Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 299, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811954

RESUMO

Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.


Assuntos
Neoplasias , Neovascularização Patológica , Receptores da Família Eph , Transdução de Sinais , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/imunologia , Neovascularização Patológica/metabolismo , Receptores da Família Eph/metabolismo , Animais , Progressão da Doença , Imunidade , Angiogênese
2.
Proc Natl Acad Sci U S A ; 121(19): e2322934121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701119

RESUMO

EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1ß-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endometriose/patologia , DNA/metabolismo , Receptores da Família Eph/metabolismo , Receptores da Família Eph/antagonistas & inibidores , Receptor EphA2/metabolismo , Receptor EphA2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Movimento Celular/efeitos dos fármacos
3.
Sci Transl Med ; 16(744): eadg5768, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657024

RESUMO

Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.


Assuntos
Células Endoteliais , Efrinas , Sepse , Transdução de Sinais , Animais , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Humanos , Células Endoteliais/metabolismo , Camundongos , Efrinas/metabolismo , Camundongos Endogâmicos C57BL , Receptores da Família Eph/metabolismo , Ceco/patologia , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Modelos Animais de Doenças
4.
Curr Protein Pept Sci ; 25(3): 244-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37909437

RESUMO

Eph receptors and their Eph receptor-interacting (ephrin) ligands comprise a vital cell communication system with several functions. In cancer cells, there was evidence of bilateral Eph receptor signaling with both tumor-suppressing and tumor-promoting actions. As a member of the Eph receptor family, EphB4 has been linked to tumor angiogenesis, growth, and metastasis, which makes it a viable and desirable target for drug development in therapeutic applications. Many investigations have been conducted over the last decade to elucidate the structure and function of EphB4 in association with its ligand ephrinB2 for its involvement in tumorigenesis. Although several EphB4-targeting drugs have been investigated, and some selective inhibitors have been evaluated in clinical trials. This article addresses the structure and function of the EphB4 receptor, analyses its possibility as an anticancer therapeutic target, and summarises knowledge of EphB4 kinase inhibitors. To summarise, EphB4 is a difficult but potential treatment option for cancers.


Assuntos
Neoplasias , Receptor EphA1 , Humanos , Efrina-B2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptores da Família Eph , Receptor EphB4/genética , Receptor EphB4/metabolismo
5.
Nat Rev Cancer ; 24(1): 5-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996538

RESUMO

Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.


Assuntos
Neoplasias , Receptores da Família Eph , Humanos , Receptor EphA1 , Efrinas/fisiologia , Efrinas/uso terapêutico , Neoplasias/patologia , Processos Neoplásicos , Microambiente Tumoral
6.
Mol Pharm ; 20(12): 6066-6078, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37906960

RESUMO

Erythropoietin-producing hepatocellular (Eph) receptors and their ligands, ephrins, are the largest subfamily of receptor tyrosine kinases (RTKs) that have emerged as a new class of cancer biomarkers due to their aberrant expression in cancer progression. The activation of Eph receptors either due to their hyperexpression or via high affinity binding with their respective ephrin ligands initiates a cascade of signals that impacts cancer development and progression. In prostate cancer, the overexpression of the EphA6 receptor has been correlated with increased metastatic potential. Azurin, a small redox protein, is known to prevent tumor progression by binding to cell surface Eph receptors, inhibiting its autophosphorylation in the kinase domain and thereby disrupting Eph-ephrin signaling. Hence, a self-assembled, theranostic nanosystem of recombinant fusion protein his6EGFP-azu (80-128) was designed by conjugating enhanced green fluorescent protein (EGFP) with the C-terminal region of azurin. This design was inspired by the in silico binding study, where the analogue of ephrinA, his6EGFP-azu (80-128) showed higher binding affinity for the EphA6 receptor than the ephrinA ligands. The his6EGFP-azu (80-128) nanosystem which assembled as nanoparticles was tested for its ability to simultaneously detect and kill the prostate cancer cells, LNCaP. This was achieved by specifically targeting EphA6 receptors overexpressed on the cancer cell surface via C-terminal peptide, azu (80-128). Herein, we report antiproliferative, apoptotic, antimigratory, and anti-invasive effects of this nanosystem on LNCaP cells, while having no similar effects on EphA6 negative human normal lung cells, WI-38.


Assuntos
Azurina , Neoplasias da Próstata , Receptor EphA6 , Masculino , Humanos , Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Azurina/genética , Medicina de Precisão , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Efrinas/química , Efrinas/metabolismo
7.
J Mol Biol ; 435(19): 168243, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619706

RESUMO

The Eph (erythropoietin-producing human hepatocellular) receptor family, the largest subclass of receptor tyrosine kinases (RTKs), plays essential roles in embryonic development and neurogenesis. The intracellular Sterile Alpha Motif (SAM) domain presents a critical structural feature that distinguishes Eph receptors from other RTKs and participates in recruiting and binding downstream molecules. This study identified SASH1 (SAM and SH3 domain containing 1) as a novel Eph receptor-binding partner through SAM-SAM domain interactions. Our comprehensive biochemical analyses revealed that SASH1 selectively interacts with Eph receptors via its SAM1 domain, displaying the highest affinity for EphA8. The high-resolution crystal structure of the EphA8-SASH1 complex provided insights into the specific intermolecular interactions between these proteins. Cellular assays confirmed that EphA8 and SASH1 co-localize and co-precipitate in mammalian cells, with cancer mutations (EphA8 R942H or G978D) impairing this interaction. We demonstrated that SAM-SAM interaction is critical for SASH1-mediated regulation of EphA8 kinase activity, shedding new light on the Eph signaling pathway and expanding our understanding of the molecular basis of the tumor suppressor gene SASH1.


Assuntos
Receptor EphA1 , Motivo Estéril alfa , Proteínas Supressoras de Tumor , Animais , Feminino , Humanos , Gravidez , Desenvolvimento Embrionário , Receptor EphA1/genética , Receptores da Família Eph/genética , Transdução de Sinais
8.
Genes Brain Behav ; 22(6): e12863, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575018

RESUMO

An environmental risk factor for schizophrenia (SZ) is maternal infection, which exerts longstanding effects on the neurodevelopment of offspring. Accumulating evidence suggests that synaptic disturbances may contribute to the pathology of the disease, but the underlying molecular mechanisms remain poorly understood. Erythropoietin-producing hepatocellular B (EphB) receptor signaling plays an important role in synaptic plasticity by regulating the formation and maturation of dendritic spines and regulating excitatory neurotransmission. We examined whether EphB receptors and downstream associated proteins are susceptible to environmental risk factors implicated in the etiology of synaptic disturbances in SZ. Using an established rodent model, which closely imitates the characteristics of SZ, we observed the behavioral performance and synaptic structure of male offspring in adolescence and early adulthood. We then analyzed the expression of EphB receptors and associated proteins in the prefrontal cortex and hippocampus. Maternal immune activation offspring showed significantly progressive cognitive impairment and pre-pulse inhibition deficits together with an increase in the expression of EphB2 receptors and NMDA receptor subunits. We also found changes in EphB receptor downstream signaling, in particular, a decrease in phospho-cofilin levels which may explain the reduced dendritic spine density. Besides, we found that the AMPA glutamate, another glutamate ionic receptor associated with cofilin, decreased significantly in maternal immune activation offspring. Thus, alterations in EphB signaling induced by immune activation during pregnancy may underlie disruptions in synaptic plasticity and function in the prefrontal cortex and hippocampus associated with behavioral and cognitive impairment. These findings may provide insight into the mechanisms underlying SZ.


Assuntos
Carcinoma Hepatocelular , Eritropoetina , Neoplasias Hepáticas , Feminino , Gravidez , Ratos , Animais , Masculino , Neurônios/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Ácido Glutâmico/metabolismo , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Receptores da Família Eph/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/farmacologia , Plasticidade Neuronal
9.
Cell Rep ; 42(7): 112670, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392382

RESUMO

Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.


Assuntos
Efrinas , Neoplasias , Efrinas/genética , Proteômica , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Transdução de Sinais , Receptores ErbB/genética , Neoplasias/genética
10.
Aging (Albany NY) ; 15(14): 7324-7332, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37413995

RESUMO

The family of Eph receptor tyrosine kinases and their Ephrin ligands system constitutes a bidirectional signaling pathway. Eph/Ephrin system coordinate a wide spectrum of pathologic processes during development, metastasis, prognosis, drug resistance and angiogenesis in carcinogenesis. Chemotherapy, surgery and radiotherapy are the most commonly used clinical treatments for primary bone tumors. Therefore, surgical resection is often unable to completely eliminate the tumor, and this is the main cause of metastasis and postoperative recurrence. A growing body of literature has been published lately revitalizing our scientific interest towards the role of Eph/Ephrins in pathogenesis and the treatment of bone tumor and bone cancer pain. This study mainly reviewed the roles of Eph/Ephrin system that has both tumor-suppressing and -promoting roles in primary bone tumors and bone cancer pain. Understanding the intracellular mechanisms of Eph/Ephrin system in tumorigenesis and metastasis of bone tumors might provide a foundation for the development of Eph/Ephrin targeted anti-cancer therapy.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Osteossarcoma , Humanos , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Ligação Proteica , Dor , Carcinogênese
11.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769332

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown to exert bidirectional signaling and cell-to-cell communication, influencing cellular morphology, adhesion, migration and invasion. Recent studies have highlighted the critical role of the EPH/ephrin system in various physiologic processes, including cellular proliferation, survival, synaptic plasticity and angiogenesis. Thus, it has become evident that the EPH/ephrin signaling system may have compelling effects on cell homeostasis that contribute to carcinogenesis. In particular, the EPH/ephrins have an impact on pancreatic morphogenesis and development, whereas several EPHs and ephrins are altered in PDAC. Several clinical and preclinical studies have attempted to elucidate the effects of the EPH/ephrin pathway, with multilayered effects on PDAC development. These studies have highlighted its highly promising role in the diagnosis, prognosis and therapeutic management of PDAC. The aim of this review is to explore the obscure aspects of the EPH/ephrin system concerning the development, physiology and homeostasis of the pancreas.


Assuntos
Adenocarcinoma , Efrinas , Humanos , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia , Pâncreas/metabolismo
12.
Cell Signal ; 104: 110579, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572189

RESUMO

Eph receptors, the largest known family of receptor tyrosine kinases, and ephrin ligands have been implicated in a variety of human cancers. The novel bidirectional signaling events initiated by binding of Eph receptors to their cognate ephrin ligands modulate many cellular processes such as proliferation, metastasis, angiogenesis, invasion, and apoptosis. The relationships between the abundance of a unique subset of Eph receptors and ephrin ligands with associated cellular processes indicate a key role of these molecules in tumorigenesis. The combinatorial expression of these molecules converges on MAP kinase and/or AKT/mTOR signaling pathways. The intracellular target proteins of the initial signal may, however, vary in some cancers. Furthermore, we have also described the commonality of up- and down-regulation of individual receptors and ligands in various cancers. The current state of research in Eph receptors illustrates MAP kinase and mTOR pathways as plausible targets for therapeutic interventions in various cancers.


Assuntos
Neoplasias , Receptores da Família Eph , Humanos , Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Efrinas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ligantes , Neoplasias/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Serina-Treonina Quinases TOR
13.
Curr Med Chem ; 30(20): 2340-2353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35996244

RESUMO

BACKGROUND: Eph receptors tyrosine kinase (RTK) were identified in 1987 from hepatocellular carcinoma cell lines and were the largest known subfamily of RTK. Eph receptors can be divided into two categories, EphA and EphB, based on their structure and receptor-ligand specificity. EphA can be divided into 10 species (EphA 1-10) and EphB into 6 species (EphB1-6). Similarly, the ligands of Eph receptors are Ephrins. Ephrins also can be divided into Ephrin A and Ephrin B, of which there are five species(Ephrin-A1-5) and three species(Ephrin-B1-3). Among the Eph receptors, EphA1 has been the least studied so far. As far as we know, Eph receptors are involved in multiple pathologies, including cancer progression, tumor angiogenesis, intestinal environmental stability, the lymph node system, neurological disease, and inhibition of nerve regeneration after injury. There is a link between EphA1, integrin and ECM- related signal pathways. Ephrin-A1 is a ligand of the EphA1 receptor. EphA1 and ephrin-A1 functions are related to tumor angiogenesis. EphA1 and ephrin-A1 also play roles in gynecological diseases. Ephrin-A1 and EphA1 receptors regulate the follicular formation, ovulation, embryo transport, implantation and placental formation, which are of great significance for the occurrence of gynecological tumor diseases. EphA1 has been identified as an oncoprotein in various tumors and has been associated with the prognosis of various tumors in recent years. EphA1 is considered a driver gene in tumor genomics. There are significant differences in EphA1 expression levels in different types of normal tissues and tumors and even in different stages of tumor development, suggesting its functional diversity. Changes at the gene level in cell biology are often used as biological indicators of cancer, known as biomarkers, which can be used to provide diagnostic or prognostic information and are valuable for improving the detection, monitoring and treatment of tumors. However, few prognostic markers can selectively predict clinically significant tumors with poor prognosis. These malignancies are more likely to progress and lead to death, requiring more aggressive treatment. Currently available treatments for advanced cancer are often ineffective, and treatment options are mainly palliative. Therefore, early identification and treatment of those at risk of developing malignant tumors are crucial. Although pieces of evidence have shown the role of EphA1 in tumorigenesis and development, its specific mechanism is still unknown to a great extent. OBJECTIVE: This review reveals the changes and roles of EphA1 in many tumors and cancers. The change of EphA1 expression can be used as a biological marker of cancer, which is valuable for improving tumor detection, monitoring and treatment and can be applied to imaging. Studies have shown that structural modification of EphA1 could make it an effective new drug. EphA1 is unique in that it can be considered a prognostic marker in many tumors and is of important meaning for clinical diagnosis and operative treatment. At the same time, the study of the specific mechanism of EphA1 in tumors can provide a new way for targeted therapy. METHODS: Relevant studies were retrieved and collected through the PubMed system. After determining EphA1 as the research object, by analyzing research articles on EphA1 in the PubMed system in recent 10 years, we found that EphA1 was closely connected with the occurrence and development of tumors and further determined the references according to the influencing factors for review and analysis. RESULTS: EphA1 has been identified as a cancer protein in various tumors, such as hepatocellular carcinoma, nasopharyngeal carcinoma, ovarian cancer, gastric cancer, colorectal cancer, clear cell renal cell carcinoma, esophageal squamous cell carcinoma, breast cancer, prostate cancer and uveal melanoma. EphA1 is abnormally expressed in these tumor cells, which mainly plays a role in cancer progression, tumor angiogenesis, intestinal environmental stability, the lymph node system, nervous system diseases and gynecological diseases. In a narrow sense, EphA1 is especially effective in breast cancer in terms of gynecological diseases. However, the specific mechanism of EphA1 leading to the change of cancer cells in some tumors is not clear, which needs further research and exploration. CONCLUSION: RTK EphA1 can be used as a biomarker for tumor diagnosis (especially a prognostic marker), an indispensable therapeutic target for new anti-tumor therapies, and a novel anti-tumor drug.


Assuntos
Neoplasias da Mama , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptor EphA2 , Gravidez , Masculino , Humanos , Feminino , Receptor EphA1/genética , Receptor EphA1/análise , Receptor EphA1/metabolismo , Efrina-A1/metabolismo , Ligantes , Placenta/química , Placenta/metabolismo , Efrinas/genética , Efrinas/análise , Efrinas/metabolismo , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Biomarcadores , Receptor EphA2/metabolismo
14.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499598

RESUMO

Breast cancer (BC) is the most common malignant tumor in women. Erythropoietin-producing hepatocellular receptors (EPHs), receptor tyrosine kinases binding the membrane-bound proteins ephrins, are differentially expressed in BC, and correlate with carcinogenesis and tumor progression. With a view to examining available therapeutics targeting the EPH/ephrin system in BC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most studied EPH/ephrin target in BC treatment. The targeting of EPHA2, EPHA10, EPHB4, ephrin-A2, ephrin-A4, as well as ephrin-B2 in BC cells or xenograft models is associated with apoptosis induction, tumor regression, anticancer immune response activation, and impaired cell motility. In conclusion, EPHs/ephrins seem to represent promising future treatment targets in BC.


Assuntos
Neoplasias da Mama , Efrinas , Humanos , Feminino , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Neoplasias da Mama/tratamento farmacológico , Efrina-B2/metabolismo , Ligação Proteica , Proteínas de Membrana/metabolismo
15.
Cell Mol Life Sci ; 79(11): 583, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334147

RESUMO

Eph receptors and their ligands, Ephrins, are involved in the thymocyte-thymic epithelial cell (TEC) interactions, key for the functional maturation of both thymocytes and thymic epithelium. Several years ago, we reported that the lack of EphA4, a Eph of the subfamily A, coursed with reduced proportions of double positive (DP) thymocytes apparently due to an altered thymic epithelial stroma [Munoz et al. in J Immunol 177:804-813, 2006]. In the present study, we reevaluate the lymphoid, epithelial, and extracellular matrix (ECM) phenotype of EphA4-/- mice grouped into three categories with respect to their proportions of DP thymocytes. Our results demonstrate a profound hypocellularity, specific alterations of T cell differentiation that affected not only DP thymocytes, but also double negative and single positive T cell subsets, as well as the proportions of positively and negatively selected thymocytes. In correlation, thymic histological organization changed markedly, especially in the cortex, as well as the proportions of both Ly51+UEA-1- cortical TECs and Ly51-UEA-1+ medullary TECs. The alterations observed in the expression of ECM components (Fibronectin, Laminin, Collagen IV), integrin receptors (VLA-4, VLA-6), chemokines (CXCL12, CCL25, CCL21) and their receptors (CXCR4, CCR7, CCR9) and in vitro transwell assays on the capacity of migration of WT and mutant thymocytes suggest that the lack of EphA4 alters T-cell differentiation by presumably affecting cell adhesion between TECs and T-TEC interactions rather than by thymocyte migration.


Assuntos
Timócitos , Timo , Camundongos , Animais , Timócitos/metabolismo , Timo/metabolismo , Ativação Linfocitária , Células Epiteliais/metabolismo , Diferenciação Celular , Receptores da Família Eph/metabolismo , Matriz Extracelular
16.
Int Immunopharmacol ; 110: 109031, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35839564

RESUMO

Backgrounds Lung adenocarcinoma is the most frequent histological type among patients with lung cancer. Ephrin receptor A10 (EphA10), a member of the receptor tyrosine kinase family, has been reported to participate in tumor progression, but its role in lung adenocarcinoma (LUAD) remains unknown. Methods Immunohistochemistry staining and real-time PCR were employed to determine the expression of EphA10 in clinical LUAD samples. EphA10 silencing or overexpression in LUAD cells was achieved by transduction of lentivirus. The effects of EphA10 on LUAD cells were evaluated by CCK-8, EdU staining, flow cytometry, Transwell, and Western blot. The in vivo tumor growth was assessed in the xenograft mice model. Results EphA10 was overexpressed in LUAD tissues. Higher EphA10 expression was observed in the tissues at the advanced tumor stage and was positively correlated with the EGFR. Mechanistically, silencing of EphA10 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition of LUAD cells. Additionally, EphA10 knockdown significantly reduced the PD-L1 expression in LUAD cells and enhanced NK cell-mediated anti-tumor effects. Furthermore, EphA10 activated the MAPK/ERK pathway, and U0126, an inhibitor of MEK, markedly reversed the promoting impacts of EphA10 overexpression on LUAD cells. Consistently, results from subcutaneous tumor xenografts in nude mice confirmed that EphA10 knockdown significantly inhibited tumor growth in vivo. Conclusions This work demonstrates that EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in LUAD, implying that EphA10 has the potential to be a therapeutic target in treating LUAD.


Assuntos
Adenocarcinoma de Pulmão , Evasão da Resposta Imune , Neoplasias Pulmonares , Receptores da Família Eph/metabolismo , Transdução de Sinais , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus
17.
Genes (Basel) ; 13(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741713

RESUMO

Neural tube defects (NTDs) are common birth defects with a complex genetic etiology. Mouse genetic models have indicated a number of candidate genes, of which functional mutations in some have been found in human NTDs, usually in a heterozygous state. This study focuses on Ephs-ephrins as candidate genes of interest owing to growing evidence of the role of this gene family during neural tube closure in mouse models. Eph-ephrin genes were analyzed in 31 Malaysian individuals comprising seven individuals with sporadic spina bifida, 13 parents, one twin-sibling and 10 unrelated controls. Whole exome sequencing analysis and bioinformatic analysis were performed to identify variants in 22 known Eph-ephrin genes. We reported that three out of seven spina bifida probands and three out of thirteen family members carried a variant in either EPHA2 (rs147977279), EPHB6 (rs780569137) or EFNB1 (rs772228172). Analysis of public databases shows that these variants are rare. In exome datasets of the probands and parents of the probands with Eph-ephrin variants, the genotypes of spina bifida-related genes were compared to investigate the probability of the gene-gene interaction in relation to environmental risk factors. We report the presence of Eph-ephrin gene variants that are prevalent in a small cohort of spina bifida patients in Malaysian families.


Assuntos
Efrinas , Defeitos do Tubo Neural , Disrafismo Espinal , Povo Asiático , Efrina-B1 , Efrinas/genética , Genótipo , Humanos , Malásia , Defeitos do Tubo Neural/complicações , Defeitos do Tubo Neural/genética , Receptor EphA2/genética , Receptores da Família Eph/genética , Disrafismo Espinal/genética
18.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563562

RESUMO

Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell-cell and cell-substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Efrinas/metabolismo , Humanos , Estudos Prospectivos , Ligação Proteica , Receptores da Família Eph/metabolismo , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia
20.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408909

RESUMO

Exosomes are cell-secreted nanoparticles containing various molecules including small vesicles, microRNAs (miRNAs), messenger RNAs or bioactive proteins which are thought to be of paramount importance for intercellular communication. The unique effects of exosomes in terms of cell penetration capacity, decreased immunogenicity and inherent stability, along with their key role in mediating information exchange among tumor cells and their surrounding tumor microenvironment (TME), render them a promising platform for drug targeted delivery. Compared to synthetic drugs, exosomes boast a plethora of advantages, including higher biocompatibility, lower toxicity and increased ability of tissue infiltration. Nevertheless, the use of artificial exosomes can be limited in practice, partly due to their poor targeting ability and partly due to their limited efficacy. Therefore, efforts have been made to engineer stem cell-derived exosomes in order to increase selectiveness and effectivity, which can then become loaded with various active substances depending on the therapeutic approach followed. Erythropoietin-producing human hepatocellular receptors (EPHs), along with their ligands, the EPH family receptor interacting proteins (ephrins), have been extensively investigated for their key roles in both physiology and cancer pathogenesis. EPHs/ephrins exhibit both tumorigenic and tumor suppressing properties, with their targeting representing a promising, novel therapeutic approach in cancer patients' management. In our review, the use of ephrin-loaded exosomes as a potential therapeutic targeted delivery system in cancer will be discussed.


Assuntos
Exossomos , Neoplasias , Biomarcadores , Efrinas/metabolismo , Exossomos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores da Família Eph/metabolismo , Receptores da Eritropoetina , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA