Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Am Heart Assoc ; 13(19): e037148, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39344649

RESUMO

BACKGROUND: Purinergic receptor P2X4 (P2X4R), highly expressed on microglia and macrophages, is activated by ATP released from damaged cells and linked to poststroke inflammation. Previous studies showed that short-term P2X4R inhibition reduces inflammation and promotes long term recovery, but the mechanism underlying P2X4R and inflammation remains unclear. We hypothesized that P2X4R absence or pharmacological blockade can enhance macrophage phagocytic function by alleviating excessive inflammation after stroke. METHODS AND RESULTS: We divided P2X4R knockout and littermate control mice into 2 groups either naive or mice subjected to ischemic stroke surgery. Additionally, the regular WT mice subjected to ischemic stroke were treated with 5-(3-Bromophenyl)-1,3-dihydro-2H-Benzofuro[3,2-e]-1,4-diazepin-2-one BD (a P2X4R inhibitor) or vehicle. We isolated phagocytic cells from mice in each group and assayed phagocytic activity by quantifying uptake of fluorescent beads and bioparticles using flow cytometry or confocal microscopy and by measuring protein expression related to phagocytosis. Short-term inhibition of P2X4R with with 5-(3-Bromophenyl)-1,3-dihydro-2H-Benzofuro[3,2-e]-1,4-diazepin-2-one treatment upregulated ANXA1 (annexinA1). P2X4R absence prevented ATP-induced decline in phagocytic uptake in macrophages. Microglia or macrophages derived from P2X4R knockout mice showed significantly increased phagocytic activity compared with microglia/macrophages taken from littermate control mice. Cell surface expression of CD36, a scavenger receptor protein, increased after stroke, and was higher in P2X4R knockout mice. CONCLUSIONS: This study suggests that blockade or absence of P2X4R increases phagocytic uptake of damaged tissue following ischemic stroke. Taken together with previous reports detailing how P2X4R inhibition is protective following stroke, our results demonstrate P2X4R may mediate long-term resolution after ischemic stroke by enhancing phagocytic clearance.


Assuntos
Camundongos Knockout , Fagocitose , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X4 , Animais , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Masculino , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Benzodiazepinonas
2.
J Immunol Methods ; 526: 113626, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38311008

RESUMO

The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Receptores Purinérgicos P2X4 , Camundongos , Ratos , Humanos , Animais , Cães , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Monócitos/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Biochem Pharmacol ; 221: 116033, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301964

RESUMO

Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1ß, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1ß). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.


Assuntos
Hepatite Autoimune , Receptores Purinérgicos P2X4 , Animais , Camundongos , Acetaminofen/toxicidade , Tetracloreto de Carbono , Hepatite Autoimune/genética , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores Purinérgicos P2X4/genética
4.
J Appl Biomed ; 21(4): 193-199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112458

RESUMO

Naringin inhibits inflammation and oxidative stress, the P2 purinoreceptor X4 receptor (P2X4R) is associated with glial cell activation and inflammation, the purpose of this study is to investigate the effects of naringin on P2X4 receptor expression on satellite glial cells (SGCs) and its possible mechanisms. ATP promoted the SGC activation and upregulated P2X4R expression; naringin inhibited SGC activation, decreased expression of P2X4R, P38 MAPK/ERK, and NF-κB, and reduced levels of Ca2+, TNF-α, and IL-1ß in SGCs in an ATP-containing environment. These findings suggest that naringin attenuates the ATP-induced SGC activation and reduces P2X4R expression via the Ca2+-P38 MAPK/ERK-NF-κB pathway.


Assuntos
NF-kappa B , Receptores Purinérgicos P2X4 , Ratos , Animais , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Animais Recém-Nascidos , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Neuroglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Inflamação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
5.
Nat Commun ; 14(1): 6437, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833294

RESUMO

P2X receptors are ATP-activated cation channels, and the P2X4 subtype plays important roles in the immune system and the central nervous system, particularly in neuropathic pain. Therefore, P2X4 receptors are of increasing interest as potential drug targets. Here, we report the cryo-EM structures of the zebrafish P2X4 receptor in complex with two P2X4 subtype-specific antagonists, BX430 and BAY-1797. Both antagonists bind to the same allosteric site located at the subunit interface at the top of the extracellular domain. Structure-based mutational analysis by electrophysiology identified the important residues for the allosteric inhibition of both zebrafish and human P2X4 receptors. Structural comparison revealed the ligand-dependent structural rearrangement of the binding pocket to stabilize the binding of allosteric modulators, which in turn would prevent the structural changes of the extracellular domain associated with channel activation. Furthermore, comparison with the previously reported P2X structures of other subtypes provided mechanistic insights into subtype-specific allosteric inhibition.


Assuntos
Receptores Purinérgicos P2X4 , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Sítio Alostérico , Trifosfato de Adenosina/metabolismo
6.
Sci Rep ; 13(1): 14288, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652931

RESUMO

This study is performed to explore the role of P2X4 in intracerebral hemorrhage (ICH) and the association between P2X4 and the NLRP1/Caspase-1 pathway. The mouse ICH model was established via collagenase injection into the right basal ganglia. P2X4 expression in brain tissues was knocked down via intracerebroventricular injection with adeno-associated virus (AAV) harboring shRNA against shP2X4. The gene expression of P2X4 and protein levels related to NLRP1 inflammasome were detected using qRT-PCR and Western blot analysis, respectively. Muramyl dipeptide (an activator of NLRP1) was used to activate NLRP1 in brain tissues. ICH induced high expression of P2X4 in mouse brain tissues. The knockdown of P2X4 alleviated short- and long-term neurological deficits of ICH mice, as well as inhibited the tissue expression and serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1ß. Additionally, the expressions of NLRP1, ASC, and pro-Caspase-1 were down-regulated upon P2X4 silencing. Moreover, neurological impairment and the expression and secretion of cytokines after P2X4 silencing were aggravated by the additional administration of MDP. P2X4 knockdown represses neuroinflammation in brain tissues after ICH. Mechanistically, P2X4 inhibition exerts a neuroprotective effect in ICH by blocking the NLRP1/Caspase-1 pathway.


Assuntos
Doenças Neuroinflamatórias , Receptores Purinérgicos P2X4 , Fator de Necrose Tumoral alfa , Animais , Camundongos , Caspase 1/genética , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Citocinas , Modelos Animais de Doenças , Interleucina-6 , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
7.
Purinergic Signal ; 19(3): 489-500, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439999

RESUMO

Identification of new potential drug target proteins and their plausible mechanisms for stroke treatment is critically needed. We previously showed that genetic deletion and short-term pharmacological inhibition of P2X4, a purinergic receptor for adenosine triphosphate (ATP), provides acute cerebroprotection. However, potential mechanisms remain unknown. Therefore, we employed RNA-Seq technology to identify the gene expression profiles and pathway analysis followed by qPCR validation of differentially expressed genes (DEGs). This analysis identified roles of DEGs in certain biological processes responsible for P2X4R-dependent cerebroprotection after stroke. We subjected both young and aged male and female global P2X4 receptor knock out (P2X4RKO) and littermate WT (WT) mice to ischemic stroke. After three days, mice were sacrificed, and total RNA was isolated using Trizol and subjected to RNA-Seq and NanoString-mediated qPCR. DESeq2, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) were used to identify gene expression profiles and biological pathways. We found 2246 DEGs in P2X4R KO vs. WT tissue after stroke. Out of these DEGs, 1920 genes were downregulated and 325 genes were upregulated in P2X4R KO. GO/IPA analysis of the top 300 DEGs suggests an enrichment of inflammation and extracellular matrix component genes. qPCR validation of the top 30 DEGs revealed downregulation of two common age-independent genes in P2X4R KO mice: Interleukin-6 (Il-6), an inflammatory cytokine, and Cytotoxic T Lymphocyte-Associated Protein 2 alpha (Ctla2a), an immunosuppressive factor. These data suggest that P2X4R-mediated cerebroprotection after stroke is initiated by attenuation of immune modulatory pathways in both young and aged mice of both sexes.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Masculino , Feminino , Animais , Receptores Purinérgicos P2X4/genética , Camundongos Knockout , Acidente Vascular Cerebral/genética , Perfilação da Expressão Gênica
8.
Respir Res ; 23(1): 148, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676684

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is associated with elevated ATP levels in the extracellular space. Once released, ATP serves as danger signal modulating immune responses by activating purinergic receptors. Accordingly, purinergic signalling has been implicated in respiratory inflammation associated with cigarette smoke exposure. However, the role of P2X4-signalling has not been fully elucidated yet. METHODS: Here, we analysed the P2X4 mRNA expression in COPD patients as well as cigarette smoke-exposed mice. Furthermore, P2X4-signalling was blocked by either using a specific antagonist or genetic depletion of P2rx4 in mice applied to an acute and prolonged model of cigarette smoke exposure. Finally, we inhibited P2X4-signalling in macrophages derived from THP-1 before stimulation with cigarette smoke extract. RESULTS: COPD patients exhibited an increased P2X4 mRNA expression in cells isolated from the bronchoalveolar lavage fluid and peripheral mononuclear cells. Similarly, P2rx4 expression was elevated in lung tissue of mice exposed to cigarette smoke. Blocking P2X4-signalling in mice alleviated cigarette smoke induced airway inflammation as well as lung parenchyma destruction. Additionally, human macrophages derived from THP-1 cells released reduced concentrations of proinflammatory cytokines in response to cigarette smoke extract stimulation when P2X4 was inhibited. CONCLUSION: Taken together, we provide evidence that P2X4-signalling promotes innate immunity in the immunopathologic responses induced by cigarette smoke exposure.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X4 , Trifosfato de Adenosina/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Humanos , Imunidade Inata , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2X4/genética , Células THP-1
9.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628550

RESUMO

The adenosine 5'-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.


Assuntos
Trifosfato de Adenosina , Receptores Purinérgicos P2X4 , Trifosfato de Adenosina/metabolismo , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais
10.
Oncogene ; 41(21): 2920-2931, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411034

RESUMO

Metastatic progression is a major burden for breast cancer patients and is associated with the ability of cancer cells to overcome stressful conditions, such as nutrients deprivation and hypoxia, and to gain invasive properties. Autophagy and epithelial-to-mesenchymal transition are critical contributors to these processes. Here, we show that the P2X4 purinergic receptor is upregulated in breast cancer biopsies from patients and it is primarily localised in endolysosomes. We demonstrate that P2X4 enhanced invasion in vitro, as well as mammary tumour growth and metastasis in vivo. The pro-malignant role of P2X4 was mediated by the regulation of lysosome acidity, the promotion of autophagy and cell survival. Furthermore, the autophagic activity was associated with epithelial-to-mesenchymal transition (EMT), and this role of P2X4 was even more pronounced under metabolic challenges. Pharmacological and gene silencing of P2X4 inhibited both autophagy and EMT, whereas its rescue in knocked-down cells led to the restoration of the aggressive phenotype. Together, our results demonstrate a previously unappreciated role for P2X4 in regulating lysosomal functions and fate, promoting breast cancer progression and aggressiveness.


Assuntos
Neoplasias da Mama , Receptores Purinérgicos P2X4 , Autofagia/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
11.
Sci Rep ; 12(1): 2801, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181718

RESUMO

Extracellular adenosine-5'-triphosphate (ATP) acts as an import signaling molecule mediating inflammation via purinergic P2 receptors. ATP binds to the purinergic receptor P2X4 and promotes inflammation via increased expression of pro-inflammatory cytokines. Because of the central role of inflammation, we assumed a functional contribution of the ATP-P2X4-axis in atherosclerosis. Expression of P2X4 was increased in atherosclerotic aortic arches from low-density lipoprotein receptor-deficient mice being fed a high cholesterol diet as assessed by real-time polymerase chain reaction and immunohistochemistry. To investigate the functional role of P2X4 in atherosclerosis, P2X4-deficient mice were crossed with low-density lipoprotein receptor-deficient mice and fed high cholesterol diet. After 16 weeks, P2X4-deficient mice developed smaller atherosclerotic lesions compared to P2X4-competent mice. Furthermore, intravital microscopy showed reduced ATP-induced leukocyte rolling at the vessel wall in P2X4-deficient mice. Mechanistically, we found a reduced RNA expression of CC chemokine ligand 2 (CCL-2), C-X-C motif chemokine-1 (CXCL-1), C-X-C motif chemokine-2 (CXCL-2), Interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) as well as a decreased nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-inflammasome priming in atherosclerotic plaques from P2X4-deficient mice. Moreover, bone marrow derived macrophages isolated from P2X4-deficient mice revealed a reduced ATP-mediated release of CCL-2, CC chemokine ligand 5 (CCL-5), Interleukin-1ß (IL-1ß) and IL-6. Additionally, P2X4-deficient mice shared a lower proportion of pro-inflammatory Ly6Chigh monocytes and a higher proportion of anti-inflammatory Ly6Clow monocytes, and expressend less endothelial VCAM-1. Finally, increased P2X4 expression in human atherosclerotic lesions from carotid endarterectomy was found, indicating the importance of potential implementations of this study's findings for human atherosclerosis. Collectively, P2X4 deficiency reduced experimental atherosclerosis, plaque inflammation and inflammasome priming, pointing to P2X4 as a potential therapeutic target in the fight against atherosclerosis.


Assuntos
Aterosclerose/genética , Inflamação/genética , Receptores de LDL/genética , Receptores Purinérgicos P2X4/genética , Trifosfato de Adenosina/metabolismo , Animais , Aterosclerose/patologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Quimiocina CCL2/genética , Quimiocina CXCL1/genética , Colesterol/farmacologia , Dieta Hiperlipídica/efeitos adversos , Endarterectomia das Carótidas , Humanos , Inflamação/patologia , Interleucina-6/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética
12.
Sci Rep ; 12(1): 131, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996944

RESUMO

We have recently developed a mouse monoclonal antibody (12-10H) binding to the head domain region in rat P2X4 receptor (rP2X4R, which is crucial for the pathogenesis of neuropathic pain) expressed on the cell with the highest binding affinity (KD = 20 nM). However, the 12-10H antibody failed to detect endogenously expressed P2X4Rs in microglia isolated from the spinal cord of rats whose spinal nerves were injured. Then, we prepared R5 mutant, in which five arginine residues were introduced into variable regions except for the "hot spot" in the 12-10H antibody to increase electrostatic interactions with the head domain, an anionic region, in rP2X4R. The mutation resulted in an increase of 50-fold in the affinity of the R5 mutant for the head domain with respect to the intact 12-10H antibody. As a result, detection of P2X4Rs endogenously expressed on primary cultured microglial cells originated from the neonatal rat brain and spinal cord microglia isolated from a rat model of neuropathic pain was achieved. These findings suggest a strategy to improve the affinity of a monoclonal antibody for an anionic antigen by the introduction of several arginine residues into variable regions other than the "hot spot" in the paratope.


Assuntos
Anticorpos Monoclonais/farmacologia , Microglia/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Células CHO , Linhagem Celular Tumoral , Cricetulus , Modelos Animais de Doenças , Humanos , Masculino , Microglia/imunologia , Microglia/metabolismo , Mutação , Neuralgia/imunologia , Neuralgia/metabolismo , Ligação Proteica , Conformação Proteica , Antagonistas do Receptor Purinérgico P2X/imunologia , Ratos Wistar , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/imunologia , Receptores Purinérgicos P2X4/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
13.
J Pathol ; 256(2): 149-163, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652816

RESUMO

Prostate cancer (PCa) remains a leading cause of cancer-related deaths in American men and treatment options for metastatic PCa are limited. There is a critical need to identify new mechanisms that contribute to PCa progression, that distinguish benign from lethal disease, and that have potential for therapeutic targeting. P2X4 belongs to the P2 purinergic receptor family that is commonly upregulated in cancer and is associated with poorer outcomes. We observed P2X4 protein expression primarily in epithelial cells of the prostate, a subset of CD66+ neutrophils, and most CD68+ macrophages. Our analysis of tissue microarrays representing 491 PCa cases demonstrated significantly elevated P2X4 expression in cancer- compared with benign-tissue spots, in prostatic intraepithelial neoplasia, and in PCa with ERG positivity or with PTEN loss. High-level P2X4 expression in benign tissues was likewise associated with the development of metastasis after radical prostatectomy. Treatment with the P2X4-specific agonist cytidine 5'-triphosphate (CTP) increased Transwell migration and invasion of PC3, DU145, and CWR22Rv1 PCa cells. The P2X4 antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) resulted in a dose-dependent decrease in viability of PC3, DU145, LNCaP, CWR22Rv1, TRAMP-C2, Myc-CaP, BMPC1, and BMPC2 cells and decreased DU145 cell migration and invasion. Knockdown of P2X4 attenuated growth, migration, and invasion of PCa cells. Finally, knockdown of P2X4 in Myc-CaP cells resulted in significantly attenuated subcutaneous allograft growth in FVB/NJ mice. Collectively, these data strongly support a role for the P2X4 purinergic receptor in PCa aggressiveness and identify P2X4 as a candidate for therapeutic targeting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/efeitos dos fármacos , Animais , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Terapia de Alvo Molecular , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Recept Signal Transduct Res ; 42(2): 160-168, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33504266

RESUMO

The activation of glial cells and its possible mechanism play an extremely important role in understanding the pathophysiological process of some clinical diseases, and catestatin (CST) is involved in regulating this activation. In this project, we found that CST could enhance the activation of satellite glial cells (SGCs) and microglial cells and that the expression of P2X4 was increased; the co-expression of the P2X4 receptor with glial fibrillary acidic protein (GFAP) and the P2X4 receptor with CD11b was also increased significantly in glial cells of the ATP + CST group, and TNF-α and IL-1ß also showed a rising trend; the expression of phosphorylated ERK1/2 was also increased in the ATP + CST group. In summary, we conclude that CST could enhance ATP-induced activation of SGCs and microglial cells mediated by the P2X4 receptor and that the ERK1/2 signaling pathway may be involved in this activation process.


Assuntos
Cromogranina A , Neuroglia , Receptores Purinérgicos P2X4 , Trifosfato de Adenosina/metabolismo , Animais , Cromogranina A/farmacologia , Neuroglia/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548395

RESUMO

Extracellular adenosine triphosphate (ATP) released by mucosal immune cells and by microbiota in the intestinal lumen elicits diverse immune responses that mediate the intestinal homeostasis via P2 purinergic receptors, while overactivation of ATP signaling leads to mucosal immune system disruption, which leads to pathogenesis of intestinal inflammation. In the small intestine, hydrolysis of luminal ATP by ectonucleoside triphosphate diphosphohydrolase (E-NTPD)7 in epithelial cells is essential for control of the number of T helper 17 (Th17) cells. However, the molecular mechanism by which microbiota-derived ATP in the colon is regulated remains poorly understood. Here, we show that E-NTPD8 is highly expressed in large-intestinal epithelial cells and hydrolyzes microbiota-derived luminal ATP. Compared with wild-type mice, Entpd8-/- mice develop more severe dextran sodium sulfate-induced colitis, which can be ameliorated by either the depletion of neutrophils and monocytes by injecting with anti-Gr-1 antibody or the introduction of P2rx4 deficiency into hematopoietic cells. An increased level of luminal ATP in the colon of Entpd8-/- mice promotes glycolysis in neutrophils through P2x4 receptor-dependent Ca2+ influx, which is linked to prolonged survival and elevated reactive oxygen species production in these cells. Thus, E-NTPD8 limits intestinal inflammation by controlling metabolic alteration toward glycolysis via the P2X4 receptor in myeloid cells.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Colite/prevenção & controle , Glicólise , Células Mieloides/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Células Th17/imunologia , Animais , Células Cultivadas , Colite/etiologia , Colite/metabolismo , Colite/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/patologia , Receptores Purinérgicos P2X4/genética , Transdução de Sinais
16.
Cell Chem Biol ; 28(12): 1750-1757.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33725479

RESUMO

Signaling pathways are frequently activated through signal-receiving membrane proteins, and the discovery of small molecules targeting these receptors may yield insights into their biology. However, due to their intrinsic properties, membrane protein targets often cannot be identified by means of established approaches, in particular affinity-based proteomics, calling for the exploration of new methods. Here, we report the identification of indophagolin as representative member of an indoline-based class of autophagy inhibitors through a target-agnostic phenotypic assay. Thermal proteome profiling and subsequent biochemical validation identified the purinergic receptor P2X4 as a target of indophagolin, and subsequent investigations suggest that indophagolin targets further purinergic receptors. These results demonstrate that thermal proteome profiling may enable the de novo identification of membrane-bound receptors as cellular targets of bioactive small molecules.


Assuntos
Autofagia/efeitos dos fármacos , Proteoma/genética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Temperatura , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X4/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Neuroreport ; 31(18): 1249-1255, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33165201

RESUMO

OBJECTIVE: Upregulation of P2X4 receptor (P2X4R), brain-derived neurotrophic factor (BDNF), and interleukin-1 beta (IL-1ß) in activated microglia is associated with hyperalgesia. This study investigated whether nicotine increases pain hypersensitivity by altering the expression of these molecules in microglia. We also examined the role of interferon regulatory factor 8 (IRF8) in this process. METHODS: Experiments were performed in BV2 microglial cells. IRF8 was knocked down or overexpressed using lentiviruses harboring a short hairpin RNA targeting IRF8 or an IRF8 overexpression construct, respectively. P2X4R, BDNF, and IL-1ß mRNA and protein levels were evaluated by real-time PCR and western blotting, respectively, and BDNF and IL-1ß secretion was assessed by ELISA. RESULTS: Chronic nicotine exposure enhanced the expression of P2X4R, BDNF, and IL-1ß in BV2 cells, and stimulated the release of BDNF and IL-1ß in the presence of ATP. IRF8 was found to mediate the nicotine-induced increases in BDNF and IL-1ß mRNA and P2X4R protein levels in BV2 cells. CONCLUSION: Nicotine may increase pain hypersensitivity by promoting the expression of P2X4R, BDNF, and IL-1ß through modulation of IRF8 levels in microglial cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Interleucina-1beta/efeitos dos fármacos , Microglia/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Purinérgicos P2X4/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Hiperalgesia/genética , Hiperalgesia/metabolismo , Fatores Reguladores de Interferon/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Microglia/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
18.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003406

RESUMO

Purinergic P2X receptors (P2X) are ATP-gated ion channels widely expressed in the CNS. While the direct contribution of P2X to synaptic transmission is uncertain, P2X reportedly affect N-methyl-D-aspartate receptor (NMDAR) activity, which has given rise to competing theories on the role of P2X in the modulation of synapses. However, P2X have also been shown to participate in receptor cross-talk: an interaction where one receptor (e.g., P2X2) directly influences the activity of another (e.g., nicotinic, 5-HT3 or GABA receptors). In this study, we tested for interactions between P2X2 or P2X4 and NMDARs. Using two-electrode voltage-clamp electrophysiology experiments in Xenopus laevis oocytes, we demonstrate that both P2X2 and P2X4 interact with NMDARs in an inhibited manner. When investigating the molecular domains responsible for this phenomenon, we found that the P2X2 c-terminus (CT) could interfere with both P2X2 and P2X4 interactions with NMDARs. We also report that 11 distal CT residues on the P2X4 facilitate the P2X4-NMDAR interaction, and that a peptide consisting of these P2X4 CT residues (11C) can disrupt the interaction between NMDARs and P2X2 or P2X4. Collectively, these results provide new evidence for the modulatory nature of P2X2 and P2X4, suggesting they might play a more nuanced role in the CNS.


Assuntos
Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2X/genética , Sinapses/genética , Trifosfato de Adenosina/metabolismo , Animais , Neurônios/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptor Cross-Talk/fisiologia , Receptores de GABA/genética , Receptores Purinérgicos P2X4/genética , Transmissão Sináptica/genética , Xenopus laevis/genética , Xenopus laevis/fisiologia
19.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971737

RESUMO

P2 × 4R is allosterically modulated by Zn(II), and despite the efforts to understand the mechanism, there is not a consensus proposal; C132 is a critical amino acid for the Zn(II) modulation, and this residue is located in the receptor head domain, forming disulfide SS3. To ascertain the role of the SS2/SS3 microenvironment on the rP2 × 4R Zn(II)-induced allosteric modulation, we investigated the contribution of each individual SS2/SS3 cysteine plus carboxylic acid residues E118, E160, and D170, located in the immediate vicinity of the SS2/SS3 disulfide bonds. To this aim, we combined electrophysiological recordings with protein chemical alkylation using thiol reagents such as N-ethylmaleimide or iodoacetamide, and a mutation of key amino acid residues together with P2 × 4 receptor bioinformatics. P2 × 4R alkylation in the presence of the metal obliterated the allosteric modulation, a finding supported by the site-directed mutagenesis of C132 and C149 by a corresponding alanine. In addition, while E118Q was sensitive to Zn(II) modulation, the wild type receptor, mutants E160Q and D170N, were not, suggesting that these acid residues participate in the modulatory mechanism. Poisson-Boltzmann analysis indicated that the E160Q and D170N mutants showed a shift towards more positive electrostatic potential in the SS2/SS3 microenvironment. Present results highlight the role of C132 and C149 as putative Zn(II) ligands; in addition, we infer that acid residues E160 and D170 play a role attracting Zn(II) to the head receptor domain.


Assuntos
Receptores Purinérgicos P2X4/metabolismo , Zinco/metabolismo , Regulação Alostérica/fisiologia , Substituição de Aminoácidos , Animais , Humanos , Mutação de Sentido Incorreto , Domínios Proteicos , Receptores Purinérgicos P2X4/genética , Xenopus laevis
20.
Eur J Pharmacol ; 888: 173460, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32805257

RESUMO

This study sought to examine the co-expression of the following purinergic receptor subunits: P2X1, P2X1del, P2X4, and P2X7 and characterize the P2X response in human monocyte-derived macrophages (MDMs). Single-cell RT-PCR shows the presence of P2X1, P2X1del, P2X4, and P2X7 mRNA in 40%, 5%, 20%, and 90% of human MDMs, respectively. Of the studied human MDMs, 25% co-expressed P2X1 and P2X7 mRNA; 5% co-expressed P2X4 and P2X7; and 15% co-expressed P2X1, P2X4, and P2X7 mRNA. In whole-cell patch clamp recordings of human MDMs, rapid application of ATP (0.01 mM) evoked fast current activation and two different desensitization kinetics: 1. a rapid desensitizing current antagonized by PPADS (1 µM), reminiscent of the P2X1 receptor's current; 2. a slow desensitizing current, insensitive to PPADS but potentiated by ivermectin (3 µM), similar to the P2X4 receptor's current. Application of 5 mM ATP induced three current modalities: 1. slow current activation with no desensitization, similar to the P2X7 receptor current, present in 69% of human macrophages and antagonized by A-804598 (0.1 µM); 2. fast current activation and fast desensitization, present in 15% of human MDMs; 3. fast activation current followed by biphasic desensitization, observed in 15% of human MDMs. Both rapid and biphasic desensitization kinetics resemble those observed for the recombinant human P2X1 receptor expressed in oocytes. These data demonstrate, for the first time, the co-expression of P2X1, P2X4, and P2X7 transcripts and confirm the presence of functional P2X1, P2X4, and P2X7 receptors in human macrophages.


Assuntos
Macrófagos/metabolismo , Receptores Purinérgicos P2X1/biossíntese , Receptores Purinérgicos P2X4/biossíntese , Receptores Purinérgicos P2X7/biossíntese , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA