Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 479(3): 385-399, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35084016

RESUMO

The apelin receptor (APLNR) regulates many biological processes including metabolism, angiogenesis, circulating blood volume and cardiovascular function. Additionally, APLNR is overexpressed in various types of cancer and influences cancer progression. APLNR is reported to regulate tumor recognition during immune surveillance by modulating the IFN-γ response. However, the mechanism of APLNR cross-talk with intratumoral IFN-γ signaling remains unknown. Here, we show that activation of APLNR up-regulates IFN-γ signaling in melanoma cells through APLNR mediated ß-arrestin 1 but not ß-arrestin 2 recruitment. Our data suggests that ß-arrestin 1 directly interacts with STAT1 to inhibit STAT1 phosphorylation to attenuate IFN-γ signaling. The APLNR mutant receptor, I109A, which is deficient in ß-arrestins recruitment, is unable to enhance intratumoral IFN-γ signaling. While APLNR N112G, a constitutively active mutant receptor, increases intratumoral sensitivity to IFN-γ signaling by enhancing STAT1 phosphorylation upon IFN-γ exposure. We also demonstrate in a co-culture system that APLNR regulates tumor survival rate. Taken together, our findings reveal that APLNR modulates IFN-γ signaling in melanoma cells and suggest that APLNR may be a potential target to enhance the efficacy of immunotherapy.


Assuntos
Receptores de Apelina/fisiologia , Interferon gama/fisiologia , Janus Quinases/fisiologia , Melanoma/metabolismo , Proteínas de Neoplasias/fisiologia , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais/fisiologia , beta-Arrestina 1/fisiologia , Receptores de Apelina/antagonistas & inibidores , Receptores de Apelina/química , Receptores de Apelina/genética , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células HEK293 , Humanos , Janus Quinases/antagonistas & inibidores , Melanoma/imunologia , Modelos Moleculares , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linfócitos T/imunologia , beta-Arrestina 2/análise
2.
J Endocrinol ; 249(1): 1-18, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33504680

RESUMO

Microcirculatory injuries had been reported to be involved in diabetic cardiomyopathy, which was mainly related to endothelial cell dysfunction. Apelin, an adipokine that is upregulated in diabetes mellitus, was reported to improve endothelial cell dysfunction and attenuate cardiac insufficiency induced by ischemia and reperfusion. Therefore, it is hypothesized that apelin might be involved in alleviating endothelial cell dysfunction and followed cardiomyopathy in diabetes mellitus. The results showed that apelin improved endothelial cell dysfunction via decreasing apoptosis and expression of adhesion molecules and increasing proliferation, angiogenesis, and expression of E-cadherin, VEGFR 2 and Tie-2 in endothelial cells, which resulted in the attenuation of the capillary permeability in cardiac tissues and following diabetic cardiomyopathy. Meanwhile, the results from endothelial cell-specific APJ knockout mice and cultured endothelial cells confirmed that the effects of apelin on endothelial cells were dependent on APJ and the downstream NFκB pathways. In conclusion, apelin might reduce microvascular dysfunction induced by diabetes mellitus via improving endothelial dysfunction dependent on APJ activated NFκB pathways.


Assuntos
Receptores de Apelina/fisiologia , Apelina/fisiologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Microvasos/fisiopatologia , Animais , Apelina/administração & dosagem , Receptores de Apelina/deficiência , Glicemia/análise , Moléculas de Adesão Celular/análise , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , NF-kappa B/metabolismo
3.
Clin Exp Med ; 21(2): 269-275, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33201338

RESUMO

Apelin, a peptide of 77 amino acids, and its endogenous ligand, angiotensin-like-receptor 1 (APJ), play a key role in the development of tumors by enhancing angiogenesis, metastasis, cell proliferation, development of cancer stem cells and drug resistance and inhibiting apoptosis of cancer cells. However, little is known about Apelin/APJ system involvement in hepatocellular carcinoma (HCC). The aim of this study was to evaluate Apelin and APJ expression in liver specimens, obtained from subjects with HCV-positive HCC who underwent liver transplantation, according to liver disease severity (liver recipients, LR, n = 14, age 59.4 ± 1.8) and in donors (liver donors, LD, n = 14, age 62.1 ± 17.3). Apelin/APJ axis, apoptotic and inflammatory markers were evaluated by Real-Time PCR analysis. The Apelin/APJ system expression resulted significantly higher in LR in comparison with LD (p < 0.05), in particular in those with more severe liver disease. The apoptotic (Bcl-2, BAX, NOTCH-1, Casp-3) and inflammatory (IL-6, TNF-α) markers were increased as a function of disease severity (p < 0.05). Multiple significant positive correlations were found between Apelin/APJ axis and the other markers. Although further investigations are needed to better understand the role of Apelin/APJ axis in HCC, our result indicated a potential role of this axis in its development and progression as well as in recognizing novel therapeutic targets opening a new avenue for treatment.


Assuntos
Receptores de Apelina/fisiologia , Apelina/fisiologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apelina/genética , Receptores de Apelina/genética , Humanos , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Transcriptoma
4.
Life Sci ; 242: 117208, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870773

RESUMO

Aim Acupuncture, particularly electroacupuncture (EA), can improve the clinical outcomes of cardiopulmonary bypass (CPB) patients; however, the mechanisms remain unclear. This study aimed to examine the effects of EA pre-treatment on myocardial injury after CPB and investigate its potential mechanisms. MAIN METHODS: Male Sprague-Dawley rats were subjected to CPB and divided into Control (sham-operated), CPB, and EA (CPB + EA) groups. In the EA group, rats were treated with EA at the "PC6" acupoint for 30 min before being subjected to CPB. At 0.5, 1, and 2 h after CPB, the expression levels of plasma cardiac troponin I (cTnI) and lactate dehydrogenase (LDH), and myeloperoxidase (MPO) activity, TNFα, IL-1ß, reduced glutathione (GSH), oxidized glutathione (GSSH), and the ratio of GSH/GSSH in the myocardial tissue were measured. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining. The expression of cleaved caspase-3 was detected by immunofluorescence. The expression of apelin, APJ, AKT, p-Akt, ERK1/2, and p-ERK1/2 was determined using western blotting. KEY FINDINGS: Decreased myocardial injury marker levels, myocardial apoptosis, oxidative stress, and the inflammatory response were found in the EA group compared with the CPB group. The expression levels of apelin, APJ, and p-Akt/AKT were increased in the EA group, and the p-ERK1/2/ERK1/2 level was decreased. SIGNIFICANCE: This study showed that EA pre-treatment can protect the heart from damage following CPB, which might be mainly mediated by restoring the apelin/APJ signaling pathway.


Assuntos
Receptores de Apelina/metabolismo , Apelina/metabolismo , Ponte Cardiopulmonar , Eletroacupuntura , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transdução de Sinais , Animais , Apelina/fisiologia , Receptores de Apelina/fisiologia , Apoptose , Western Blotting , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Caspase 1/metabolismo , Eletroacupuntura/métodos , Glutationa/metabolismo , Interleucina-1beta/metabolismo , L-Lactato Desidrogenase/sangue , Masculino , Miocárdio/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Troponina I/sangue , Fator de Necrose Tumoral alfa/metabolismo
5.
Life Sci ; 232: 116645, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299236

RESUMO

Macrophages play key roles during cardiovascular diseases (CVD) and their related complications. Apelin (APLN) is a key molecule, whose roles during CVD have been documented previously. Therefore, it has been hypothesized that APLN may perform its roles via modulation of macrophages. Additionally, due to the widespread distribution of the CVD, more effective therapeutic strategies need to be developed to overcome the related complications. This review article collected recent information regarding the roles of APLN on the macrophages and discusses its potential chance to be a target for molecular/cellular therapy of APLN and the APLN treated macrophages for CVD.


Assuntos
Receptores de Apelina/fisiologia , Apelina/fisiologia , Macrófagos/fisiologia , Humanos
6.
Int J Biol Sci ; 15(6): 1225-1239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223282

RESUMO

The G protein-coupled receptor APJ/Aplnr has been widely reported to be involved in heart and vascular development and disease, but whether it contributes to organ left-right patterning is largely unknown. Here, we show that in zebrafish, aplnra/b coordinates organ LR patterning in an apela/apln ligand-dependent manner using distinct mechanisms at different stages. During gastrulation and early somitogenesis, aplnra/b loss of function results in heart and liver LR asymmetry defects, accompanied by disturbed KV/cilia morphogenesis and disrupted left-sided Nodal/spaw expression in the LPM. In this process, only aplnra loss of function results in KV/cilia morphogenesis defect. In addition, only apela works as the early endogenous ligand to regulate KV morphogenesis, which then contributes to left-sided Nodal/spaw expression and subsequent organ LR patterning. The aplnra-apela cascade regulates KV morphogenesis by enhancing the expression of foxj1a, but not fgf8 or dnh9, during KV development. At the late somite stage, both aplnra and aplnrb contribute to the expression of lft1 in the trunk midline but do not regulate KV formation, and this role is possibly mediated by both endogenous ligands, apela and apln. In conclusion, our study is the first to identify a role for aplnra/b and their endogenous ligands apela/apln in LR patterning, and it clarifies the distinct roles of aplnra-apela and aplnra/b-apela/apln in orchestrating organ LR patterning.


Assuntos
Receptores de Apelina/fisiologia , Padronização Corporal , Peixe-Zebra/crescimento & desenvolvimento , Animais , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Gastrulação/genética , Ligantes , Ligantes da Sinalização Nodal/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
Sheng Li Xue Bao ; 70(2): 99-105, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29691573

RESUMO

Apelin is a novel endogenous active peptide. The aim of this study is to investigate whether apelin in the paraventricular nucleus (PVN) can improve the cardiac function in rats subjected to thoracic surgery trauma, and whether it is involved in the protective effect of electro-acupuncture (EA). Sprague-Dawley rats were randomly divided into non-stressed group (control), thoracic surgical trauma stressed group (trauma) and bilateral Neiguan EA applied on thoracic surgical trauma stressed group (trauma + EA-PC 6). The mRNA expressions of apelin receptor (APJR) and apelin in the PVN were detected by real time-PCR. The exogenous apelin-13 (6 mmol/L, 0.1 µL) was microinjected into the rat PVN in the thoracic trauma group, and the effects of apelin-13 on the blood pressure (BP), heart rate (HR) and the discharge of rostral ventrolateral medulla (RVLM) neurons were observed through the simultaneous recording technology by polygraph. The results showed that the APJR mRNA expression was significantly decreased in the rats of trauma group as compared with that in the control group (P < 0.05), and a decline trend of apelin mRNA expression was also observed. EA application at bilateral Neiguan acupoints partially recovered the decline of APJR and apelin mRNA expression by the treatment of thoracic trauma. Both mean arterial pressure and HR in the thoracic surgical trauma group were significantly increased by the microinjection of exogenous apelin-13 into the PVN (P < 0.05), and the single-unit discharge rate of RVLM neurons also had an increasing trend. These results suggest that apelin in the PVN can improve the cardiac function of thoracic surgical trauma rats, and may be involved in the protective effects of EA.


Assuntos
Apelina/fisiologia , Eletroacupuntura , Núcleo Hipotalâmico Paraventricular/fisiologia , Procedimentos Cirúrgicos Torácicos , Animais , Receptores de Apelina/fisiologia , Pressão Sanguínea , Frequência Cardíaca , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Bulbo/fisiologia , Neurônios , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA