Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675965

RESUMO

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


Assuntos
DNA Viral , Herpesvirus Humano 4 , Doenças Inflamatórias Intestinais , Receptores Toll-Like , Animais , Feminino , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/virologia , Sulfato de Dextrana , Modelos Animais de Doenças , DNA Viral/efeitos adversos , DNA Viral/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/virologia , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
2.
Chem Biodivers ; 20(4): e202300025, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898972

RESUMO

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and trigger an inflammatory response via the myeloid differential factor 88 (MyD88)-dependent and toll-interleukin-1 receptor domain-containing adapter-inducing interferon-ß (TRIF)-dependent pathways. Lindenane type sesquiterpene dimers (LSDs) are characteristic metabolites of plants belonging to the genus Sarcandra (Chloranthaceae). The aim of this study was to evaluate the potential anti-inflammatory effects of the LSDs shizukaol D (1) and sarcandrolide E (2) on lipopolysaccharides (LPS)-stimulated RAW264.7 macrophages in vitro, and explore the underlying mechanisms. Both LSDs neutralized the LPS-induced morphological changes and production of nitric oxide (NO), as determined by CCK-8 assay and Griess assay, respectively. Furthermore, shizukaol D (1) and sarcandrolide E (2) downregulated interferon ß (IFNß), tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) mRNA levels as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibited the phosphorylation of nuclear factor kappa B p65 (p65), nuclear factor kappa-Bα (IκBα), Jun N-terminal kinase (JNK), extracellular regulated kinase (ERK), mitogen-activated protein kinase p38 (p38), MyD88, IL-1RI-associated protein kinase 1 (IRAK1), and transforming growth factor-ß-activated kinase 1 (TAK1) proteins in the Western blotting assay. In conclusion, LSDs can alleviate the inflammatory response by inhibiting the TLR/MyD88 signalling pathway.


Assuntos
Inflamação , Sesquiterpenos , Receptores Toll-Like , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Sesquiterpenos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
3.
Acta Biomater ; 141: 132-139, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032721

RESUMO

The clinical success of Toll-like receptor (TLR) agonists is based on their capacity to efficiently mobilize both innate and adaptive immunity. However, rapid distribution of TLR agonists into the systemic circulation may result in systemic cytokine storms. Telratolimod (Tel) is a TLR 7/8 agonist whose structure has a hydrophobic long chain that helps to prolong its release. Despite this, the phase I study of Tel showed cytokine release syndromes in 3/35 patients. Herein, we designed an injectable phase transition gel (PGE) that served as a superior drug depot for fatty acid-modified drugs. PGE further minimized the systemic drug exposure of Tel and the possible cytokine storms. In vivo studies demonstrated that Tel@PGE facilitated the recruitment of effector CD8+ T lymphocytes (T cells) and the polarization of myeloid-derived suppressor cells (MDSCs) and immunosuppressive M2-like macrophages to tumoricidal antigen-presenting cells. The reshaping of the tumor microenvironment (TME) by Tel@PGE elicited systematic immune responses to significantly prevent B16F10 or 4T-1 tumor postoperative recurrence and metastasis. Therefore, this platform of Tel is expected to provide a clinically available option for effective postoperative combined therapy. STATEMENT OF SIGNIFICANCE: A series of prodrugs or conjugates containing hydrophobic blocks were designed to achieve sustained release at the injection site by reducing the water solubility. However, this strategy sometimes failed short of expectations. Thus, we constructed a biocompatible and biodegradable injectable phase transition gel (PGE) with superior release properties that can be injected subcutaneously into the surgery site. In the long-lasting treatment, the melanoma and breast cancer immunotherapeutic effect significantly enhanced and the risk of cancer metastasis and relapse was reduced. Crucially, for some immune agonists, a superior release control can significantly reduce adverse effects which was decisive for the availability of the drugs.


Assuntos
Síndrome da Liberação de Citocina , Recidiva Local de Neoplasia , Humanos , Adjuvantes Imunológicos , Preparações de Ação Retardada , Imunoterapia , Receptores Toll-Like/antagonistas & inibidores , Microambiente Tumoral
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055015

RESUMO

Stereotactic body radiotherapy (SBRT) is known to induce important immunologic changes within the tumor microenvironment (TME). However, little is known regarding the early immune responses within the TME in the first few weeks following SBRT. Therefore, we used the canine spontaneous tumor model to investigate TME responses to SBRT, and how local injection of immune modulatory antibodies to OX40 and TLR 3/9 agonists might modify those responses. Pet dogs with spontaneous cancers (melanoma, carcinoma, sarcoma, n = 6 per group) were randomized to treatment with either SBRT or SBRT combined with local immunotherapy. Serial tumor biopsies and serum samples were analyzed for immunologic responses. SBRT alone resulted at two weeks after treatment in increased tumor densities of CD3+ T cells, FoxP3+ Tregs, and CD204+ macrophages, and increased expression of genes associated with immunosuppression. The addition of OX40/TLR3/9 immunotherapy to SBRT resulted in local depletion of Tregs and tumor macrophages and reduced Treg-associated gene expression (FoxP3), suppressed macrophage-associated gene expression (IL-8), and suppressed exhausted T cell-associated gene expression (CTLA4). Increased concentrations of IL-7, IL-15, and IL-18 were observed in serum of animals treated with SBRT and immunotherapy, compared to animals treated with SBRT. A paradoxical decrease in the density of effector CD3+ T cells was observed in tumor tissues that received combined SBRT and immunotherapy as compared to animals treated with SBRT only. In summary, these results obtained in a spontaneous large animal cancer model indicate that addition of OX40/TLR immunotherapy to SBRT modifies important immunological effects both locally and systemically.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Doenças do Cão/terapia , Neoplasias/veterinária , Radiocirurgia/métodos , Receptores OX40/antagonistas & inibidores , Receptores Toll-Like/antagonistas & inibidores , Animais , Terapia Combinada , Citocinas , Doenças do Cão/diagnóstico , Doenças do Cão/etiologia , Cães , Feminino , Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Neovascularização Patológica/metabolismo , Radioterapia Guiada por Imagem , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Microambiente Tumoral/imunologia
5.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884569

RESUMO

Toll-like receptors (TLRs) play a major role in the innate immune system. Several studies have shown the regulatory effects of TLR-mediated pathways on immune and inflammatory diseases. Dysregulated functions of TLRs within the endosomal compartment, including TLR7/9 trafficking, may cause systemic lupus erythematosus (SLE). TLR signaling pathways are fine-tuned by Toll/interleukin-1 receptor (TIR) domain-containing adapters, leading to interferon (IFN)-α production. This study describes a TLR inhibitor peptide 1 (TIP1) that primarily suppresses the downstream signaling mediated by TIR domain-containing adapters in an animal model of lupus and patients with SLE. The expression of most downstream proteins of the TLR7/9/myeloid differentiation factor 88 (MyD88)/IFN regulatory factor 7 signaling was downregulated in major tissues such as the kidney, spleen, and lymph nodes of treated mice. Furthermore, the pathological analysis of the kidney tissue confirmed that TIP1 could improve inflammation in MRL/lpr mice. TIP1 treatment downregulated many downstream proteins associated with TLR signaling, such as MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, and IFN-α, in the peripheral blood mononuclear cells of patients with SLE. In conclusion, our data suggest that TIP1 can serve as a potential candidate for the treatment of SLE.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/prevenção & controle , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo
6.
Front Immunol ; 12: 720192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456928

RESUMO

COVID-19 might lead to multi-organ failure and, in some cases, to death. The COVID-19 severity is associated with a "cytokine storm." Danger-associated molecular patterns (DAMPs) are proinflammatory molecules that can activate pattern recognition receptors, such as toll-like receptors (TLRs). DAMPs and TLRs have not received much attention in COVID-19 but can explain some of the gender-, weight- and age-dependent effects. In females and males, TLRs are differentially expressed, likely contributing to higher COVID-19 severity in males. DAMPs and cytokines associated with COVID-19 mortality are elevated in obese and elderly individuals, which might explain the higher risk for severer COVID-19 in these groups. Adenosine signaling inhibits the TLR/NF-κB pathway and, through this, decreases inflammation and DAMPs' effects. As vaccines will not be effective in all susceptible individuals and as new vaccine-resistant SARS-CoV-2 mutants might develop, it remains mandatory to find means to dampen COVID-19 disease severity, especially in high-risk groups. We propose that the regulation of DAMPs via adenosine signaling enhancement might be an effective way to lower the severity of COVID-19 and prevent multiple organ failure in the absence of severe side effects.


Assuntos
Alarminas/imunologia , COVID-19/fisiopatologia , Mediadores da Inflamação/imunologia , Adenosina/metabolismo , Alarminas/antagonistas & inibidores , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/terapia , Humanos , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Gravidade do Paciente , Transdução de Sinais , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/imunologia
7.
IUBMB Life ; 73(1): 10-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217774

RESUMO

At the forefront of the battle against pathogens or any endogenously released molecules, toll-like receptors (TLRs) play an important role as the most noble pattern recognition receptors. The ability of these receptors in distinguishing "self" and "non-self" antigens is a cornerstone in the innate immunity system; however, misregulation links inflammatory responses to the development of human cancers. It has been known for some time that aberrant expression and regulation of TLRs not only endows cancer cells an opportunity to escape from the immune system but also supports them through enhancing proliferation and angiogenesis. Over the past decades, cancer research studies have witnessed a number of preclinical and clinical breakthroughs in the field of TLR modulators and some of the agents have exceptionally performed well in advanced clinical trials. In the present review, we have provided a comprehensive review of different TLR agonists and antagonists and discuss their limitations, toxicities, and challenges to outline their future incorporation in cancer treatment strategies.


Assuntos
Antineoplásicos/uso terapêutico , Imunidade Inata , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais
8.
HNO ; 68(12): 916-921, 2020 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-33128107

RESUMO

BACKGROUND: CD8+ cells are key players in the identification and elimination of cancer cells. Cancers can escape an effective T cell response by inducing an exhausted cell state, which limits the cytotoxic capacity of the effector cells. Among other mechanisms, new checkpoint inhibitors reactivate exhausted, dysfunctional T cells. CD8+ T cells can eliminate tumor cells after presentation of tumor-specific antigens via antigen-presenting cells (APCs). APC-mediated tumor recognition is mainly stimulated by Toll-like receptors (TLRs). OBJECTIVE: This study investigates the effect of TLR agonists on APCs as well as stimulatory and inhibitory signaling pathways of the T cell-APC interaction. MATERIALS AND METHODS: Gene expression of interleukin (IL)12 and programmed death ligand 1 (PD-L1) was analyzed by quantitative polymerase chain reaction (qPCR) after 0, 8, 24, and 48 h of CD14+ cell stimulation with CpG. Protein expression of inhibitor of nuclear factor kappa B (IκBα) after CpG stimulation was investigated by western blot. CD8+ T cells were stimulated for 72 h with or without programmed cell death protein 1 (PD-1) checkpoint blockade and analyzed for expression of PD­1, Tim­3, CTLA4, and Lag3 by flow cytometry. RESULTS: TLR stimulation (by unmethylated CpG DNA) of APCs upregulates immunostimulatory signals such as IL12 expression but also activates immunoinhibitory signaling pathways such as PD-L1 expression. This signaling is NF-κB dependent. After blockade of the PD-1/PD-L1 signaling pathway, overexpression of other immune checkpoint inhibitory receptors was observed-a potential explanation for lacking therapeutic responses after TLR stimulation with PD­1 checkpoint blockade. CONCLUSION: TLR stimulation causes APCs in the tumor microenvironment to upregulate PD-L1 in an NF-κB-mediated fashion, thereby contributing to CD8+ T cell exhaustion. The effect of PD­1 blockade after TLR stimulation might be impaired due to upregulation of other checkpoint inhibitors.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Transdução de Sinais , Receptores Toll-Like , Antígeno B7-H1/metabolismo , NF-kappa B/fisiologia , Receptores Toll-Like/antagonistas & inibidores , Microambiente Tumoral
9.
J Med Chem ; 63(22): 13466-13513, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32845153

RESUMO

Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-ß (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Imunidade Inata/fisiologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/imunologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Imunidade Inata/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Estrutura Secundária de Proteína , Receptores Toll-Like/metabolismo
10.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660060

RESUMO

Toll-like receptors (TLRs) play a fundamental role in the inflammatory response against invading pathogens. However, the dysregulation of TLR-signaling pathways is implicated in several autoimmune/inflammatory diseases. Here, we show that a novel small molecule TLR-inhibitor (TAC5) and its derivatives TAC5-a, TAC5-c, TAC5-d, and TAC5-e predominantly antagonized poly(I:C) (TLR3)-, imiquimod (TLR7)-, TL8-506 (TLR8)-, and CpG-oligodeoxynucleotide (TLR9)-induced signaling pathways. TAC5 and TAC5-a significantly hindered the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), reduced the phosphorylation of mitogen-activated protein kinases, and inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6. Besides, TAC5-a prevented the progression of psoriasis and systemic lupus erythematosus (SLE) in mice. Interestingly, TAC5 and TAC5-a did not affect Pam3CSK4 (TLR1/2)-, FSL-1 (TLR2/6)-, or lipopolysaccharide (TLR4)-induced TNF-α secretion, indicating their specificity towards endosomal TLRs (TLR3/7/8/9). Collectively, our data suggest that the TAC5 series of compounds are potential candidates for treating autoimmune diseases such as psoriasis or SLE.


Assuntos
Anti-Inflamatórios/farmacologia , Fatores Imunológicos/farmacologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Psoríase/tratamento farmacológico , Receptores Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Sítios de Ligação , Endossomos/metabolismo , Feminino , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Immunol ; 11: 1236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625214

RESUMO

Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.


Assuntos
Suscetibilidade a Doenças , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Morte Celular , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Terapia de Alvo Molecular , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Índice de Gravidade de Doença , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/genética
12.
Eur J Med Chem ; 193: 112238, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203790

RESUMO

The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores , Animais , Antibacterianos/química , Antineoplásicos/química , Antivirais/química , Produtos Biológicos/química , Humanos , Ligantes , Estrutura Molecular
13.
Eur J Orthop Surg Traumatol ; 30(4): 713-721, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31938894

RESUMO

BACKGROUND: An effective prevention strategy for osteonecrosis of the femoral head (ONFH) has yet to be established. We previously reported that the innate immune system via the toll-like receptor (TLR) response induced by corticosteroids leads to the development of ONFH and that repression of IRF7 activity by an inhibitor could interfere with the development of ONFH while maintaining the therapeutic effect of the corticosteroids. OBJECTIVE: In the present study, we hypothesize that lansoprazole has the potential to suppress IRF7 activity and prevent corticosteroid-induced ONFH in rats. Furthermore, we conducted a preliminary clinical trial to prevent corticosteroid-induced ONFH in autoimmune disease patients. METHODS: Male Wistar rats were randomly divided into four groups. On Day 1, each rat was injected with TLR4 ligand (LPS) or TLR7 ligand (imiquimod), followed by methylprednisolone with or without lansoprazole on Day 2. They were killed at 1 or 14 days after the last injection.We prospectively recruited 30 patients requiring primary high-dose corticosteroid treatment for immune diseases. All patients were administered lansoprazole, starting the night before corticosteroid treatment began. MRI was performed before corticosteroid treatment, and at 4, 12 and 24 weeks afterward. RESULTS: In rats, co-treatment of lansoprazole with corticosteroids significantly repressed both IRF7 activity and the development of ONFH. Moreover, in the human patients, the incidence of ONFH was significantly decreased from 53.4 to 13.3%. CONCLUSIONS: Although the present study is preliminary, the results show that co-treatment of lansoprazole with corticosteroids prevents ONFH development. Lansoprazole may be both safe and effective in preventing osteonecrosis of the femoral head in patients needing corticosteroid treatment.


Assuntos
Necrose da Cabeça do Fêmur , Cabeça do Fêmur/diagnóstico por imagem , Doenças do Sistema Imunitário/tratamento farmacológico , Inibidores da Bomba de Prótons/administração & dosagem , Receptores Toll-Like/antagonistas & inibidores , Corticosteroides/administração & dosagem , Corticosteroides/efeitos adversos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Modelos Animais de Doenças , Feminino , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/prevenção & controle , Humanos , Lansoprazol/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Ratos , Resultado do Tratamento
14.
J Immunol Res ; 2019: 1824624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815151

RESUMO

As the key defense molecules originally identified in Drosophila, Toll-like receptor (TLR) superfamily members play a fundamental role in detecting invading pathogens or damage and initiating the innate immune system of mammalian cells. The skin, the largest organ of the human body, protects the human body by providing a critical physical and immunological active multilayered barrier against invading pathogens and environmental factors. At the first line of defense, the skin is constantly exposed to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), and TLRs, expressed in a cell type-specific manner by various skin cells, serve as key molecules to recognize PAMPs and DAMPs and to initiate downstream innate immune host responses. While TLR-initiated inflammatory responses are necessary for pathogen clearance and tissue repair, aberrant activation of TLRs will exaggerate T cell-mediated autoimmune activation, leading to unwanted inflammation, and the development of several skin diseases, including psoriasis, atopic dermatitis, systemic lupus erythematosus, diabetic foot ulcers, fibrotic skin diseases, and skin cancers. Together, TLRs are at the interface between innate immunity and adaptive immunity. In this review, we will describe current understanding of the role of TLRs in skin defense and in the pathogenesis of psoriasis and atopic dermatitis, and we will also discuss the development and therapeutic effect of TLR-targeted therapies.


Assuntos
Dermatite Atópica/imunologia , Pé Diabético/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Psoríase/imunologia , Neoplasias Cutâneas/imunologia , Receptores Toll-Like/genética , Imunidade Adaptativa/efeitos dos fármacos , Alarminas/genética , Alarminas/imunologia , Anticorpos Monoclonais/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/patologia , Pé Diabético/tratamento farmacológico , Pé Diabético/genética , Pé Diabético/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Terapia de Alvo Molecular/métodos , Moléculas com Motivos Associados a Patógenos/imunologia , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/patologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/imunologia
15.
PLoS One ; 14(11): e0224738, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697716

RESUMO

Tissue-type plasminogen activator (tPA) is a major activator of fibrinolysis, which also attenuates the pro-inflammatory activity of lipopolysaccharide (LPS) in bone marrow-derived macrophages (BMDMs) and in vivo in mice. The activity of tPA as an LPS response modifier is independent of its proteinase activity and instead, dependent on the N-methyl-D-aspartate Receptor (NMDA-R), which is expressed by BMDMs. The major Toll-like receptor (TLR) for LPS is TLR4. Herein, we show that enzymatically-inactive (EI) tPA blocks the response of mouse BMDMs to selective TLR2 and TLR9 agonists, rapidly reversing IκBα phosphorylation and inhibiting expression of TNFα, CCL2, interleukin-1ß, and interleukin-6. The activity of EI-tPA was replicated by activated α2-macroglobulin, which like EI-tPA, signals through an NMDA-R-dependent pathway. EI-tPA failed to inhibit cytokine expression by BMDMs in response to agonists that target the Pattern Recognition Receptors (PRRs), NOD1 and NOD2, providing evidence for specificity in the function of EI-tPA. Macrophages isolated from the peritoneal space (PMs), without adding eliciting agents, expressed decreased levels of cell-surface NMDA-R compared with BMDMs. These cells were unresponsive to EI-tPA in the presence of LPS. However, when PMs were treated with CSF-1, the abundance of cell-surface NMDA-R increased and the ability of EI-tPA to neutralize the response to LPS was established. We conclude that the anti-inflammatory activity of EI-tPA is selective for TLRs but not all PRRs. The ability of macrophages to respond to EI-tPA depends on the availability of cell surface NMDA-R, which may be macrophage differentiation-state dependent.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/patologia , Ativador de Plasminogênio Tecidual/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Animais , Citocinas/metabolismo , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Toll-Like/metabolismo
16.
Biomed Res Int ; 2019: 5286358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240216

RESUMO

In recent years, progress has been made in understanding the pathological, genetic, and molecular heterogeneity of central nervous system (CNS) tumors. However, improvements in risk classification, prognosis, and treatment have not been sufficient. Currently, great importance has been placed to the tumor microenvironment and the immune system, which are very important components that influence the establishment and development of tumors. Toll-like receptors (TLRs) are innate immunite system sensors of a wide variety of molecules, such as those associated with microorganisms and danger signals. TLRs are expressed on many cells, including immune cells and nonimmune cells such as neurons and cancer cells. In the tumor microenvironment, activation of TLRs plays dual antitumoral (dendritic cells, cytotoxic T cells, and natural killer cells activation) and protumoral effects (tumor cell proliferation, survival, and resistance to chemotherapy) and constitutes an area of opportunities and challenges in the development of new therapeutic strategies. Several clinical trials have been carried out, and others are currently in process; however, the results obtained to date have been contradictory and have not led to a definitive position about the use of TLR agonists in adjuvant therapy during the treatment of central nervous system (CNS) tumors. In this review, we focus on recent advances in TLR agonists as immunotherapies for treatment of CNS tumors.


Assuntos
Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/imunologia , Imunoterapia/métodos , Receptores Toll-Like/antagonistas & inibidores , Antituberculosos/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Células Dendríticas , Humanos , Imunidade Inata , Células Matadoras Naturais , Ativação Linfocitária , Neurônios/metabolismo , Linfócitos T Citotóxicos , Receptores Toll-Like/imunologia , Microambiente Tumoral
17.
Oncol Res ; 27(8): 965-978, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30940297

RESUMO

Toll-like receptors (TLRs) are associated with tumor growth and immunosuppression, as well as apoptosis and immune system activation. TLRs can activate apoptosis and innate and adaptive immunity pathways, which can be pharmacologically targeted for the development of anticancer oncotherapies. Several studies and clinical trials indicate that TLR agonists are promising adjuvants or elements of novel therapies, particularly when used in conjunction with chemotherapy or radiotherapy. An increasing number of studies suggest that the activation of TLRs in various cancer types is related to oncotherapy; however, before this finding can be applied to clinical practice, additional studies are required. Research suggests that TLR agonists may have potential applications in cancer therapy; nevertheless, because TLR signaling can also promote tumorigenesis, a critical and comprehensive evaluation of TLR action is warranted. This review focuses on recent studies that have assessed the strengths and weaknesses of utilizing TLR agonists as potential anticancer agents.


Assuntos
Apoptose/genética , Terapia de Alvo Molecular , Neoplasias/terapia , Receptores Toll-Like/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Receptores Toll-Like/antagonistas & inibidores
18.
Chem Biol Interact ; 305: 119-126, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30935901

RESUMO

Epidemiological and toxicological studies indicate that polyhexamethylene guanidine phosphate (PHMG-p) is a guanidine-based cationic disinfectant strongly associated with interstitial lung diseases. As individuals exposed to aerosolized PHMG-p complain of respiratory problems (asthma and rhinitis), whether PHMG-p can cause respiratory diseases other than interstitial fibrosis should be investigated. MUC5AC, the predominant mucin gene expressed in airways, is associated with obstructive respiratory disease pathogenesis. Therefore, in this study, we elucidated the relationship between PHMG-p and MUC5AC overexpression. First, in immunofluorescence studies, the bronchial epithelia of mice intratracheally administrated PHMG-p appeared to be sloughing and tethered by MUC5AC. Second, Calu-3 cells exposed to PHMG-p showed concentration-dependent increases in MUC5AC mRNA and protein expression. c-Jun N-terminal kinase (JNK), p38, and c-jun were phosphorylated in cells exposed to PHMG-p. SP600125 and SB203580, JNK and p38 inhibitors, respectively, reduced the upregulation of MUC5AC by PHMG-p in Calu-3 cells. When toll-like receptor (TLR)2, 4, and 6 were silenced, PHMG-p-induced JNK and p38 phosphorylation decreased. Furthermore, TLR2-, 4-, and 6-silenced cells showed reduced levels of MUC5AC mRNA and protein induced by PHMG-p, with TLR6 knockdown showing the greatest effect. In conclusion, PHMG-p induced MUC5AC overexpression via activation of the TLR-p38 MAPK and JNK axis.


Assuntos
Guanidinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mucina-5AC/metabolismo , Receptores Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Brônquios/citologia , Brônquios/metabolismo , Brônquios/patologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5AC/genética , Muco/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
19.
Curr Opin Hematol ; 26(4): 207-213, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033704

RESUMO

PURPOSE OF REVIEW: The innate immune system is essential in the protection against microbial infection and facilitating tissue repair mechanisms. During these stresses, the maintenance of innate immune cell numbers through stress-induced or emergency hematopoiesis is key for our survival. One major mechanism to recognize danger signals is through the activation of Toll-like receptors (TLRs) on the surface of hematopoietic cells, including hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC), and nonhematopoietic cells, which recognize pathogen-derived or damaged-induced compounds and can influence the emergency hematopoietic response. This review explores how direct pathogen-sensing by HSC/HPC regulates hematopoiesis, and the positive and negative consequences of these signals. RECENT FINDINGS: Recent studies have highlighted new roles for TLRs in regulating HSC and HPC differentiation to innate immune cells of both myeloid and lymphoid origin and augmenting HSC and HPC migration capabilities. Most interestingly, new insights as to how acute versus chronic stimulation of TLR signaling regulates HSC and HPC function has been explored. SUMMARY: Recent evidence suggests that TLRs may play an important role in many inflammation-associated diseases. This suggests a possible use for TLR agonists or antagonists as potential therapeutics. Understanding the direct effects of TLR signaling by HSC and HPC may help regulate inflammatory/danger signal-driven emergency hematopoiesis.


Assuntos
Doenças Hematológicas/imunologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Receptores Toll-Like/fisiologia , Animais , Doenças Hematológicas/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Inflamação/patologia , Transdução de Sinais , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores
20.
Eur J Med Chem ; 169: 42-52, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30852386

RESUMO

Previous high throughput virtual screening of 10 million-compound and following cell based validation led to the discovery of a novel, nonlipopeptide-like chemotype ZINC 6662436, as toll-like receptor 2 (TLR2) agonists. In this report, compounds belonging to four areas of structural modification of ZINC6662436 were evaluated for biological activity using human HEK-Blue TLR2 reporter cells, and human THP-1 monocytic cells, yield SMU-C13 as an optimized, direct and high potent (EC50 = 160 nM) agonist of human TLR2. Moreover, preliminary mechanism studies indicated that SMU-C13 through activates TLR1 and TLR2 then stimulates the NF-κB activation to trigger the downstream cytokines, such as TNF-α and secreted alkaline phosphatase (SEAP).


Assuntos
Tiofenos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Ureia/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química , Receptores Toll-Like/imunologia , Ureia/análogos & derivados , Ureia/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA