on mouse SuSC GABAergic terminals. [(125) I]-Epibatidine competition-binding studies revealed that the α3ß2* and α6ß2* nicotinic subtype-selective peptide α-conotoxin MII-blocked binding to 40 ± 5% of SuSC nAChRs. Acetylcholine-evoked [(3) H]-GABA release from SuSC crude synaptosomal preparations is calcium dependent, blocked by the voltage-sensitive calcium channel blocker, cadmium, and the nAChR antagonist mecamylamine, but is unaffected by muscarinic, glutamatergic, P2X and 5-HT3 receptor antagonists. Approximately 50% of nAChR-mediated SuSC [(3) H]-GABA release is inhibited by α-conotoxin MII. However, the highly α6ß2*-subtype-selective α-conotoxin PIA did not affect [(3) H]-GABA release. Nicotinic subunit-null mutant mouse experiments revealed that ACh-stimulated SuSC [(3) H]-GABA release is entirely ß2 subunit-dependent. α4 subunit deletion decreased total function by >90%, and eliminated α-conotoxin MII-resistant release. ACh-stimulated SuSC [(3) H]-GABA release was unaffected by ß3, α5 or α6 nicotinic subunit deletions. Together, these data suggest that a significant proportion of mouse SuSC nicotinic agonist-evoked GABA-release is mediated by a novel, α-conotoxin MII-sensitive α3α4ß2 nAChR. The remaining α-conotoxin MII-resistant, nAChR agonist-evoked SuSC GABA release appears to be mediated via α4ß2* subtype nAChRs.


Assuntos
Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/fisiologia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/metabolismo , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Acetilcolina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Bungarotoxinas/farmacologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Isótopos de Iodo/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Nicotínicos/farmacocinética , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Piridinas/farmacocinética , Receptores Nicotínicos/deficiência , Antagonistas da Serotonina/farmacologia , Colículos Superiores/citologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Trítio/metabolismo , Tropanos/farmacologia
20.
Eur J Neurosci ; 35(9): 1381-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22462479

RESUMO

We examined the role of α7- and ß2-containing nicotinic acetylcholine receptors (nAChRs) in the induction of long-term potentiation (LTP). Theta-burst stimulation (TBS), mimicking the brain's naturally occurring theta rhythm, induced robust LTP in hippocampal slices from α7 and ß2 knockout mice. This suggests TBS is capable of inducing LTP without activation of α7- or ß2-containing nAChRs. However, when weak TBS was applied, the modulatory effects of nicotinic receptors on LTP induction became visible. We showed that during weak TBS, activation of α7 nAChRs occurs by the release of ACh, contributing to LTP induction. Additionally, bath-application of nicotine activated ß2-containing nAChRs to promote LTP induction. Despite predicted nicotine-induced desensitization, synaptically mediated activation of α7 nAChRs still occurs in the presence of nicotine and contributed to LTP induction. Optical recording of single-stimulation-evoked excitatory activity with a voltage-sensitive dye revealed enhanced excitatory activity in the presence of nicotine. This effect of nicotine was robust during high-frequency stimulation, and was accompanied by enhanced burst excitatory postsynaptic potentials. Nicotine-induced enhancement of excitatory activity was observed in slices from α7 knockout mice, but was absent in ß2 knockout mice. These results suggest that the nicotine-induced enhancement of excitatory activity is mediated by ß2-containing nAChRs, and is related to the nicotine-induced facilitation of LTP induction. Thus, our study demonstrates that the activation of α7- and ß2-containing nAChRs differentially facilitates LTP induction via endogenously released ACh and exogenous nicotine, respectively, in the hippocampal CA1 region of mice.


Assuntos
Acetilcolina/metabolismo , Região CA1 Hipocampal/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Di-Hidro-beta-Eritroidina/farmacologia , Estimulação Elétrica , Técnicas In Vitro , Potenciação de Longa Duração/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Receptores Nicotínicos/deficiência , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA