Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401689

RESUMO

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Cálcio/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Escala de Avaliação Comportamental , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Nervos Periféricos/patologia , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Canais de Potássio Ativados por Sódio/genética , Receptores Purinérgicos P2X3/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Methods Mol Biol ; 2041: 301-309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646498

RESUMO

This chapter details methods to express and modify ATP-gated P2X receptor channels so that they can be controlled using light. Following expression in cells, a photoswitchable tool compound can be used to covalently modify mutant P2X receptors, as previously demonstrated for homomeric P2X2 and P2X3 receptors, and heteromeric P2X2/3 receptors. Engineered P2X receptors can be rapidly and reversibly opened and closed by different wavelengths of light. Light-activated P2X receptors can be mutated further to impart ATP-insensitivity if required. This method offers control of specific P2X receptor channels with high spatiotemporal precision to study their roles in physiology and pathophysiology.


Assuntos
Trifosfato de Adenosina/metabolismo , Engenharia Genética/métodos , Ativação do Canal Iônico/fisiologia , Luz , Optogenética/métodos , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Eletrofisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos da radiação , Mutação , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/efeitos da radiação , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/efeitos da radiação
3.
Br J Pharmacol ; 176(13): 2279-2291, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927255

RESUMO

BACKGROUND AND PURPOSE: The P2X3 receptor is an ATP-gated ion channel expressed by sensory afferent neurons and is used as a target to treat chronic sensitisation conditions. The first-in-class, selective P2X3 and P2X2/3 receptor antagonist, the diaminopyrimidine MK-7264 (gefapixant), has progressed to Phase III trials for refractory or unexplained chronic cough. We used patch clamp to elucidate the pharmacology and kinetics of MK-7264 and rat models of hypersensitivity and hyperalgesia to test its efficacy on these conditions. EXPERIMENTAL APPROACH: Whole-cell patch clamp of 1321N1 cells expressing human P2X3 and P2X2/3 receptors was used to determine mode of MK-7264 action, potency, and kinetics. The analgesic efficacy was assessed using paw withdrawal threshold and limb weight distribution in rat models of inflammatory, osteoarthritic, and neuropathic sensitisation. KEY RESULTS: MK-7264 is a reversible allosteric antagonist at human P2X3 and P2X2/3 receptors. Experiments with the slowly desensitising P2X2/3 heteromer revealed concentration- and state-dependency to wash-on, with faster rates and greater inhibition when applied before agonist compared to during agonist application. The wash-on rate (τ value) for MK-7264 at maximal concentrations was much lower when applied before compared to during agonist application. In vivo, MK-7264 displayed efficacy comparable to naproxen in inflammatory and osteoarthritic sensitisation models and gabapentin in neuropathic sensitisation models, increasing paw withdrawal threshold and decreasing weight-bearing discomfort. CONCLUSIONS AND IMPLICATIONS: MK-7264 is a reversible and selective P2X3 and P2X2/3 antagonist, exerting allosteric antagonism via preferential activity at closed channels. Its efficacy in rat models supports its clinical investigation for chronic sensitisation conditions.


Assuntos
Carbolinas , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Animais , Carbolinas/sangue , Carbolinas/farmacocinética , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Linhagem Celular Tumoral , Feminino , Adjuvante de Freund , Humanos , Hiperalgesia/induzido quimicamente , Ácido Iodoacético , Osteoartrite/induzido quimicamente , Estimulação Física , Antagonistas do Receptor Purinérgico P2X/sangue , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Ratos Sprague-Dawley , Nervo Isquiático/lesões
4.
Brain Res Bull ; 151: 119-124, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30660716

RESUMO

Peripheral stimuli are transduced by specific receptors expressed by sensory neurons and are further processed in the dorsal horn of spinal cord before to be transmitted to the brain. While relative few receptor subtypes mediate the initial depolarisation of sensory neurons, an impressive number of molecules and ion channels integrate these inputs into coded signals. Soluble mediators and ambient conditions further shape these processes, potentially triggering peripheral and central sensitisation, or sensory downregulation. Extracellular ATP is a major signaling molecule that acts via purinergic receptors and is a powerful modulator of cell communication as well as a neurotransmitter at peripheral/central synapses. In particular, ATP-mediated signals are transduced by P2X3 receptors expressed mainly by peripheral sensory neurons. Recent evidence suggests that P2X3 receptor function not only induces neuron depolarisation and firing with consequent neurotransmitter release, but it also triggers intracellular molecular changes that amplify purinergic signaling with important consequences.


Assuntos
Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X3/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Gânglios Espinais/metabolismo , Guanilato Quinases/metabolismo , Humanos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Sinapses/metabolismo
5.
J Pharmacol Exp Ther ; 361(3): 472-481, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28404687

RESUMO

Pain is the most unbearable symptom accompanying primary bone cancers and bone metastases. Bone resorptive disorders are often associated with hypercalcemia, contributing to the pathologic process. Nitrogen-containing bisphosphonates (NBPs) are efficiently used to treat bone cancers and metastases. Apart from their toxic effect on cancer cells, NBPs also provide analgesia via poorly understood mechanisms. We previously showed that NBPs, by inhibiting the mevalonate pathway, induced formation of novel ATP analogs such as ApppI [1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) triphosphoric acid diester], which can potentially be involved in NBP analgesia. In this study, we used the patch-clamp technique to explore the action of ApppI on native ATP-gated P2X receptors in rat sensory neurons and rat and human P2X3, P2X2, and P2X7 receptors expressed in human embryonic kidney cells. We found that although ApppI has weak agonist activity, it is a potent inhibitor of P2X3 receptors operating in the nanomolar range. The inhibitory action of ApppI was completely blocked in hypercalcemia-like conditions and was stronger in human than in rat P2X3 receptors. In contrast, P2X2 and P2X7 receptors were insensitive to ApppI, suggesting a high selectivity of ApppI for the P2X3 receptor subtype. NBP, metabolite isopentenyl pyrophosphate, and endogenous AMP did not exert any inhibitory action, indicating that only intact ApppI has inhibitory activity. Ca2+-dependent inhibition was stronger in trigeminal neurons preferentially expressing desensitizing P2X3 subunits than in nodose ganglia neurons, which also express nondesensitizing P2X2 subunits. Altogether, we characterized previously unknown purinergic mechanisms of NBP-induced metabolites and suggest ApppI as the endogenous pain inhibitor contributing to cancer treatment with NBPs.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X3 , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos P2X3/fisiologia
6.
Mol Neurobiol ; 54(1): 511-523, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26742527

RESUMO

Long noncoding RNAs (lncRNAs) participate in physiological and pathophysiological processes. Type 2 diabetes mellitus (T2DM) accounts for more than 90 % of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. The aim of this study was to investigate the effects of lncRNA NONRATT021972 small interference RNA (siRNA) on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). These experiments showed that the expression levels of NONRATT021972 in DRG were increased in the T2DM rat model (intraperitoneal injection of STZ with 30 mg/kg). The concentration of NONRATT021972 in T2DM patient serum was higher compared to control healthy subjects. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower compared to control rats. MWT and TWL in T2DM rats treated with NONRATT021972 siRNA were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and messenger RNA (mRNA) of T2DM rat DRG were higher compared to the control, while those in T2DM rats treated with NONRATT021972 siRNA were significantly lower compared to T2DM rats. The level of tumor necrosis factor-α (TNF-α) in the serum of T2DM rats treated with NONRATT021972 siRNA was significantly decreased compared with T2DM rats. NONRATT021972 siRNA inhibited the phosphorylation and activation of ERK1/2 in T2DM DRG. Thus, NONRATT021972 siRNA treatment may suppress the upregulated expression and activation of the P2X3 receptor and reduce the hyperalgesia potentiated by the pro-inflammatory cytokine TNF-α in T2DM rats.


Assuntos
Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/biossíntese , Receptores Purinérgicos P2X3/fisiologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Humanos , Masculino , Neuralgia/tratamento farmacológico , RNA Longo não Codificante/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley
7.
Artigo em Inglês | MEDLINE | ID: mdl-27781340

RESUMO

BACKGROUND: Patients with posttraumatic stress disorder (PTSD) often share co-morbidity with chronic pain conditions. Recent studies suggest a role of P2X3 receptors and ATP signaling in pain conditions. However, the underlying mechanisms of visceral hyperalgesia following exposure to PTSD-like stress conditions remain unclarified. METHODS: The behavior and hormones relevant for PTSD were studied. Visceromotor responses (VMR) and the abdominal withdrawal reflexes (AWR) to colorectal distention (CRD) were recorded to determine P2X3-receptor-mediated alteration of hyperalgesia following single-prolonged stress (SPS) exposure. Immunofluorescence, Western blotting, and patch-clamp were used. KEY RESULTS: The escape latency, adrenocorticotropic hormone and cortisol were increased on days 7-14. Visceromotor responses and AWR was reduced at day 1 in SPS rats but increased to higher levels than in controls after exposure to day 7. Intrathecal administration of the P2X3-receptor antagonist TNP-ATP abolished the CRD response. Based on immunofluorescence and Western blotting analysis, SPS-treated rats exhibited reduced P2X3 expression in dorsal root ganglia (DRG) after day 1 compared with controls. P2X3 expression in DRG was enhanced on day 7 after SPS and the increase of the P2X3 expression was maintained on day 14 and 21 compared with controls. The P2X3-receptor agonist α,ß-me ATP (10 µM) induced a fast desensitizing inward current in DRG neurons of both control and SPS-treated rats. The average peak current densities in SPS-treated group were increased 3.6-fold. TNP-ATP (100 nM) markedly blocked all fast α,ß-me ATP-induced inward currents in the DRG neurons both in control and SPS-treated rats. CONCLUSIONS & INFERENCES: The data indicate an important role of P2X3 signaling in visceral hyperalgesia following PTSD-like stress.


Assuntos
Gânglios Espinais/fisiologia , Hiperalgesia/fisiopatologia , Neurônios/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Dor Visceral/fisiopatologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/etiologia , Hiperalgesia/psicologia , Neurônios/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/psicologia , Dor Visceral/etiologia , Dor Visceral/psicologia
8.
Eur J Pharmacol ; 767: 24-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26435025

RESUMO

Prokineticin 2 (PK2), a new chemokine, causes mechanical hypersensitivity in the rat hind paw, but little is known about the molecular mechanism. Here, we have found that ionotropic P2X receptor is essential to mechanical allodynia induced by PK2. First, intraplantar injection of high dose (3 or 10 pmol) of PK2 significantly increased paw withdrawal response frequency (%) to innocuous mechanical stimuli (mechanical allodynia). And the mechanical allodynia induced by PK2 was prevented by co-administration of TNP-ATP, a selective P2X receptor antagonist. Second, although low dose (0.3 or 1 pmol) of PK2 itself did not produce an allodynic response, it significantly facilitated the mechanical allodynia evoked by intraplantar injection of α,ß-methylene ATP (α,ß-meATP). Third, PK2 concentration-dependently potentiated α,ß-meATP-activated currents in rat dorsal root ganglion (DRG) neurons. Finally, PK2 receptors and intracellular signal transduction were involved in PK2 potentiation of α,ß-meATP-induced mechanical allodynia and α,ß-meATP-activated currents, since the potentiation were blocked by PK2 receptor antagonist PKRA and selective PKC inhibitor GF 109203X. These results suggested that PK2 facilitated mechanical allodynia induced by α,ß-meATP through a mechanism involved in sensitization of cutaneous P2X receptors expressed by nociceptive nerve endings.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Hormônios Gastrointestinais/farmacologia , Hiperalgesia/induzido quimicamente , Neuropeptídeos/farmacologia , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/farmacologia , Animais , Sinergismo Farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Hormônios Gastrointestinais/antagonistas & inibidores , Hiperalgesia/fisiopatologia , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neuropeptídeos/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Peptídeos/antagonistas & inibidores , Receptores Purinérgicos P2X3/efeitos dos fármacos , Receptores Purinérgicos P2X3/fisiologia
9.
PLoS One ; 10(8): e0134803, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241848

RESUMO

OBJECTIVES: To evaluate whether botulinum toxin A (BoNT-A) injection and Lipotoxin (liposomes with 200 U of BoNT-A) instillation target different proteins, including P2X3, synaptic vesicle glycoprotein 2A, and SNAP-25, in the bladder mucosa, leading to different treatment outcomes. MATERIALS AND METHODS: This was a retrospective study performed in a tertiary teaching hospital. We evaluated the clinical results of 27 OAB patients treated with intravesical BoNT-A injection (n = 16) or Lipotoxin instillation (n = 11). Seven controls were treated with saline. Patients were injected with 100 U of BoNT-A or Lipotoxinin a single intravesical instillation. The patients enrolled in this study all had bladder biopsies performed at baseline and one month after BoNT-A therapy. Treatment outcome was measured by the decreases in urgency and frequency episodes at 1 month. The functional protein expressions in the urothelium were measured at baseline and after 1 month. The Wilcoxon signed-rank test and ordinal logistic regression were used to compare the treatment outcomes. RESULTS: Both BoNT-A injection and Lipotoxin instillation treatments effectively decreased the frequency of urgency episodes in OAB patients. Lipotoxin instillation did not increase post-void residual volume. BoNT-A injection effectively cleaved SNAP-25 (p < 0.01). Liposome encapsulated BoNT-A decreased urothelial P2X3 expression in the five responders (p = 0.04), while SNAP-25 was not significantly cleaved. CONCLUSIONS: The results of this study provide a possible mechanism for the therapeutic effects of BoNT-A for the treatment of OAB via different treatment forms. BoNT-A and Lipotoxin treatments effectively decreased the frequency of urgency episodes in patients with OAB.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Urotélio/efeitos dos fármacos , Administração Intravesical , Biópsia , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/farmacologia , Portadores de Fármacos , Expressão Gênica , Humanos , Lipossomos , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores Purinérgicos P2X3/efeitos dos fármacos , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/fisiologia , Estudos Retrospectivos , Proteína 25 Associada a Sinaptossoma/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Resultado do Tratamento , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/metabolismo , Urotélio/metabolismo , Urotélio/patologia
10.
J Physiol Sci ; 65(1): 99-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367719

RESUMO

Hyperalgesia and allodynia are commonly observed in patients with diabetic neuropathy. The mechanisms responsible for neuropathic pain are not well understood. Thus, in this study, we examined the role played by purinergic P2X3 receptors of the midbrain periaqueductal gray (PAG) in modulating diabetes-induced neuropathic pain because this brain region is an important component of the descending inhibitory system to control central pain transmission. Our results showed that mechanical withdrawal thresholds were significantly increased by stimulation of P2X3 receptors in the dorsolateral PAG of rats (n = 12, P < 0.05 vs. vehicle control) using α,ß-methylene-ATP (α,ß-meATP, a P2X3 receptor agonist). In addition, diabetes was induced by an intraperitoneal injection of streptozotocin (STZ) in rats, and mechanical allodynia was observed 3 weeks after STZ administration. Notably, the excitatory effects of P2X3 stimulation on mechanical withdrawal thresholds were significantly blunted in STZ-induced diabetic rats (n = 12, P < 0.05 vs. control animals) as compared with control rats (n = 12). Furthermore, the protein expression of P2X3 receptors in the plasma membrane of the dorsolateral PAG of STZ-treated rats was significantly decreased (n = 10, P < 0.05 vs. control animals) compared to that in control rats (n = 8), whereas the total expression of P2X3 receptors was not significantly altered. Overall, data of our current study suggest that a decrease in the membrane expression of P2X3 receptors in the PAG of diabetic rats is likely to impair the descending inhibitory system in modulating pain transmission and thereby contributes to the development of mechanical allodynia in diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Neuralgia/fisiopatologia , Substância Cinzenta Periaquedutal/fisiopatologia , Receptores Purinérgicos P2X3/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Analgésicos/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
11.
Br J Pharmacol ; 171(22): 5093-112, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24989924

RESUMO

BACKGROUND AND PURPOSE: It is assumed that ATP induces closure of the binding jaw of ligand-gated P2X receptors, which eventually results in the opening of the membrane channel and the flux of cations. Immobilization by cysteine mutagenesis of the binding jaw inhibited ATP-induced current responses, but did not allow discrimination between disturbances of binding, gating, subunit assembly or trafficking to the plasma membrane. EXPERIMENTAL APPROACH: A molecular model of the pain-relevant human (h)P2X3 receptor was used to identify amino acid pairs, which were located at the lips of the binding jaw and did not participate in agonist binding but strongly approached each other even in the absence of ATP. KEY RESULTS: A series of cysteine double mutant hP2X3 receptors, expressed in HEK293 cells or Xenopus laevis oocytes, exhibited depressed current responses to α,ß-methylene ATP (α,ß-meATP) due to the formation of spontaneous inter-subunit disulfide bonds. Reducing these bonds with dithiothreitol reversed the blockade of the α,ß-meATP transmembrane current. Amino-reactive fluorescence labelling of the His-tagged hP2X3 receptor and its mutants expressed in HEK293 or X. laevis oocytes demonstrated the formation of inter-subunit cross links in cysteine double mutants and, in addition, confirmed their correct trimeric assembly and cell surface expression. CONCLUSIONS AND IMPLICATIONS: In conclusion, spontaneous tightening of the binding jaw of the hP2X3 receptor by inter-subunit cross-linking of cysteine residues substituted at positions not directly involved in agonist binding inhibited agonist-evoked currents without interfering with binding, subunit assembly or trafficking.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Modelos Moleculares , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X3 , Trifosfato de Adenosina/farmacologia , Animais , Células HEK293 , Humanos , Ativação do Canal Iônico , Mutação , Oócitos , Conformação Proteica , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/fisiologia , Xenopus laevis
12.
Acta Neuropathol Commun ; 2: 62, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24903857

RESUMO

INTRODUCTION: Cancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containing trimeric channels to cancer pain is. Here, we studied head and neck squamous cell carcinoma (HNSCC), which causes the highest level of function-induced pain relative to other types of cancer. RESULTS: We show that the human HNSCC tissues contain significantly increased levels of ATP compared to the matched normal tissues. The high levels of ATP are secreted by the cancer and positively correlate with self-reported function-induced pain in patients. The human HNSCC microenvironment is densely innervated by nerve fibers expressing both P2X2 and P2X3 subunits. In animal models of HNSCC we showed that ATP in the cancer microenvironment likely heightens pain perception through the P2X2/3 trimeric receptors. Nerve growth factor (NGF), another cancer-derived pain mediator found in both human and mouse HNSCC, induces P2X2 and P2X3 hypersensitivity and increases subunit expression in murine trigeminal ganglion (TG) neurons. CONCLUSIONS: These data identify a key peripheral mechanism in cancer pain and highlight the clinical potential of specifically targeting nociceptors expressing both P2X2 and P2X3 subunits (e.g., P2X2/3 heterotrimers) to alleviate cancer pain.


Assuntos
Trifosfato de Adenosina/metabolismo , Carcinoma/complicações , Neoplasias de Cabeça e Pescoço/complicações , Dor/etiologia , Dor/metabolismo , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Carcinoma/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medição da Dor
13.
Proc Natl Acad Sci U S A ; 111(1): 521-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367083

RESUMO

P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.


Assuntos
Luz , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Compostos Azo/química , Eletrofisiologia , Regulação Neoplásica da Expressão Gênica , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Canais Iônicos/química , Íons , Ligantes , Microscopia Confocal , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Células PC12 , Ratos , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/efeitos da radiação , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/efeitos da radiação , Homologia de Sequência de Aminoácidos
14.
BJU Int ; 110(8 Pt B): E409-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22540742

RESUMO

OBJECTIVE: To evaluate the role of bladder sensory purinergic P2X3 and P2X2/3 receptors on modulating the activity of lumbosacral neurones and urinary bladder contractions in vivo in normal or spinal cord-injured (SCI) rats with neurogenic bladder overactivity. MATERIALS AND METHODS: SCI was induced in female rats by complete transection at T8-T9 and experiments were performed 4 weeks later, when bladder overactivity developed. Non-transected rats were used as controls (normal rats). Neural activity was recorded in the dorsal horn of the spinal cord and field potentials were acquired in response to intravesical pressure steps via a suprapubic catheter. Field potentials were recorded under control conditions, after stimulation of bladder mucosal purinergic receptors with intravesical ATP (1 mm), and after intravenous injection of the P2X3/P2X2/3 antagonist AF-353 (10 mg/kg and 20 mg/kg). Cystometry was performed in urethane-anaesthetised rats intravesically infused with saline. AF-353 (10 mg/kg) was systemically applied after baseline recordings; the rats also received a second dose of AF-353 (20 mg/kg). Changes in the frequency of voiding (VC) and non-voiding (NVC) contractions were evaluated. RESULTS: SCI rats had significantly higher frequencies for field potentials and NVC than NL rats. Intravesical ATP increased field potential frequency in control but not SCI rats, while systemic AF-353 significantly reduced this parameter in both groups. AF-353 also reduced the inter-contractile interval in control but not in SCI rats; however, the frequency of NVC in SCI rats was significantly reduced. CONCLUSION: The P2X3/P2X2/3 receptors on bladder afferent nerves positively regulate sensory activity and NVCs in overactive bladders.


Assuntos
Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Transdução de Sinais , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinária/fisiologia , Vias Aferentes/fisiologia , Vias Aferentes/fisiopatologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/inervação , Bexiga Urinária/fisiopatologia
15.
J Neurochem ; 122(3): 557-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22639984

RESUMO

ATP-activated P2X3 receptors of sensory ganglion neurons contribute to pain transduction and are involved in chronic pain signaling. Although highly homologous (97%) in rat and human species, it is unclear whether P2X3 receptors have identical function. Studying human and rat P2X3 receptors expressed in patch-clamped human embryonic kidney (HEK) cells, we investigated the role of non-conserved tyrosine residues in the C-terminal domain (rat tyrosine-393 and human tyrosine-376) as key determinants of receptor function. In comparison with rat P2X3 receptors, human P2X3 receptors were more expressed and produced larger responses with slower desensitization and faster recovery. In general, desensitization was closely related to peak current amplitude for rat and human receptors. Downsizing human receptor expression to the same level of the rat one still yielded larger responses retaining slower desensitization and faster recovery. Mutating phenylalanine-376 into tyrosine in the rat receptor did not change current amplitude; yet, it retarded desensitization onset, demonstrating how this residue was important to functionally link these two receptor states. Conversely, removing tyrosine from position 376 strongly down-regulated human receptor function. The different topology of tyrosine residues in the C-terminal domain has contrasting functional consequences and is sufficient to account for species-specific properties of this pain-transducing channel.


Assuntos
Regulação da Expressão Gênica/genética , Ativação do Canal Iônico/fisiologia , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Biotinilação , Proteína Tirosina Quinase CSK , Estimulação Elétrica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Imunoprecipitação , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutagênese/fisiologia , Mutação/genética , Técnicas de Patch-Clamp , Fenilalanina/genética , Proteínas Tirosina Quinases/metabolismo , Agonistas do Receptor Purinérgico P2X/farmacologia , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos , Receptores Purinérgicos P2X3/genética , Especificidade da Espécie , Transfecção , Tirosina/genética , Quinases da Família src
16.
J Neuroendocrinol ; 24(4): 674-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22340257

RESUMO

Bursts of action potentials are crucial for neuropeptide release from the hypothalamic neurohypophysial system (HNS). The biophysical properties of the ion channels involved in the release of these neuropeptides, however, cannot explain the efficacy of such bursting patterns on secretion. We have previously shown that ATP, acting via P2X receptors, potentiates only vasopressin (AVP) release from HNS terminals, whereas its metabolite adenosine, via A1 receptors acting on transient Ca(2+) currents, inhibits both AVP and oxytocin (OT) secretion. Thus, purinergic feedback-mechanisms have been proposed to explain bursting efficacy at HNS terminals. Therefore, in the present study, we have used specific P2X receptor knockout (rKO) mice and purportedly selective P2X receptor antagonists to determine the P2X receptor subtype responsible for endogenous ATP induced potentiation of electrically-stimulated neuropeptide release. Intact neurohypophyses (NH) from wild-type (WT), P2X3 rKO, P2X2/3 rKO and P2X7 rKO mice were electrically stimulated with four 25-s bursts (3 V at 39 Hz) separated by 21-s interburst intervals with or without the P2X2 and P2X3 receptor antagonists, suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). These frequencies, number of bursts, and voltages were determined to maximise both AVP and OT release by electrical stimulations. Treatment of WT mouse NH with suramin/PPADS significantly reduced electrically-stimulated AVP release. A similar inhibition by suramin was observed in electrically-stimulated NH from P2X3 and P2X7 rKO mice but not P2X2/3 rKO mice, indicating that endogenous ATP facilitation of electrically-stimulated AVP release is mediated primarily by the activation of the P2X2 receptor. Unexpectedly, electrically-stimulated OT release from WT, P2X3, P2X2/3 and P2X7 rKO mice was potentiated by suramin, indicating nonpurinergic effects by this 'selective' antagonist. Nevertheless, these results show that sufficient endogenous ATP is released by bursts of action potentials to act at P2X2 receptors in a positive-feedback mechanism to 'differentially' modulate neuropeptide release from central nervous system terminals.


Assuntos
Trifosfato de Adenosina/fisiologia , Arginina Vasopressina/metabolismo , Ocitocina/metabolismo , Neuro-Hipófise/metabolismo , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Neuro-Hipófise/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X3/genética , Suramina/farmacologia
17.
Neurochem Int ; 60(4): 379-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22269805

RESUMO

Adenosine 5'-triphosphate disodium (ATP) gated P2X receptors, especially the subtype P2X(3), play a key role in transmission of pain signals in neuropathic pain, ATP has been documented to play a significant role in the progression of pain signals, suggesting that control of these pathways through electroacupuncture (EA) is potentially an effective treatment for chronic neuropathic pain. EA has been accepted to effectively manage chronic pain by applying the stimulating current to acupoints through acupuncture needles. To determine the significance of EA on neuropathic pain mediated by P2X(3) receptors in the dorsal root ganglion (DRG) neurons, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded, and the expression of P2X(3) receptors in the DRG neurons was assessed by immunohistochemistry (IHC) and in situ hybridization (ISH). In addition, the currents which were evoked in DRG neurons isolated from rats following chronic constriction injury (CCI) by the P2X(3) receptors agonists i.e. ATP and α,ß-methylen-ATP (α,ß-meATP) were examined through the experimental use of whole cell patch clamp recording. The present study demonstrates that EA treatment can increase the MWT and TWL values and decrease the expression of P2X(3) receptors in DRG neurons in CCI rats. Simultaneously, EA treatment attenuates the ATP and α,ß-meATP evoked currents. EA may be expected to induce an apparent induce analgesic effect by decreasing expression and inhibiting P2X(3) receptors in DRG neurons of CCI rats. There is a similar effect on analgesic effect between rats with contralateral EA and those with ipsilateral EA.


Assuntos
Eletroacupuntura/métodos , Gânglios Espinais/fisiopatologia , Neuralgia/terapia , Manejo da Dor/métodos , Receptores Purinérgicos P2X3/fisiologia , Animais , Doença Crônica , Imuno-Histoquímica , Hibridização In Situ , Masculino , Neuralgia/fisiopatologia , Ratos , Ratos Sprague-Dawley
18.
Pain ; 152(9): 2085-2097, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21669492

RESUMO

Extracellularly released adenosine triphosphate (ATP) modulates sensory signaling in the spinal cord. We analyzed the spatiotemporal profiles of P2X receptor-mediated neuronal and glial processing of sensory signals and the distribution of P2X receptor subunits in the rat dorsal horn. Voltage imaging of spinal cord slices revealed that extracellularly applied ATP (5-500 µM), which was degraded to adenosine and acting on P1 receptors, inhibited depolarizing signals and that it also enhanced long-lasting slow depolarization, which was potentiated after ATP was washed out. This post-ATP rebound potentiation was mediated by P2X receptors and was more prominent in the deep than in the superficial layer. Patch clamp recording of neurons in the superficial layer revealed long-lasting enhancement of depolarization by ATP through P2X receptors during the slow repolarization phase at a single neuron level. This depolarization pattern was different from that in voltage imaging, which reflects both neuronal and glial activities. By immunohistochemistry, P2X(1) and P2X(3) subunits were detected in neuropils in the superficial layer. The P2X(5) subunit was found in neuronal somata. The P2X(6) subunit was widely expressed in neuropils in the whole gray matter except for the dorsal superficial layer. Astrocytes expressed the P2X(7) subunit. These findings indicate that extracellular ATP is degraded into adenosine and prevents overexcitation of the sensory system, and that ATP acts on pre- and partly on postsynaptic neuronal P2X receptors and enhances synaptic transmission, predominantly in the deep layer. Astrocytes are involved in sensitization of sensory network activity more importantly in the superficial than in the deep layer.


Assuntos
Neuroglia/fisiologia , Células do Corno Posterior/fisiologia , Receptores Purinérgicos P2X1/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Receptores Purinérgicos P2X5/fisiologia , Receptores Purinérgicos P2X7/fisiologia , Receptores Purinérgicos P2/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Química Encefálica/genética , Química Encefálica/fisiologia , Feminino , Masculino , Neuroglia/química , Neuroglia/metabolismo , Neurônios/química , Neurônios/metabolismo , Neurônios/fisiologia , Células do Corno Posterior/química , Ratos , Ratos Wistar , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2X1/biossíntese , Receptores Purinérgicos P2X3/biossíntese , Receptores Purinérgicos P2X5/biossíntese , Receptores Purinérgicos P2X7/biossíntese , Células Receptoras Sensoriais/química , Medula Espinal/química , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Fatores de Tempo
19.
J Neurophysiol ; 104(6): 3113-23, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861433

RESUMO

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by pain and hypersensitivity in the relative absence of colon inflammation or structural changes. To assess the role of P2X receptors expressed in colorectal dorsal root ganglion (c-DRG) neurons and colon hypersensitivity, we studied excitability and purinergic signaling of retrogradely labeled mouse thoracolumbar (TL) and lumbosacral (LS) c-DRG neurons after intracolonic treatment with saline or zymosan (which reproduces 2 major features of IBS-persistent colorectal hypersensitivity without inflammation) using patch-clamp, immunohistochemical, and RT-PCR techniques. Although whole cell capacitances did not differ between LS and TL c-DRG neurons and were not changed after zymosan treatment, membrane excitability was increased in LS and TL c-DRG neurons from zymosan-treated mice. Purinergic agonist adenosine-5'-triphosphate (ATP) and α,ß-methylene ATP [α,ß-meATP] produced inward currents in TL c-DRG neurons were predominantly P2X(3)-like fast (∼70% of responsive neurons); P2X(2/3)-like slow currents were more common in LS c-DRG neurons (∼35% of responsive neurons). Transient currents were not produced by either agonist in c-DRG neurons from P2X(3)(-/-) mice. Neither total whole cell Kv current density nor the sustained or transient Kv components was changed in c-DRG neurons after zymosan treatment. The number of cells expressing P2X(3) protein and its mRNA and the kinetic properties of ATP- and α,ß-meATP-evoked currents in c-DRG neurons were not changed by zymosan treatment. However, the EC(50) of α,ß-meATP for the fast current decreased significantly in TL c-DRG neurons. These findings suggest that colorectal hypersensitivity produced by intracolonic zymosan increases excitability and enhances purinergic signaling in c-DRG neurons.


Assuntos
Colo/inervação , Gânglios Espinais/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Receptores Purinérgicos P2X3/fisiologia , Reto/inervação , Células Receptoras Sensoriais/fisiologia , Nervos Esplâncnicos/fisiopatologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Colo/fisiopatologia , Relação Dose-Resposta a Droga , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/biossíntese , Receptores Purinérgicos P2X3/biossíntese , Receptores Purinérgicos P2X3/deficiência , Receptores Purinérgicos P2X3/genética , Reto/fisiopatologia , Zimosan/toxicidade
20.
Eur J Pharmacol ; 645(1-3): 79-85, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20558155

RESUMO

The aim of this study was to investigate the role of P2X3, P2X2/3 and P2X7 receptors in the development of TMJ hyperalgesia induced by carrageenan. We also investigated the expression of mRNA of P2X7 receptors in the trigeminal ganglia and the existence of functional P2X7 receptors in the rat's TMJ. The P2X1, P2X3 and P2X2/3 receptor antagonist TNP-ATP, but not the selective P2X7 receptor antagonist A-438079, significantly reduced carrageenan-induced TMJ inflammatory hyperalgesia. The qPCR assay showed that mRNA of P2X7 receptors are expressed in the trigeminal ganglia but this expression is not increased by the inflammation induced by carrageenan in the TMJ region. The P2X7 receptor agonist BzATP induced TMJ inflammatory hyperalgesia that was significantly reduced by pretreatment with dexamethasone. These results indicate that P2X3 and P2X2/3 but not P2X7 receptors are involved in carrageenan-induced TMJ inflammatory hyperalgesia. However, functional P2X7 receptors are expressed in the TMJ region. The activation of these receptors by BzATP sensitizes the primary afferent nociceptors in the TMJ through the previous release of inflammatory mediators. The findings of this study point out P2X3 and P2X2/3 receptors, but not P2X7 receptors, as potential targets for the development of new analgesic drugs to control TMJ inflammatory pain.


Assuntos
Hiperalgesia/metabolismo , Receptores Purinérgicos P2/fisiologia , Articulação Temporomandibular/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Carragenina , Hiperalgesia/induzido quimicamente , Inflamação/metabolismo , Masculino , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2X2/biossíntese , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/biossíntese , Receptores Purinérgicos P2X3/fisiologia , Receptores Purinérgicos P2X7/biossíntese , Receptores Purinérgicos P2X7/fisiologia , Articulação Temporomandibular/efeitos dos fármacos , Tetrazóis/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA