Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 594(24): 4381-4389, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979222

RESUMO

The P2X4 receptor (P2X4R) is an ATP-gated cation channel. Here, we used fast-scan atomic force microscopy (AFM) to visualize changes in the structure and mobility of individual P2X4Rs in response to activation. P2X4Rs were purified from detergent extracts of transfected cells and integrated into lipid bilayers. Activation resulted in a rapid (2 s) and substantial (10-20 nm2 ) increase in the cross-sectional area of the extracellular region of the receptor and a corresponding decrease in receptor mobility. Both effects were blocked by the P2X4R antagonist 5-BDBD. Addition of cholesterol to the bilayer reduced receptor mobility, although the ATP-induced reduction in mobility was still observed. We suggest that the observed responses to activation may have functional consequences for purinergic signalling.


Assuntos
Movimento , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Colesterol/metabolismo , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Ratos , Receptores Purinérgicos P2X4/isolamento & purificação , Receptores Purinérgicos P2X4/ultraestrutura , Transdução de Sinais
2.
J Chem Inf Model ; 60(2): 923-932, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31747275

RESUMO

P2X receptors are a family of trimeric cationic channels located in the membrane of mammalian cells. They open in response to the binding of ATP. The differences between the closed and open structures have been described in detail for some members of the family. However, the order in which the conformational changes take place as ATP enters the binding cleft, and the residues involved in the intermediate stages, are still unknown. Here, we present the results of umbrella sampling simulations aimed to elucidate the sequence of conformational changes that occur during the reversible binding of ATP to the P2X4 receptor. The simulations also provided information about the interactions that develop in the course of the process. In particular, they revealed the existence of a metastable state which assists the binding. This state is stabilized by positively charged residues located in the head domain of the receptor. Based on these findings, we propose a novel mechanism for the capture of ATP by P2X4 receptors.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Purinergic Signal ; 15(1): 27-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684150

RESUMO

P2X purinergic receptors are ATP-driven ionic channels expressed as trimers and showing various functions. A subtype, the P2X4 receptor present on microglial cells is highly involved in neuropathic pain. In this study, in order to prepare antibodies recognizing the native structure of rat P2X4 (rP2X4) receptor, we immunized mice with rP2X4's head domain (rHD, Gln111-Val167), which possesses an intact structure stabilized by S-S bond formation (Igawa and Abe et al. FEBS Lett. 2015), as an antigen. We generated five monoclonal antibodies with the ability to recognize the native structure of its head domain, stabilized by S-S bond formation. Site-directed mutagenesis revealed that Asn127 and Asp131 of the rHD, in which combination of these amino acid residues is only conserved in P2X4 receptor among P2X family, were closely involved in the interaction between rHD and these antibodies. We also demonstrated the antibodies obtained here could detect rP2X4 receptor expressed in 1321N1 human astrocytoma cells.


Assuntos
Anticorpos Monoclonais , Receptores Purinérgicos P2X4 , Animais , Humanos , Camundongos , Domínios Proteicos , Ratos , Receptores Purinérgicos P2X4/análise , Receptores Purinérgicos P2X4/química
4.
Cell Physiol Biochem ; 51(2): 812-826, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30463084

RESUMO

BACKGROUND/AIMS: Neuropathic pain (NPP) is the consequence of a number of central nervous system injuries or diseases. Previous studies have shown that NPP is mediated by P2X4 receptors that are expressed on satellite glial cells (SGCs) of dorsal root ganglia (DRG). Catestatin (CST), a neuroendocrine multifunctional peptide, may be involved in the pathogenesis of NPP. Here, we studied the mechanism through which CST affects NPP. METHODS: We made rat models of chronic constriction injury (CCI) that simulate neuropathic pain. Rat behavioral changes were estimated by measuring the degree of hyperalgesia as assessed by the mechanical withdrawal threshold (MWT) and the thermal withdrawal latency (TWL). P2X4 mRNA expression was detected by quantitative real-time reverse transcription-polymerase chain reaction. P2X4 protein level and related signal pathways were assessed by western blot. Additionally, double-labeled immunofluorescence was employed to visualize the correspondence between the P2X4 receptor and glial fibrillary acidic protein. An enzyme-linked immunosorbent assay was performed to determine the concentration of CST and inflammatory factors. RESULTS: CST led to lower MWT and TWL and increased P2X4 mRNA and protein expression on the SGCs of model rats. Further, CST upregulated the expression of phosphor-p38 and phosphor-ERK 1/2 on the SGCs of CCI rats. However, the expression level of phosphor-JNK and phosphor-p65 did not obviously change. CONCLUSION: Taken together, CST might boost NPP by enhancing the sensitivity of P2X4 receptors in the DRG of rats, which would provide us a novel perspective and research direction to explore new therapeutic targets for NPP.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cromogranina A/farmacologia , Gânglios Espinais/metabolismo , Neuralgia/patologia , Fragmentos de Peptídeos/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Animais , Cromogranina A/uso terapêutico , Constrição , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Physiol ; 596(20): 4893-4907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144063

RESUMO

KEY POINTS: Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.


Assuntos
Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Prótons , Receptores Purinérgicos P2X4/química , Transdução de Sinais
6.
J Biol Chem ; 293(33): 12820-12831, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29997254

RESUMO

ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1-7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.


Assuntos
Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/química , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2X1/química , Animais , Sítios de Ligação , Humanos , Fosfato de Piridoxal/química , Ratos , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Xenopus laevis
7.
J Chem Inf Model ; 58(2): 315-327, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29266929

RESUMO

Many biologically important ligands of proteins are large, flexible, and in many cases charged molecules that bind to extended regions on the protein surface. It is infeasible or expensive to locate such ligands on proteins with standard methods such as docking or molecular dynamics (MD) simulation. The alternative approach proposed here is scanning of a spatial and angular grid around the protein with smaller fragments of the large ligand. Energy values for complete grids can be computed efficiently with a well-known fast Fourier transform-accelerated algorithm and a physically meaningful interaction model. We show that the approach can readily incorporate flexibility of the protein and ligand. The energy grids (EGs) resulting from the ligand fragment scans can be transformed into probability distributions and then directly compared to probability distributions estimated from MD simulations and experimental structural data. We test the approach on a diverse set of complexes between proteins and large, flexible ligands, including a complex of sonic hedgehog protein and heparin, three heparin sulfate substrates or nonsubstrates of an epimerase, a multibranched supramolecular ligand that stabilizes a protein-peptide complex, a flexible zwitterionic ligand that binds to a surface basin of a Kringle domain, and binding of ATP to a flexible site of an ion channel. In all cases, the EG approach gives results that are in good agreement with experimental data or MD simulations.


Assuntos
Biologia Computacional/métodos , Proteínas Hedgehog/química , Heparina/química , Proteínas/química , Proteínas 14-3-3/química , Trifosfato de Adenosina/química , Cátions , Cristalografia por Raios X , Kringles , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Racemases e Epimerases/química , Receptores Purinérgicos P2X4/química , Eletricidade Estática
8.
Bioorg Med Chem ; 25(14): 3835-3844, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554730

RESUMO

P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer's disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30-50% decay corrected radiochemical yields with 370-1110GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5-25% decay corrected radiochemical yields with 111-740GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.


Assuntos
Azirinas/química , Di-Hidropiridinas/química , Compostos Radiofarmacêuticos/síntese química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Azirinas/síntese química , Azirinas/metabolismo , Ligação Competitiva , Radioisótopos de Carbono/química , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/metabolismo , Radioisótopos de Flúor/química , Células HEK293 , Humanos , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
9.
Biochem Pharmacol ; 116: 130-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481062

RESUMO

The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, meaning that the human P2X7R (hP2X7R) is an attractive therapeutic target. The crystal structures of the zebrafish P2X4R in the closed and ATP-bound open states provide an unprecedented opportunity for structure-guided identification of new ligands. The present study performed virtual screening of ∼100,000 structurally diverse compounds against the ATP-binding pocket in the hP2X7R. This identified three compounds (C23, C40 and C60) out of 73 top-ranked compounds by testing against hP2X7R-mediated Ca(2+) responses. These compounds were further characterised using Ca(2+) imaging, patch-clamp current recording, YO-PRO-1 uptake and propidium iodide cell death assays. All three compounds inhibited BzATP-induced Ca(2+) responses concentration-dependently with IC50s of 5.1±0.3µM, 4.8±0.8µM and 3.2±0.2µM, respectively. C23 and C40 inhibited BzATP-induced currents in a reversible and concentration-dependent manner, with IC50s of 0.35±0.3µM and 1.2±0.1µM, respectively, but surprisingly C60 did not affect BzATP-induced currents up to 100µM. They suppressed BzATP-induced YO-PRO-1 uptake with IC50s of 1.8±0.9µM, 1.0±0.1µM and 0.8±0.2µM, respectively. Furthermore, these three compounds strongly protected against ATP-induced cell death. Among them, C40 and C60 exhibited strong specificity towards the hP2X7R over the hP2X4R and rP2X3R. In conclusion, our study reports the identification of three novel hP2X7R antagonists with micromolar potency for the first time using a structure-based approach, including the first P2X7R antagonist with preferential inhibition of large pore formation.


Assuntos
Amidas/farmacologia , Hepatócitos/efeitos dos fármacos , Indóis/farmacologia , Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Tiofenos/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Amidas/química , Amidas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Sítios de Ligação , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Indóis/química , Indóis/metabolismo , Ligantes , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/metabolismo , Ratos , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Célula Única , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/metabolismo
10.
J Biol Chem ; 291(15): 7990-8003, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26865631

RESUMO

Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the ß2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked ß2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop ß7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the ß2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the ß2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of ß2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled ß2,3-sheet to the function of P2X receptors.


Assuntos
Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Dissulfetos/química , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Sais/química , Alinhamento de Sequência
11.
Neuroscience ; 310: 38-50, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26384962

RESUMO

Previous reports from our lab had shown that some anti-purinergic receptor P2X4 antibodies cross-reacted with misfolded forms of mutant Cu/Zn superoxide dismutase 1 (SOD1), linked to amyotrophic lateral sclerosis (ALS). Cross-reactivity could be caused by the abnormal exposure of an epitope located in the inner hydrophobic region of SOD1 that shared structural homology with the P2X4-immunizing peptide. We had previously raised antibodies against human SOD1 epitope mimicked by the P2X4 immunizing peptide. One of these antibodies, called AJ10, was able to recognize mutant/misfolded forms of ALS-linked mutant SOD1. Here, we used the AJ10 antigen as a vaccine to target neurotoxic species of mutant SOD1 in a slow mouse model of ALS. However, the obtained results showed no improvement in life span, disease onset or weight loss in treated animals; we observed an increased microglial neuroinflammatory response and high amounts of misfolded SOD1 accumulated within spinal cord neurons after AJ10 immunization. An increase of immunoglobulin G deposits was also found due to the treatment. Finally, a significantly worse clinical evolution was displayed by an impairment on motor function as a consequence of AJ10 peptide immunization.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Imunoterapia/efeitos adversos , Inflamação/induzido quimicamente , Peptídeos/efeitos adversos , Superóxido Dismutase/química , Fatores Etários , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imunoglobulina G/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/imunologia , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia , Superóxido Dismutase-1
12.
FEBS Lett ; 589(6): 680-6, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25662851

RESUMO

The P2X receptor is an ATP-gated cation channel expressed on the plasma membrane. The head domain (Gln111-Val167 in the rat P2X4 receptor) regulates ATP-induced cation influx. In this study, we prepared a head domain with three disulfide bonds, such as the intact rat P2X4 receptor contains. NMR analysis showed that the head domain possessed the same fold as in the zebrafish P2X4 receptor previously determined by crystallography. Furthermore, the inhibitory, divalent, metal ion binding sites were determined by NMR techniques. These findings will be useful for the design of specific inhibitors for the P2X receptor family.


Assuntos
Receptores Purinérgicos P2X4/química , Animais , Sítios de Ligação , Cobre/química , Cistina/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Soluções , Zinco/química
13.
Pflugers Arch ; 467(4): 713-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24917516

RESUMO

Allosteric modulators of ligand-gated receptor channels induce conformational changes of the entire protein that alter potencies and efficacies for orthosteric ligands, expressed as the half maximal effective concentration (EC50) and maximum current amplitude, respectively. Here, we studied the influence of allostery on channel pore dilation, an issue not previously addressed. Experiments were done using the rat P2X4 receptor expressed in human embryonic kidney 293T cells and gated by adenosine 5'-triphosphate (ATP) in the presence and absence of ivermectin (IVM), an established positive allosteric regulator of this channel. In the absence of IVM, this channel activates and deactivates rapidly, does not show transition from open to dilated states, desensitizes completely with a moderate rate, and recovers only fractionally during washout. IVM treatment increases the efficacy of ATP to activate the channel and slows receptor desensitization during sustained ATP application and receptor deactivation after ATP washout. The rescue of the receptor from desensitization temporally coincides with pore dilation, and the dilated channel can be reactivated after washout of ATP. Experiments with vestibular and transmembrane domain receptor mutants further established that IVM has distinct effects on opening and dilation of the channel pore, the first accounting for increased peak current amplitude and the latter correlating with changes in the EC50 and kinetics of receptor deactivation. The corresponding kinetic (Markov state) model indicates that the IVM-dependent transition from open to dilated state is coupled to receptor sensitization, which rescues the receptor from desensitization and subsequent internalization. Allosterically induced sensitization of P2X4R thus provides sustained signaling during prolonged and repetitive ATP stimulation.


Assuntos
Ativação do Canal Iônico , Receptores Purinérgicos P2X4/química , Regulação Alostérica , Animais , Células HEK293 , Humanos , Ivermectina/química , Ivermectina/farmacologia , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
14.
PLoS One ; 9(11): e112902, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25398027

RESUMO

Crystallization of the zebrafish P2X4 receptor in both open and closed states revealed conformational differences in the ectodomain structures, including the dorsal fin and left flipper domains. Here, we focused on the role of these domains in receptor activation, responsiveness to orthosteric ATP analogue agonists, and desensitization. Alanine scanning mutagenesis of the R203-L214 (dorsal fin) and the D280-N293 (left flipper) sequences of the rat P2X4 receptor showed that ATP potency/efficacy was reduced in 15 out of 26 alanine mutants. The R203A, N204A, and N293A mutants were essentially non-functional, but receptor function was restored by ivermectin, an allosteric modulator. The I205A, T210A, L214A, P290A, G291A, and Y292A mutants exhibited significant changes in the responsiveness to orthosteric analog agonists 2-(methylthio)adenosine 5'-triphosphate, adenosine 5'-(γ-thio)triphosphate, 2'(3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, and α,ß-methyleneadenosine 5'-triphosphate. In contrast, the responsiveness of L206A, N208A, D280A, T281A, R282A, and H286A mutants to analog agonists was comparable to that of the wild type receptor. Among these mutants, D280A, T281A, R282A, H286A, G291A, and Y292A also exhibited increased time-constant of the desensitizing current response. These experiments, together with homology modeling, indicate that residues located in the upper part of the dorsal fin and left flipper domains, relative to distance from the channel pore, contribute to the organization of the ATP binding pocket and to the initiation of signal transmission towards residues in the lower part of both domains. The R203 and N204 residues, deeply buried in the protein, may integrate the output signal from these two domains towards the gate. In addition, the left flipper residues predominantly account for the control of transition of channels from an open to a desensitized state.


Assuntos
Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ivermectina/farmacologia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Alinhamento de Sequência
15.
PLoS One ; 9(5): e97528, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24878662

RESUMO

P2X receptors are ATP-gated ion channels involved in many physiological functions, and determination of ATP-recognition (AR) of P2X receptors will promote the development of new therapeutic agents for pain, inflammation, bladder dysfunction and osteoporosis. Recent crystal structures of the zebrafish P2X4 (zfP2X4) receptor reveal a large ATP-binding pocket (ABP) located at the subunit interface of zfP2X4 receptors, which is occupied by a conspicuous cluster of basic residues to recognize triphosphate moiety of ATP. Using the engineered affinity labeling and molecular modeling, at least three sites (S1, S2 and S3) within ABP have been identified that are able to recognize the adenine ring of ATP, implying the existence of at least three distinct AR modes in ABP. The open crystal structure of zfP2X4 confirms one of three AR modes (named AR1), in which the adenine ring of ATP is buried into site S1 while the triphosphate moiety interacts with clustered basic residues. Why architecture of ABP favors AR1 not the other two AR modes still remains unexplored. Here, we examine the potential role of inherent dynamics of head domain, a domain involved in ABP formation, in AR determinant of P2X4 receptors. In silico docking and binding free energy calculation revealed comparable characters of three distinct AR modes. Inherent dynamics of head domain, especially the downward motion favors the preference of ABP for AR1 rather than AR2 and AR3. Along with the downward motion of head domain, the closing movement of loop139-146 and loop169-183, and structural rearrangements of K70, K72, R298 and R143 enabled ABP to discriminate AR1 from other AR modes. Our observations suggest the essential role of head domain dynamics in determining AR of P2X4 receptors, allowing evaluation of new strategies aimed at developing specific blockers/allosteric modulators by preventing the dynamics of head domain associated with both AR and channel activation of P2X4 receptors.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Movimento , Estrutura Terciária de Proteína , Termodinâmica , Peixe-Zebra
16.
J Gen Physiol ; 144(1): 81-104, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24935743

RESUMO

P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current-voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs undergo exocytosis. Finally, the use of P2X4-pHluorin123 showed that the modulator ivermectin did not increase the PM fraction of P2X4 receptors and acted allosterically to potentiate P2X4 receptor responses. Collectively, our data suggest that P2X4-pHluorin123 represents a useful optical probe to quantitatively explore P2X4 receptor distribution, trafficking, and up-regulation.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Espaço Intracelular/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Microscopia Confocal/métodos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética
17.
Nat Commun ; 5: 4189, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24943126

RESUMO

Channel gating in response to extracellular ATP is a fundamental process for the physiological functions of P2X receptors. Here we identify coordinated allosteric changes in the left flipper (LF) and dorsal fin (DF) domains that couple ATP-binding to channel gating. Engineered disulphide crosslinking or zinc bridges between the LF and DF domains that constrain their relative motions significantly influence channel gating of P2X4 receptors, confirming the essential role of these allosteric changes. ATP-binding-induced alterations in interdomain hydrophobic interactions among I208, L217, V291 and the aliphatic chain of K193 correlate well with these coordinated relative movements. Mutations on those four residues lead to impaired or fully abolished channel activations of P2X4 receptors. Our data reveal that ATP-binding-induced altered interdomain hydrophobic interactions and the concomitant coordinated motions of LF and DF domains are allosteric events essential for the channel gating of P2X4 receptors.


Assuntos
Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Animais , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Terciária de Proteína , Ratos , Receptores Purinérgicos P2X4/genética
18.
Biochemistry ; 53(18): 3012-9, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24762105

RESUMO

P2X receptors are trimeric ATP-gated cation permeable ion channels. When ATP binds, the extracellular head and dorsal fin domains are predicted to move closer to each other. However, there are scant functional data corroborating the role of the dorsal fin in ligand binding. Here using site-directed mutagenesis and electrophysiology, we show that a dorsal fin leucine, L214, contributes to ATP binding. Mutant receptors containing a single substitution of alanine, serine, glutamic acid, or phenylalanine at L214 of the rat P2X4 receptor exhibited markedly reduced sensitivities to ATP. Mutation of other dorsal fin side chains, S216, T223, and D224, did not significantly alter ATP sensitivity. Exposure of L214C to sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) or (2-aminoethyl) methanethiosulfonate hydrobromide in the absence of ATP blocked responses evoked by subsequent ATP application. In contrast, when MTSES(-) was applied in the presence of ATP, no current inhibition was observed. Furthermore, L214A also slightly reduced the inhibitory effect of the antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP, and the blockade was more rapidly reversible after washout. Certain L214 mutants also showed effects on current desensitization in the continued presence of ATP. L214I exhibited an accelerated current decline, whereas L214M exhibited a slower rate. Taken together, these data reveal that position L214 participates in both ATP binding and conformational changes accompanying channel opening and desensitization, providing compelling evidence that the dorsal fin domain indeed has functional properties that are similar to those previously reported for the body domains.


Assuntos
Trifosfato de Adenosina/metabolismo , Leucina/química , Receptores Purinérgicos P2X4/química , Substituição de Aminoácidos , Animais , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Ivermectina/farmacologia , Leucina/genética , Leucina/metabolismo , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Ratos , Receptores Purinérgicos P2X4/efeitos dos fármacos , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 110(42): E4045-54, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082111

RESUMO

P2X receptor channels open in response to the binding of extracellular ATP, a property that is essential for purinergic sensory signaling. Apo and ATP-bound X-ray structures of the detergent-solubilized zebrafish P2X4 receptor provide a blueprint for receptor mechanisms but unexpectedly showed large crevices between subunits within the transmembrane (TM) domain of the ATP-bound structure. Here we investigate both intersubunit and intrasubunit interactions between TM helices of P2X receptors in membranes using both computational and functional approaches. Our results suggest that intersubunit crevices found in the TM domain of the ATP-bound crystal structure are not present in membrane-embedded receptors but substantiate helix interactions within individual subunits and identify a hot spot at the internal end of the pore where both the gating and permeation properties of P2X receptors can be tuned. We propose a model for the structure of the open state that has stabilizing intersubunit interactions and that is compatible with available structural constraints from functional channels in membrane environments.


Assuntos
Trifosfato de Adenosina/química , Modelos Moleculares , Receptores Purinérgicos P2X4/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Purinérgicos P2X4/metabolismo , Peixe-Zebra
20.
Proc Natl Acad Sci U S A ; 110(36): E3455-63, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959888

RESUMO

The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.


Assuntos
Trifosfato de Adenosina/farmacologia , Magnésio/farmacologia , Receptores Purinérgicos P2X/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/citologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Magnésio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Conformação Proteica , Multimerização Proteica , Ratos , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X1/química , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA