Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Commun ; 13(1): 558, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091550

RESUMO

Five New World mammarenaviruses (NWMs) cause life-threatening hemorrhagic fever (HF). Cellular entry by these viruses is mediated by human transferrin receptor 1 (hTfR1). Here, we demonstrate that an antibody (ch128.1/IgG1) which binds the apical domain of hTfR1, potently inhibits infection of attenuated and pathogenic NWMs in vitro. Computational docking of the antibody Fab crystal structure onto the known structure of hTfR1 shows an overlapping receptor-binding region shared by the Fab and the viral envelope glycoprotein GP1 subunit that binds hTfR1, and we demonstrate competitive inhibition of NWM GP1 binding by ch128.1/IgG1 as the principal mechanism of action. Importantly, ch128.1/IgG1 protects hTfR1-expressing transgenic mice against lethal NWM challenge. Additionally, the antibody is well-tolerated and only partially reduces ferritin uptake. Our findings provide the basis for the development of a novel, host receptor-targeted antibody therapeutic broadly applicable to the treatment of HF of NWM etiology.


Assuntos
Antígenos CD/metabolismo , Arenaviridae/metabolismo , Febre Hemorrágica Americana/metabolismo , Receptores da Transferrina/metabolismo , Proteínas do Envelope Viral/metabolismo , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Arenaviridae/efeitos dos fármacos , Arenaviridae/fisiologia , Chlorocebus aethiops , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus Junin/efeitos dos fármacos , Vírus Junin/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/imunologia , Células Vero
2.
Carbohydr Polym ; 277: 118755, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893210

RESUMO

Recent advancements in gene delivery systems that specifically target a variety of cancer types have increased demand for tissue-specific gene therapy. The current study describes the synthesis of a copolymer (GPgWSC) composed of a polyethylenimine (PEI)-grafted water-soluble chitosan (WSC) and gambogic acid (GA). It was validated as a ligand capable of enabling targeted attachment to transferrin receptors in HCT116 cancer cell lines. GPgWSC demonstrated superior antitumor activity in vitro in HCT116 compared to LoVo or MCF-7 cell lines, facilitated by the apoptotic activity of psiRNA-hBCL2. Pre-incubation of transferrin significantly inhibited GFP expression in the GPgWSC polyplex, demonstrating that GA is an extremely effective transferrin receptor targeting molecule. Additionally, in the HCT116-bearing mouse model, the tumor mass of PBS-treated mice increased to 2270 mm2 after 22 days, but the injection of GPgWSC polyplex significantly reduced the mass-increasing rate as a mass size of 248 mm2.


Assuntos
Antineoplásicos/farmacologia , Quitosana/análogos & derivados , Polietilenoimina/análogos & derivados , Polímeros/farmacologia , Receptores da Transferrina/antagonistas & inibidores , Xantonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Polietilenoimina/síntese química , Polietilenoimina/química , Polietilenoimina/farmacologia , Polímeros/química , Receptores da Transferrina/genética , Xantonas/química
3.
Biochem Biophys Res Commun ; 575: 78-84, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34461439

RESUMO

Alterations in sialylation of terminal residues of glycoproteins have been implicated in forming tumor-associated glycans. ST6GALNAC transfers sialyl moiety to N-acetylgalactosamine residue via α2,6 linkage. Although the oncogenic characteristics of ST6GALNACI or II have been demonstrated in various cancer cells, the impact of ST6GALNACIII on tumor progression remains undefined. In this study, we evaluated the effect of ST6GALNACIII knockdown on the growth of A549 non-small cell lung cancer cells. ST6GALNACIII depletion resulted in significant retardation in growth of A549 cells under various culture conditions, including collagen-supported 3D culture and anchorage-independent soft agar culture conditions. Liquid chromatography with tandem mass spectrometry revealed that two glycopeptides of transferrin receptor protein 1 (TFR1) containing N-acetylhexosamine-sialic acid were not detected in ST6GALNACIII-depleted A549 cells compared with control cells. Subsequent lectin binding assay, western blotting, and real-time RT-PCR indicated that TFR1 sialylation was not significantly changed, but TFR1 protein and mRNA expressions were decreased after ST6GALNACIII knockdown. However, cell growth retardation by ST6GALNACIII knockdown was partially rescued by TFR1 overexpression. Additionally, TFR1 mRNA degradation was accelerated following ST6GALNACIII knockdown with concomitant reduction in mRNA levels of iron regulatory protein 1 and 2, the upstream regulators of TFR1 mRNA stability. Therefore, our results indicated an important role of ST6GALNACIII in promoting A549 cell growth through quantitative regulation of TFR1 expression and provided therapeutic implications for ST6GALNACIII targeting in tumor growth suppression in vivo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/prevenção & controle , Ferro/metabolismo , Neoplasias Pulmonares/prevenção & controle , Estabilidade de RNA , Receptores da Transferrina/antagonistas & inibidores , Sialiltransferases/deficiência , Antígenos CD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores da Transferrina/metabolismo
4.
Front Immunol ; 12: 652924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854512

RESUMO

As many patients ultimately relapse after chimeric antigen receptor (CAR) T-cell therapy, identification of alternative targets is currently being evaluated. Substantial research efforts are underway to develop new targets. The transferrin receptor (TfR) is prevalently expressed on rapidly proliferating tumor cells and holds the potential to be the alternative target. In order to investigate the efficacy and challenges of TfR-targeting on the CAR-based therapy strategy, we generated a TfR-specific CAR and established the TfR-CAR-modified T cells. To take the advantage of TfR being widely shared by multiple tumors, TfR-CAR T cells were assessed against several TfR+ hematological malignant cell lines. Data showed that TfR-CAR T cells were powerfully potent in killing all these types of cells in vitro and in killing T-ALL cells in vivo. These findings suggest that TfR could be a universal target to broaden and improve the therapeutic efficacy of CAR T cells and warrant further efforts to use these cells as an alternative CAR T cell product for the therapy of hematological malignancies.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Antígenos Quiméricos/genética , Receptores da Transferrina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Immunol ; 12: 607692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815364

RESUMO

The transferrin receptor 1 (TfR1), also known as cluster of differentiation 71 (CD71), is a type II transmembrane glycoprotein that binds transferrin (Tf) and performs a critical role in cellular iron uptake through the interaction with iron-bound Tf. Iron is required for multiple cellular processes and is essential for DNA synthesis and, thus, cellular proliferation. Due to its central role in cancer cell pathology, malignant cells often overexpress TfR1 and this increased expression can be associated with poor prognosis in different types of cancer. The elevated levels of TfR1 expression on malignant cells, together with its extracellular accessibility, ability to internalize, and central role in cancer cell pathology make this receptor an attractive target for antibody-mediated therapy. The TfR1 can be targeted by antibodies for cancer therapy in two distinct ways: (1) indirectly through the use of antibodies conjugated to anti-cancer agents that are internalized by receptor-mediated endocytosis or (2) directly through the use of antibodies that disrupt the function of the receptor and/or induce Fc effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Although TfR1 has been used extensively as a target for antibody-mediated cancer therapy over the years, interest continues to increase for both targeting the receptor for delivery purposes and for its use as direct anti-cancer agents. This review focuses on the developments in the use of antibodies targeting TfR1 as direct anti-tumor agents.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores da Transferrina/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD , Antineoplásicos Imunológicos/uso terapêutico , Transporte Biológico/efeitos dos fármacos , Biomarcadores Tumorais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Ferro/metabolismo , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS One ; 16(4): e0249686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33798235

RESUMO

The blood-brain barrier (BBB) is one of the main obstacles for therapies targeting brain diseases. Most macromolecules fail to pass the tight BBB, formed by brain endothelial cells interlinked by tight junctions. A wide range of small, lipid-soluble molecules can enter the brain parenchyma via diffusion, whereas macromolecules have to transcytose via vesicular transport. Vesicular transport can thus be utilized as a strategy to deliver brain therapies. By conjugating BBB targeting antibodies and peptides to therapeutic molecules or nanoparticles, it is possible to increase uptake into the brain. Previously, the synthetic peptide GYR and a peptide derived from melanotransferrin (MTfp) have been suggested as candidates for mediating transcytosis in brain endothelial cells (BECs). Here we study uptake, intracellular trafficking, and translocation of these two peptides in BECs. The peptides were synthesized, and binding studies to purified endocytic receptors were performed using surface plasmon resonance. Furthermore, the peptides were conjugated to a fluorophore allowing for live-cell imaging studies of their uptake into murine brain endothelial cells. Both peptides bound to low-density lipoprotein receptor-related protein 1 (LRP-1) and the human transferrin receptor, while lower affinity was observed against the murine transferrin receptor. The MTfp showed a higher binding affinity to all receptors when compared to the GYR peptide. The peptides were internalized by the bEnd.3 mouse endothelial cells within 30 min of incubation and frequently co-localized with endo-lysosomal vesicles. Moreover, our in vitro Transwell translocation experiments confirmed that GYR was able to cross the murine barrier and indicated the successful translocation of MTfp. Thus, despite binding to endocytic receptors with different affinities, both peptides are able to transcytose across the murine BECs.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Peptídeos/farmacologia , Receptores da Transferrina/antagonistas & inibidores , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptores da Transferrina/metabolismo , Transcitose
7.
Immunohorizons ; 4(4): 165-177, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32284314

RESUMO

Iron uptake via the transferrin receptor (CD71) is a pivotal mechanism for T cell proliferation. Yet, it is incompletely understood if targeting of CD71 also affects the differentiation and functional polarization of primary human T cells. In this study, we demonstrate that inhibition of iron ingestion with blocking mAbs against CD71 induces nonproliferating T cells, which release high amounts of IL-2. Targeting of CD71 with blocking or nonblocking mAbs did not alter major signaling pathways and the activation of the transcription factors NF-κB, NFAT, or AP-1 as analyzed in Jurkat T cells. Growth arrest in iron-deficient (Fe-def) T cells was prevented upon addition of exogenous iron in the form of ferric ammonium citrate but was not reversible by exogenous IL-2. Surprisingly, protein synthesis was found to be intact in Fe-def T cells as demonstrated by comparable levels of CD69 upregulation and cytokine production with iron-sufficient T cells upon stimulation with CD3 plus CD28 mAbs. Indeed, high amounts of IL-2 were detectable in the supernatant of Fe-def T cells, which was accompanied with a reduced cell surface expression of IL-2R. When we used such Fe-def T cells in allogeneic MLRs, we observed that these cells acquired an accessory cell function and stimulated the proliferation of bystander T cells by providing IL-2. Thus, the results of our study demonstrate that iron deprivation causes nonproliferating, altruistic T cells that can help and stimulate other immune cells by providing cytokines such as IL-2.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Proliferação de Células/efeitos dos fármacos , Deficiências de Ferro , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Antígenos CD/imunologia , Doadores de Sangue , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/imunologia , Complexo CD3/antagonistas & inibidores , Complexo CD3/imunologia , Feminino , Compostos Férricos/farmacologia , Sangue Fetal/citologia , Humanos , Interleucina-2/metabolismo , Células Jurkat , Camundongos , Compostos de Amônio Quaternário/farmacologia , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/imunologia
8.
Nucleic Acid Ther ; 30(2): 117-128, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027209

RESUMO

The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood-brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases.


Assuntos
Antígenos CD/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Molécula de Adesão da Célula Epitelial/genética , Receptores da Transferrina/genética , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Feminino , Humanos , Camundongos , Receptores da Transferrina/antagonistas & inibidores
9.
Biomater Sci ; 8(6): 1759-1770, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32010909

RESUMO

Currently, bioengineered apoferritin nanocages with flexible protein shells and functionalized modifications have become an attractive approach for efficient anti-tumor therapy. Here, we modified the N-terminus of H-chain subunits in apoferritin with different amounts of lysine via genetic recombination to obtain a poly(l-lysine) modified H-chain apoferritin (nL-HFn) nanocage for siRNA delivery and gene therapy. To achieve excellent cellular affinity and uptake, the nanocarriers were internalized through transferrin receptor-mediated endocytosis, then escaped from the endosome for cytoplasmic transport. Compared with natural apoferritin, the siRNA-loaded genetic recombination NPs modified with lysine exhibit stronger RNA-interference and antitumor efficiency both in vitro and in 4T1 tumor model mice. Therefore, bioengineered apoferritin nanocages modified with lysine might be a promising platform for nucleic acid drug delivery.


Assuntos
Apoferritinas/genética , Neoplasias da Mama/terapia , Polilisina/genética , Receptores da Transferrina/antagonistas & inibidores , Animais , Apoferritinas/química , Neoplasias da Mama/genética , Capsídeo/química , Linhagem Celular Tumoral , Endocitose , Feminino , Terapia Genética , Células HeLa , Humanos , Camundongos , Nanopartículas , Tamanho da Partícula , RNA Interferente Pequeno/genética , Recombinação Genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Physiol Biochem ; 53(1): 258-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31313541

RESUMO

BACKGROUND/AIMS: Although neuroblastoma is a heterogeneous cancer, a substantial portion overexpresses CD71 (transferrin receptor 1) and MYCN. This study provides a mechanistically driven rationale for a combination therapy targeting neuroblastomas that doubly overexpress or have amplified CD71 and MYCN. For this subset, CD71 was targeted by its natural ligand, gambogic acid (GA), and MYCN was targeted with an HDAC inhibitor, vorinostat. A combination of GA and vorinostat was then tested for efficacy in cancer and non-cancer cells. METHODS: Microarray analysis of cohorts of neuroblastoma patients indicated a subset of neuroblastomas overexpressing both CD71 and MYCN. The viability with proliferation changes were measured by MTT and colony formation assays in neuroblastoma cells. Transfection with CD71 or MYCN along with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect expression changes. For pathway analysis, gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of GA and vorinostat in treated cells. RESULTS: For both GA and vorinostat, their pathways were explored for specificity and dependence on their targets for efficacy. For GA-treated cells, the viability/proliferation loss due to GA was dependent on the expression of CD71 and involved activation of caspase-3 and degradation of EGFR. It relied on the JNK-IRE1-mTORC1 pathway. The drug vorinostat also reduced cell viability/proliferation in the treated cells and this was dependent on the presence of MYCN as MYCN siRNA transfection led to a blunting of vorinostat efficacy and conversely, MYCN overexpression improved the vorinostat potency in those cells. Vorinostat inhibition of MYCN led to an increase of the pro-apoptotic miR183 levels and this, in turn, reduced the viability/proliferation of these cells. The combination treatment with GA and vorinostat synergistically reduced cell survival in the MYCN and CD71 overexpressing tumor cells. The same treatment had no effect or minimal effect on HEK293 and HEF cells used as models of non-cancer cells. CONCLUSION: A combination therapy with GA and vorinostat may be suitable for MYCN and CD71 overexpressing neuroblastomas.


Assuntos
Antígenos CD , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Receptores da Transferrina , Antígenos CD/genética , Antígenos CD/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Células HEK293 , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Vorinostat/farmacologia , Xantonas/farmacologia
11.
Front Immunol ; 10: 1396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293575

RESUMO

Bispecific T-cell engager antibodies (BiTE) have been explored as a means to recruit cytolytic T cells to kill tumor cells. The transferrin receptor (TfR) is highly expressed on the surface of rapidly proliferating tumor cells. Therefore, it holds great potential in T cell redirecting therapies. In this research, we developed a BiTE targeting TfR and CD3 (TfR-BiTE) and studied its therapeutic impact on TfR-positive cancer. TfR-BiTE had the ability to induce the selective lysis of various TfR-positive cancer cells through the activation of T cells, the release of cytokines, and then the coming proliferation of T cells, whereas TfR-negative cells were not affected. In a subcutaneous HepG2 xenograft model, low concentrations of TfR-BiTE inhibited tumor growth. Overall, these results reveal that TfR-BiTE can selectively deplete TfR-positive HepG2 cells; hence, it represents a novel immunotherapeutic approach for the treatment of hepatocellular carcinoma.


Assuntos
Anticorpos Biespecíficos/farmacologia , Complexo CD3/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias Experimentais/imunologia , Receptores da Transferrina/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Animais , Células Hep G2 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T Citotóxicos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncol Rep ; 42(2): 826-838, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173262

RESUMO

The aim of the present study was to clarify the activation of ferroptosis in different breast cancer cells by sulfasalazine (SAS) and to explore the relationship between the estrogen receptor (ER) and the transferrin receptor (TFRC). MDA­MB­231 and T47D cells were treated with SAS for 24 h. Changes in cell morphology were observed under a microscope. CCK­8 was used to detect the proliferation inhibition rate and determine the IC50 values. Western blotting was used to detect the expression of glutathione peroxidase 4 (GPX4) and xCT. Flow cytometry was used to identify changes in the production of reactive oxygen species (ROS). Mitochondrial morphological changes in T47D were observed using transmission electron microscopy. Changes in the mitochondrial membrane potential (MMP) were observed using confocal fluorescence microscopy. RT­PCR was used to detect the mRNA expression levels of TFRC and divalent metal transporter 1 (DMT1). Bioinformatics analysis was performed on TFRC expression in 1,208 breast cancer samples and its relationship with ER. TFRC expression was detected in various breast cancer tissues using immunohistochemistry and in various breast cancer cells using western blotting. Small interfering RNA (siRNA) knocked down ER expression in T47D cells, and changes in the TFRC mRNA and protein levels were observed. RT­PCR was used to detect TFRC expression in 87 clinical specimens. The results of the present study revealed that SAS could inhibit breast cancer cell viability, which was accompanied by an abnormal increase in ROS and a depletion of GPX4 and system xc­. Liproxstatin­1 reversed the SAS­induced increase in ROS. The cells treated with SAS had shrunken mitochondria and decreased MMP. SAS upregulated TFRC and DMT1. Knockdown of the ER increased TFRC expression in breast cancer cells. Immunohistochemistry indicated that TFRC expression was lower in ER+ tissues than in ER­ tissues. After confirmation with RT­PCR in 87 clinical specimens, TFRC expression in ER­ tissue was revealed to be significantly higher than that of ER+ tissue. In conclusion SAS could trigger ferroptosis in breast cancer cells, especially in cells with low ER expression. Therefore, SAS is a potential agent for breast cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Ferroptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores da Transferrina/antagonistas & inibidores , Sulfassalazina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos CD , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
13.
J Control Release ; 277: 89-101, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29522834

RESUMO

Glioblastomas (GBMs) are highly aggressive brain tumors with a very grim prognosis even after multi-modal therapeutic regimens. Conventional chemotherapeutic agents frequently lead to drug resistance and result in severe toxicities to non-cancerous tissues. Resveratrol (RES), a natural polyphenol with pleiotropic health benefits, has proven chemopreventive effects in all the stages of cancer including initiation, promotion and progression. However, the poor physico-chemical properties of RES severely limit its use as a free drug. In this study, RES was loaded into PEGylated liposomes (RES-L) to counter its drawbacks as a free drug. Since transferrin receptors (TfRs) are up-regulated in GBM, the liposome surface was modified with transferrin moieties (Tf-RES-L) to make them cancer cell-specific. The liposomal nanomedicines developed in this project were aimed at enhancing the physico-chemical properties of RES and exploiting the passive and active targeting capabilities of liposomes to effectively treat GBM. The RES-L were stable, had a good drug-loading capacity, prolonged drug-release in vitro and were easily scalable. Flow cytometry and confocal microscopy were used to study the association with, and internalization of, Tf-L into U-87 MG cells. The Tf-RES-Ls were significantly more cytotoxic and induced higher levels of apoptosis accompanied by activation of caspases 3/7 in GBM cells when compared to free RES or RES-L. The ability of RES to arrest cells in the S-phase of the cell cycle, and selectively induce production of reactive oxygen species in cancer cells were probably responsible for its cytotoxic effects. The therapeutic efficacy of RES formulations was evaluated in a subcutaneous xenograft mouse model of GBM. A tumor growth inhibition study and a modified survival study showed that Tf-RES-Ls were more effective than other treatments in their ability to inhibit tumor growth and improve survival in mice. Overall, the liposomal nanomedicines of RES developed in this project exhibited favorable in vitro and in vivo efficacies, which warrant their further investigation for the treatment of GBMs.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/metabolismo , Receptores da Transferrina/metabolismo , Resveratrol/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Lipossomos , Camundongos , Camundongos Nus , Receptores da Transferrina/antagonistas & inibidores , Resveratrol/administração & dosagem , Resultado do Tratamento
14.
Thorac Cancer ; 9(2): 253-261, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29286585

RESUMO

BACKGROUND: Transferrin receptor (TfR) is expressed in most lung cancers and is an indicator of poor prognosis in certain groups of patients. In this study, we blocked cell surface TfR to inhibit lung adenocarcinoma (LAC) cell growth in vitro and investigated the associated molecular mechanisms to determine a potential therapeutic target in human LAC. METHODS: RNA interference and antibody blocking techniques were used to block the function of TfR in LAC cells, and cell proliferation assays were used to detect the results. Affymetrix microarray analysis was conducted using H1299 cells in which TfR was blocked with an antibody to investigate the molecular mechanisms involved. RESULTS: The cell proliferation assay demonstrated that H1299 cell proliferation was significantly inhibited after small interfering RNA knockdown or blocking of TfR. Mechanistic studies found that 100 genes were altered more than two-fold after TfR was blocked and that blocking TfR was accompanied by decreased expression of the oncogene KRAS. CONCLUSION: Our data provide evidence that blocking TfR could significantly inhibit LAC proliferation by targeting the oncogene KRAS; therefore, TfR may be a therapeutic target for LAC. In addition, our results suggest a new method for blocking the signal from the oncogene KRAS by targeting TfR in LAC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores da Transferrina/antagonistas & inibidores , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Análise em Microsséries , Interferência de RNA , Receptores da Transferrina/genética
15.
Mol Pharm ; 14(7): 2340-2349, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28514851

RESUMO

Tumor necrosis factor alpha (TNF-α) driven processes are involved at multiple stages of Alzheimer's disease (AD) pathophysiology and disease progression. Biologic TNF-α inhibitors (TNFIs) are the most potent class of TNFIs but cannot be developed for AD since these macromolecules do not cross the blood-brain barrier (BBB). A BBB-penetrating TNFI was engineered by the fusion of the extracellular domain of the type II human TNF receptor (TNFR) to a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated as the cTfRMAb-TNFR fusion protein. The cTfRMAb domain functions as a molecular Trojan horse, binding to the mouse TfR and ferrying the biologic TNFI across the BBB via receptor-mediated transcytosis. The aim of the study was to examine the effect of this BBB-penetrating biologic TNFI in a mouse model of AD. Six-month-old APPswe, PSEN 1dE9 (APP/PS1) transgenic mice were treated with saline (n = 13), the cTfRMAb-TNFR fusion protein (n = 12), or etanercept (non-BBB-penetrating biologic TNFI; n = 11) 3 days per week intraperitoneally. After 12 weeks of treatment, recognition memory was assessed using the novel object recognition task, mice were sacrificed, and brains were assessed for amyloid beta (Aß) load, neuroinflammation, BBB damage, and cerebral microhemorrhages. The cTfRMAb-TNFR fusion protein caused a significant reduction in brain Aß burden (both Aß peptide and plaque), neuroinflammatory marker ICAM-1, and a BBB disruption marker, parenchymal IgG, and improved recognition memory in the APP/PS1 mice. Fusion protein treatment resulted in low antidrug-antibody formation with no signs of either immune reaction or cerebral microhemorrhage development with chronic 12-week treatment. Chronic treatment with the cTfRMAb-TNFR fusion protein, a BBB-penetrating biologic TNFI, offers therapeutic benefits by targeting Aß pathology, neuroinflammation, and BBB-disruption, overall improving recognition memory in a transgenic mouse model of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anticorpos Monoclonais/uso terapêutico , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Crioultramicrotomia , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
16.
Curr Pharm Des ; 23(3): 454-466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27784246

RESUMO

A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Receptores da Transferrina/antagonistas & inibidores , Transferrina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Nanotecnologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores da Transferrina/biossíntese , Transferrina/síntese química , Transferrina/química
17.
Int J Mol Sci ; 17(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834817

RESUMO

In previous studies, we identified 29 tumor-associated antigens (TAAs) and isolated 488 human monoclonal antibodies (mAbs) that specifically bind to one of the 29 TAAs. In the present study, we performed histochemical analysis of 36 freshly resected lung cancer tissues by using 60 mAbs against 27 TAAs. Comparison of the staining patterns of tumor cells, bronchial epithelial cells, and normal pulmonary alveolus cells and interalveolar septum allowed us to determine the type and location of cells that express target molecules, as well as the degree of expression. The patterns were classified into 7 categories. While multiple Abs were used against certain TAAs, the differences observed among them should be derived from differences in the binding activity and/or the epitope. Thus, such data indicate the versatility of respective clones as anti-cancer drugs. Although the information obtained was limited to the lung and bronchial tube, bronchial epithelial cells represent normal growing cells, and therefore, the data are informative. The results indicate that 9 of the 27 TAAs are suitable targets for therapeutic Abs. These 9 Ags include EGFR, HER2, TfR, and integrin α6ß4. Based on our findings, a pharmaceutical company has started to develop anti-cancer drugs by using Abs to TfR and integrin α6ß4. HGFR, PTP-LAR, CD147, CDCP1, and integrin αvß3 are also appropriate targets for therapeutic purposes.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/classificação , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Anticorpos Monoclonais/biossíntese , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antineoplásicos/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Brônquios/cirurgia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Epitopos/química , Epitopos/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Expressão Gênica , Humanos , Integrina alfa6beta4/antagonistas & inibidores , Integrina alfa6beta4/genética , Integrina alfa6beta4/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/cirurgia , Biblioteca de Peptídeos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia
18.
Turk Neurosurg ; 26(2): 209-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26956814

RESUMO

AIM: Transferrin receptor (TfR) has been used as a target for the molecular cancer therapy due to its higher expression in a variety of tumors. Anti-TfR antibodies combined with chemotherapeutic drugs has showed great potential as a possible cancer therapeutic strategy. In our study, we investigated the anti-tumor effects of anti-TfR monoclonal antibody (mAb) alone or in combination with curcumin in vitro. MATERIAL AND METHODS: We detected the apoptosis, proliferation and cell cycle of glioma cells after treated with anti-TfR mAb and curcumin alone or the combinations by flow cytometer. RESULTS: Anti-TfR mAb or curcumin could inhibit proliferation of tumor cells. Anti-TfR mAb marked S phase arrest and curcumin induced G2/M arrest in tumor cells. When anti-TfR mAb and curcumin were used simultaneously, a synergistic effect was detected in relation to tumor growth inhibition and the induction of cells necrosis. CONCLUSION: These results provided a potential role of anti-TfR mAb-containing curcumin in the treatment for gliomas.


Assuntos
Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Glioma/patologia , Receptores da Transferrina/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Técnicas In Vitro
19.
J Pharm Sci ; 105(1): 276-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26852859

RESUMO

Surface functionalization with antitransferrin receptor (TfR) mAbs has been suggested as the strategy to enhance the transfer of nanoparticles (NPs) across the blood-brain barrier (BBB) and to carry nonpermeant drugs from the blood into the brain. However, the efficiency of BBB crossing is currently too poor to be used in vivo. In the present investigation, we compared 6 different murine mAbs specific for different epitopes of the human TfR to identify the best performing one for the functionalization of NPs. For this purpose, we compared the ability of mAbs to cross an in vitro BBB model made of human brain capillary endothelial cells (hCMEC/D3). Liposomes functionalized with the best performing mAb (MYBE/4C1) were uptaken, crossed the BBB in vitro, and facilitated the BBB in vitro passage of doxorubicin, an anticancer drug, 3.9 folds more than liposomes functionalized with a nonspecific IgG, as assessed by confocal microscopy, radiochemical techniques, and fluorescence, and did not modify the cell monolayer structural or functional properties. These results show that MYBE/4C1 antihuman TfR mAb is a powerful resource for the enhancement of BBB crossing of NPs and is therefore potentially useful in the treatment of neurologic diseases and disorders including brain carcinomas.


Assuntos
Anticorpos Bloqueadores/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Receptores da Transferrina/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Capilares/efeitos dos fármacos , Capilares/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Células Endoteliais , Epitopos , Humanos , Imunoglobulina G/química , Lipossomos , Camundongos , Tamanho da Partícula
20.
J Immunother ; 38(8): 307-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26325374

RESUMO

The transferrin receptor 1 (TfR1), also known as CD71, is a target for antibody-based cancer immunotherapy due to its high expression on the surface of cancer cells and its ability to internalize. We have previously developed a mouse/human chimeric IgG3 specific for human TfR1 genetically fused to avidin, as a vector to deliver biotinylated anticancer agents into malignant cells. However, we found that this fusion protein (ch128.1Av), and to a lesser extent the same antibody without avidin (ch128.1), exhibits direct cytotoxic activity in vitro against certain malignant hematopoietic cells through the induction of TfR1 degradation and lethal iron starvation. Importantly, both ch128.1 and ch128.1Av have also shown significant anticancer activity in 2 xenograft models of the B-cell malignancy multiple myeloma. It is interesting to note that ch128.1 exhibited superior anticancer activity in both models compared with ch128.1Av, even against malignant cells that show no sensitivity to ch128.1 in vitro. In the present study, we evaluated the efficacy of ch128.1 against an AIDS-related human Burkitt lymphoma cell line (2F7) to determine if ch128.1 can eliminate these cells in vitro and in an in vivo model of AIDS-related non-Hodgkin lymphoma (AIDS-NHL). Even though 2F7 cells expressed high TfR1 levels, these cells lacked sensitivity to the cytotoxicity induced by ch128.1 in vitro. However, ch128.1 showed significant anticancer activity against these AIDS-NHL cells in vivo by significantly prolonging the survival of immunodeficient mice bearing 2F7 tumors. Therefore, ch128.1 warrants further study as a candidate for the treatment of AIDS-NHL and other B-cell malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Imunoglobulina G/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Receptores da Transferrina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunoglobulina G/farmacologia , Imunoterapia , Linfoma não Hodgkin/etiologia , Camundongos SCID , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA