Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Oncoimmunology ; 13(1): 2297503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235319

RESUMO

Activins, members of the TGF-beta superfamily, have been isolated and identified in the endocrine system, but have not been substantially investigated in the context of the immune system and endocrine-unrelated cancers. Here, we demonstrated that tumor-bearing mice had elevated systemic activin levels, which correlated directly with tumor burden. Likewise, cancer patients have elevated plasma activin levels compared to healthy controls. We observed that both tumor and immune cells could be sources of activins. Importantly, our in vitro studies suggest that activins promote differentiation of naïve CD4+ cells into Foxp3-expressing induced regulatory T cells (Tregs), particularly when TGF-beta was limited in the culture medium. Database and qRT-PCR analysis of sorted major immune cell subsets in mice revealed that activin receptor 1c (ActRIC) was uniquely expressed on Tregs and that both ActRIC and ActRIIB (activin receptor 2b) were highly upregulated during iTreg differentiation. ActRIC-deficient naïve CD4+ cells were found to be defective in iTreg generation both in vitro and in vivo. Treg suppression assays were also performed, and ActRIC deficiency did not change the function or stability of iTregs. Mice lacking ActRIC or mice treated with monoclonal anti-ActRIC antibody were more resistant to tumor progression than wild-type controls. This phenotype was correlated with reduced expression of Foxp3 in CD4+ cells in the tumor microenvironment. In light of the information presented above, blocking activin-ActRIC signaling is a promising and disease-specific strategy to impede the accumulation of immunosuppressive iTregs in cancer. Therefore, it is a potential candidate for cancer immunotherapy.


Assuntos
Linfócitos T CD4-Positivos , Neoplasias , Humanos , Camundongos , Animais , Receptores de Ativinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Imunoterapia , Neoplasias/terapia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ativinas/metabolismo , Microambiente Tumoral
2.
Drug Metab Dispos ; 50(7): 942-956, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504656

RESUMO

Our laboratory has shown that activation of transforming growth factor- ß (TGF- ß )/activin receptor-like kinase 1 (ALK1) signaling can increase protein expression and transport activity of organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB). These results are relevant to treatment of ischemic stroke because Oatp transport substrates such as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e., statins) improve functional neurologic outcomes in patients. Advancement of our work requires determination if TGF- ß /ALK1 signaling alters Oatp1a4 functional expression differently across brain regions and if such disparities affect central nervous system (CNS) statin disposition. Therefore, we studied regulation of Oatp1a4 by the TGF- ß /ALK1 pathway, in vivo, in rat brain microvessels isolated from cerebral cortex, hippocampus, and cerebellum using the ALK1 agonist bone morphogenetic protein-9 (BMP-9) and the ALK1 inhibitor 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride 193189. We showed that Oatp1a4 protein expression and brain distribution of three currently marketed statin drugs (i.e., atorvastatin, pravastatin, and rosuvastatin) were increased in cortex relative to hippocampus and cerebellum. Additionally, BMP-9 treatment enhanced Oatp-mediated statin transport in cortical tissue but not in hippocampus or cerebellum. Although brain drug delivery is also dependent upon efflux transporters, such as P-glycoprotein and/or Breast Cancer Resistance Protein, our data showed that administration of BMP-9 did not alter the relative contribution of these transporters to CNS disposition of statins. Overall, this study provides evidence for differential regulation of Oatp1a4 by TGF- ß /ALK1 signaling across brain regions, knowledge that is critical for development of therapeutic strategies to target Oatps at the BBB for CNS drug delivery. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (Oatps) represent transporter targets for brain drug delivery. We have shown that Oatp1a4 statin uptake is higher in cortex versus hippocampus and cerebellum. Additionally, we report that the transforming growth factor- ß /activin receptor-like kinase 1 agonist bone morphogenetic protein-9 increases Oatp1a4 functional expression, but not efflux transporters P-glycoprotein and Breast Cancer Resistance Protein, in cortical brain microvessels. Overall, this study provides critical data that will advance treatment for neurological diseases where drug development has been challenging.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias , Transportadores de Ânions Orgânicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores de Ativinas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Coenzima A/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Oxirredutases/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
3.
Endocr Rev ; 43(2): 329-365, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34520530

RESUMO

Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.


Assuntos
Miostatina , Doenças do Sistema Nervoso Periférico , Receptores de Ativinas/metabolismo , Receptores de Ativinas/farmacologia , Animais , Humanos , Ligantes , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Miostatina/genética , Miostatina/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia
4.
Cells ; 10(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440938

RESUMO

Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.


Assuntos
Receptores de Ativinas/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
5.
Bioengineered ; 12(1): 3125-3136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34193023

RESUMO

Ultraviolet B (UVB) is one of the most common exogenous factors in skin aging, especially photoaging. Once a large amount of UVB accumulates within a short period of time, skin tissue can become inflamed. It has also been found in clinics that platelet-rich plasma (PRP) can promote wound repair; therefore, the aim of this study was to identify the mechanism by which PRP repairs UVB-induced skin photodamage. We used PRP of Sprague-Dawley rats with the two-spin technique in the established acute UVB radiation photodamage model and harvested the corresponding skin after 1, 7, and 28 d. Hematoxylin and eosin staining was used to observe tissue inflammation. We found that PRP reduces inflammation in the early stages of UVB-induced acute skin damage, and then promotes the proliferation of collagen in the middle and late stages. Moreover, PRP can stimulate Act A and M1 polarization in the early stage, while inhibiting activin A (Act A) and inducing M2 polarization in the middle and late stages. In conclusion, this study demonstrates that PRP plays an important regulatory role in helping reduce UVB-induced acute skin tissue inflammation by adjusting macrophage polarization, which alleviates skin inflammation and stimulates collagen regeneration.


Assuntos
Receptores de Ativinas/metabolismo , Folistatina/metabolismo , Inflamação/metabolismo , Plasma Rico em Plaquetas/metabolismo , Envelhecimento da Pele , Animais , Modelos Animais de Doenças , Feminino , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Pele/patologia , Raios Ultravioleta
6.
Sci Rep ; 11(1): 11968, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099837

RESUMO

The need for an autologous cell source for bone tissue engineering and medical applications has led researchers to explore multipotent mesenchymal stromal cells (MSC), which show stem cell plasticity, in various human tissues. However, MSC with different tissue origins vary in their biological properties and their capability for osteogenic differentiation. Furthermore, MSC-based therapies require large-scale ex vivo expansion, accompanied by cell type-specific replicative senescence, which affects osteogenic differentiation. To elucidate cell type-specific differences in the osteogenic differentiation potential and replicative senescence, we analysed the impact of BMP and TGF-ß signaling in adipose-derived stromal cells (ASC), fibroblasts (FB), and dental pulp stromal cells (DSC). We used inhibitors of BMP and TGF-ß signaling, such as SB431542, dorsomorphin and/or a supplemental addition of BMP-2. The expression of high-affinity binding receptors for BMP-2 and calcium deposition with alizarin red S were evaluated to assess osteogenic differentiation potential. Our study demonstrated that TGF-ß signaling inhibits osteogenic differentiation of ASC, DSC and FB in the early cell culture passages. Moreover, DSC had the best osteogenic differentiation potential and an activation of BMP signaling with BMP-2 could further enhance this capacity. This phenomenon is likely due to an increased expression of activin receptor-like kinase-3 and -6. However, in DSC with replicative senescence (in cell culture passage 10), osteogenic differentiation sharply decreased, and the simultaneous use of BMP-2 and SB431542 did not result in further improvement of this process. In comparison, ASC retain a similar osteogenic differentiation potential regardless of whether they were in the early (cell culture passage 3) or later (cell culture passage 10) stages. Our study elucidated that ASC, DSC, and FB vary functionally in their osteogenic differentiation, depending on their tissue origin and replicative senescence. Therefore, our study provides important insights for cell-based therapies to optimize prospective bone tissue engineering strategies.


Assuntos
Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Engenharia Tecidual/métodos , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Técnicas de Cultura de Células , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese , Transdução de Sinais , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Células Estromais/citologia , beta Catenina/genética , beta Catenina/metabolismo
7.
Pflugers Arch ; 473(6): 969-976, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895875

RESUMO

Myostatin is a signaling molecule produced by skeletal muscle cells (myokine) that inhibits muscle hypertrophy and has further paracrine and endocrine effects in other organs including bone. Myostatin binds to activin receptor type 2B which forms a complex with transforming growth factor-ß type I receptor (TGF-ßRI) and induces intracellular p38MAPK and NFκB signaling. Fibroblast growth factor 23 (FGF23) is a paracrine and endocrine mediator produced by bone cells and regulates phosphate and vitamin D metabolism in the kidney. P38MAPK and NFκB-dependent store-operated Ca2+ entry (SOCE) are positive regulators of FGF23 production. Here, we explored whether myostatin influences the synthesis of FGF23. Fgf23 gene expression was determined by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast-like cells. UMR106 cells expressed activin receptor type 2A and B. Myostatin upregulated Fgf23 gene expression and protein production. The myostatin effect on Fgf23 was significantly attenuated by TGF-ßRI inhibitor SB431542, p38MAPK inhibitor SB202190, and NFκB inhibitor withaferin A. Moreover, SOCE inhibitor 2-APB blunted the myostatin effect on Fgf23. Taken together, myostatin is a stimulator of Fgf23 expression in UMR106 cells, an effect at least partially mediated by downstream TGF-ßRI/p38MAPK signaling as well as NFκB-dependent SOCE.


Assuntos
Fator de Crescimento de Fibroblastos 23/metabolismo , Miostatina/farmacologia , Osteoblastos/metabolismo , Receptores de Ativinas/metabolismo , Animais , Benzamidas/farmacologia , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dioxóis/farmacologia , Fator de Crescimento de Fibroblastos 23/genética , Imidazóis/farmacologia , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos , Vitanolídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Am J Reprod Immunol ; 85(5): e13371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33155323

RESUMO

PROBLEM: We aimed to identify amniotic fluid (AF) proteins associated with the subsequent rupture of membranes (ROM) occurring in the absence of active labor in women with threatened preterm labor (PTL) using an antibody microarray. METHOD OF THE STUDY: This retrospective cohort study included 183 singleton pregnant women with PTL (24-33 weeks) who underwent amniocentesis. A nested case-control study was conducted using AF samples from 20 women with subsequent ROM within 7 days of sampling (case subjects) and 20 gestational age-matched women with term delivery (TD) without ROM (control subjects), via protein-antibody microarray analysis. Seven candidate proteins of interest were validated via ELISA in the total cohort. RESULTS: Seventeen proteins displayed significant intergroup differences. ELISA validation confirmed that the levels of EN-RAGE, Fas, IL-8, IP-10, MMP-8, and MMP-9 were significantly higher, whereas IGFBP-3 levels were significantly lower in the AF of women with subsequent ROM within 7 days of sampling than in that of women with TD without ROM. Moreover, the time interval from sampling to membrane rupture was significantly correlated with the expression levels of AF proteins, except for IL-10. CONCLUSION: Using an antibody microarray, we identified various inflammatory, angiogenic, matrix-degrading, and apoptosis-related proteins in the AF that were associated with subsequent ROM occurring in the absence of active labor in women with threatened PTL. These findings provide novel insights into the molecular mechanisms underlying membrane rupture without active labor in threatened PTL.


Assuntos
Líquido Amniótico/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Trabalho de Parto Prematuro/metabolismo , Receptores de Ativinas/metabolismo , Adulto , Anticorpos , Proteínas Reguladoras de Apoptose/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Análise em Microsséries , Proteínas Mitocondriais/metabolismo , Gravidez , Estudos Retrospectivos , Proteína S100A12/metabolismo , Adulto Jovem , Receptor fas/metabolismo
9.
Mol Metab ; 41: 101046, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32599075

RESUMO

OBJECTIVE: Cancer cachexia and muscle loss are associated with increased morbidity and mortality. In preclinical animal models, blocking activin receptor (ACVR) ligands has improved survival and prevented muscle wasting in cancer cachexia without an effect on tumour growth. However, the underlying mechanisms are poorly understood. This study aimed to identify cancer cachexia and soluble ACVR (sACVR) administration-evoked changes in muscle proteome. METHODS: Healthy and C26 tumour-bearing (TB) mice were treated with recombinant sACVR. The sACVR or PBS control were administered either prior to the tumour formation or by continued administration before and after tumour formation. Muscles were analysed by quantitative proteomics with further examination of mitochondria and nicotinamide adenine dinucleotide (NAD+) metabolism. To complement the first prophylactic experiment, sACVR (or PBS) was injected as a treatment after tumour cell inoculation. RESULTS: Muscle proteomics in TB cachectic mice revealed downregulated signatures for mitochondrial oxidative phosphorylation (OXPHOS) and increased acute phase response (APR). These were accompanied by muscle NAD+ deficiency, alterations in NAD+ biosynthesis including downregulation of nicotinamide riboside kinase 2 (Nrk2), and decreased muscle protein synthesis. The disturbances in NAD+ metabolism and protein synthesis were rescued by treatment with sACVR. Across the whole proteome and APR, in particular, Serpina3n represented the most upregulated protein and the strongest predictor of cachexia. However, the increase in Serpina3n expression was associated with increased inflammation rather than decreased muscle mass and/or protein synthesis. CONCLUSIONS: We present evidence implicating disturbed muscle mitochondrial OXPHOS proteome and NAD+ homeostasis in experimental cancer cachexia. Treatment of TB mice with a blocker of activin receptor ligands restores depleted muscle NAD+ and Nrk2, as well as decreased muscle protein synthesis. These results indicate putative new treatment therapies for cachexia and that although acute phase protein Serpina3n may serve as a predictor of cachexia, it more likely reflects a condition of elevated inflammation.


Assuntos
Proteínas de Fase Aguda/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Serpinas/metabolismo , Receptores de Ativinas/antagonistas & inibidores , Receptores de Ativinas/efeitos dos fármacos , Receptores de Ativinas/metabolismo , Ativinas/metabolismo , Ativinas/farmacologia , Proteínas de Fase Aguda/fisiologia , Animais , Caquexia/metabolismo , Caquexia/fisiopatologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Miostatina/metabolismo , Fosforilação Oxidativa , Serpinas/fisiologia
10.
Theriogenology ; 153: 143-150, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485427

RESUMO

Activin (ACV) A induces various cellular functions via activin receptor type 2 (ACVR2A/2B)-activin receptor-like kinase (ALK) 4 -Smad 2/3 pathway. Although the production of ACVA is indicated in bovine oviducts, its role on the oviduct is unclear. Oviductal isthmus needs to change its function rapidly at peri-fertilization, however, the mechanism is unknown. This study was aimed to clarify the role of ACVA in the morphological changes of oviductal isthmus in cows. First, mRNA expressions of INHBA (ACVA component) and its receptors (ALK4, ACVR2A and ACVR2B) in the isthmic tissues were examined throughout the estrous cycle. INHBA was the highest, however, ACVR2A was the lowest on the day of ovulation, suggesting reduced ACV signal transduction in the isthmus just after ovulation. Proteins of ACVRs and Smad2/3 were clearly detected in the cultured epithelial cells. It is known that ACVA regulates cellular apoptosis. Our data showed that the number of cleaved caspase-3-positive epithelial cells was largest at 2-3 days after ovulation in the isthmus. Interestingly, our study demonstrated that follistatin (ACV/TGFB/BMP inhibitor) significantly decreased the BCL2/BAX ratio in the cultured isthmic epithelial cells. To clarify which ALK pathway is involved in the regulation of BCL2/BAX ratio, the effects of SB431542 (ACV signaling (ALK4) and TGFB signaling (ALK5) inhibitor), SB525334 (ALK5 inhibitor) and LDN193189 (BMP signaling (ALK2/3) inhibitor) were investigated in the next study. The results showed that only SB431542 significantly decreased BCL2/BAX and the others had no effects. These results suggest that decreased ACVA-ACVR2A-ALK4 signal at the post-ovulation induces cyclic apoptosis of isthmic epithelial cells in bovine oviducts.


Assuntos
Receptores de Ativinas/metabolismo , Ativinas/metabolismo , Bovinos , Células Epiteliais/metabolismo , Epitélio/fisiologia , Tubas Uterinas/fisiologia , Receptores de Ativinas/genética , Ativinas/genética , Animais , Apoptose , Benzamidas/farmacologia , Dioxóis/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinoxalinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
J Clin Invest ; 130(2): 582-589, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961337

RESUMO

Signaling by the TGF-ß superfamily is important in the regulation of hematopoiesis and is dysregulated in myelodysplastic syndromes (MDSs), contributing to ineffective hematopoiesis and clinical cytopenias. TGF-ß, activins, and growth differentiation factors exert inhibitory effects on red cell formation by activating canonical SMAD2/3 pathway signaling. In this Review, we summarize evidence that overactivation of SMAD2/3 signaling pathways in MDSs causes anemia due to impaired erythroid maturation. We also describe the basis for biological activity of activin receptor ligand traps, novel fusion proteins such as luspatercept that are promising as erythroid maturation agents to alleviate anemia and related comorbidities in MDSs and other conditions characterized by impaired erythroid maturation.


Assuntos
Receptores de Activinas Tipo II/uso terapêutico , Receptores de Ativinas/metabolismo , Eritrócitos/metabolismo , Eritropoese/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Síndromes Mielodisplásicas , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Eritrócitos/patologia , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
12.
Mol Med Rep ; 19(6): 5053-5062, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059090

RESUMO

Activin receptor­like kinases (ALKs), members of the type I activin receptor family, belong to the serine/threonine kinase receptors of the transforming growth factor­ß (TGF­ß) superfamily. ALKs mediate the roles of activin/TGF­ß in a wide variety of physiological and pathological processes, ranging from cell differentiation and proliferation to apoptosis. For example, the activities of ALKs are associated with an advanced tumor stage in prostate cancer and the chondrogenic differentiation of mesenchymal stem cells. Therefore, potent and selective small molecule inhibitors of ALKs would not only aid in investigating the function of activin/TGF­ß, but also in developing treatments for these diseases via the disruption of activin/TGF­ß. In recent studies, several ALK inhibitors, including LY­2157299, SB­431542 and A­83­01, have been identified and have been confirmed to affect stem cell differentiation and tumor progression in animal models. This review discusses the therapeutic perspective of small molecule inhibitors of ALKs as drug targets in tumor and stem cells.


Assuntos
Receptores de Ativinas/antagonistas & inibidores , Diferenciação Celular , Bibliotecas de Moléculas Pequenas/química , Receptores de Ativinas/metabolismo , Ativinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Neoplasias/tratamento farmacológico , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo
13.
Stem Cells Dev ; 28(6): 384-397, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30654712

RESUMO

Tumors, traumata, burn injuries or surgeries can lead to critical-sized bony defects which need to be reconstructed. Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell lineages and thus present a promising alternative for use in tissue engineering and reconstruction. However, there is an ongoing debate whether all MSCs are equivalent in their differentiation and proliferation ability. The goal of this study was to assess osteogenic and adipogenic characteristic changes of adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMSCs) upon Myostatin inhibition with Follistatin in vitro and in vivo. We harvested ASCs from mice inguinal fat pads and BMSCs from tibiae of mice. By means of histology, real-time cell analysis, immunohistochemistry, and PCR osteogenic and adipogenic proliferation and differentiation in the presence or absence of Follistatin were analyzed. In vivo, osteogenic capacity was investigated in a tibial defect model of wild-type (WT) mice treated with mASCs and mBMSCs of Myo-/- and WT origin. In vitro, we were able to show that inhibition of Myostatin leads to markedly reduced proliferative capacity in mBMSCs and mASCs in adipogenic differentiation and reduced proliferation in osteogenic differentiation in mASCs, whereas proliferation in mBMSCs in osteogenic differentiation was increased. Adipogenic differentiation was inhibited in mASCs and mBMSCs upon Follistatin treatment, whereas osteogenic differentiation was increased in both cell lineages. In vivo, we could demonstrate increased osteoid formation in WT mice treated with mASCs and mBMSCs of Myo-/- origin and enhanced osteogenic differentiation and proliferation of mASCs of Myo-/- origin. We could demonstrate that the osteogenic potential of mASCs could be raised to a level comparable to mBMSCs upon inhibition of Myostatin. Moreover, Follistatin treatment led to inhibition of adipogenesis in both lineages.


Assuntos
Receptores de Ativinas/antagonistas & inibidores , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Folistatina/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/metabolismo , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Adipogenia/genética , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/genética , Feminino , Camundongos , Camundongos Knockout , Osteogênese/genética , Células-Tronco/citologia
14.
Reprod Domest Anim ; 54(1): 46-54, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30120850

RESUMO

The objective of this study was to examine the expression of transforming growth factor beta receptor (TGFBR)1, TGFBR2, TGFBR3, activin receptor (ACVR)1B and ACVR2B in ovaries of cows with cystic ovarian disease (COD). The expression of the selected receptors was determined by immunohistochemistry in sections of ovaries from cows with ACTH-induced and spontaneous COD. Expression of TGFBR1 and TGFBR3 was higher in granulosa cells of cysts from cows with spontaneous COD than in tertiary follicles from the control group. Additionally, TGFBR3 expression was higher in granulosa cells of cysts from cows with ACTH-induced COD than in those from the control group and lower in theca cells of spontaneous and ACTH-induced cysts than in tertiary control follicles. There were no changes in the expression of TGFBR2. ACVR1B expression was higher in granulosa cells of tertiary follicles of cows with spontaneous COD than in the control group, whereas ACVR2B expression was higher in cysts of the spontaneous COD group than in tertiary follicles from the control group. The alterations here detected, together with the altered expression of the ligands previously reported, indicate alterations in the response of the ligands in the target cells, modifying their actions at cellular level.


Assuntos
Receptores de Ativinas/metabolismo , Doenças dos Bovinos/metabolismo , Cistos Ovarianos/veterinária , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Hormônio Adrenocorticotrópico/administração & dosagem , Animais , Bovinos , Feminino , Células da Granulosa/metabolismo , Imuno-Histoquímica , Cistos Ovarianos/induzido quimicamente , Cistos Ovarianos/metabolismo , Ovário/metabolismo , Células Tecais/metabolismo
15.
Mol Pharmacol ; 94(6): 1321-1333, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30262595

RESUMO

Central nervous system (CNS) drug delivery can be achieved by targeting drug uptake transporters such as Oatp1a4. In fact, many drugs that can improve neurologic outcomes in CNS diseases [3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (i.e., statins)] are organic anion transporting polypeptide (OATP) transport substrates. To date, transport properties and regulatory mechanisms of Oatp1a4 at the blood-brain barrier (BBB) have not been rigorously studied. Such knowledge is critical to develop Oatp1a4 for optimization of CNS drug delivery and for improved treatment of neurological diseases. Our laboratory has demonstrated that the transforming growth factor-ß (TGF-ß)/activin receptor-like kinase 1 (ALK1) signaling agonist bone morphogenetic protein 9 (BMP-9) increases functional expression of Oatp1a4 in rat brain microvessels. Here, we expand on this work and show that BMP-9 treatment increases blood-to-brain transport and brain exposure of established OATP transport substrates (i.e., taurocholate, atorvastatin, and pravastatin). We also demonstrate that BMP-9 activates the TGF-ß/ALK1 pathway in brain microvessels as indicated by increased nuclear translocation of specific Smad proteins associated with signaling mediated by the ALK1 receptor (i.e., pSmad1/5/8). Furthermore, we report that an activated Smad protein complex comprised of phosphorylated Smad1/5/8 and Smad4 is formed following BMP-9 treatment and binds to the promoter of the Slco1a4 gene (i.e., the gene that encodes Oatp1a4). This signaling mechanism causes increased expression of Slco1a4 mRNA. Overall, this study provides evidence that Oatp1a4 transport activity at the BBB is directly regulated by TGF-ß/ALK1 signaling and indicates that this pathway can be targeted for control of CNS delivery of OATP substrate drugs.


Assuntos
Receptores de Ativinas/metabolismo , Barreira Hematoencefálica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Atorvastatina/farmacologia , Transporte Biológico/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Pravastatina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ácido Taurocólico/farmacologia
16.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142896

RESUMO

The high cardiovascular mortality associated with chronic kidney disease (CKD) is caused in part by the CKD-mineral bone disorder (CKD-MBD) syndrome. The CKD-MBD consists of skeletal, vascular and cardiac pathology caused by metabolic derangements produced by kidney disease. The prevalence of osteopenia/osteoporosis resulting from the skeletal component of the CKD-MBD, renal osteodystrophy (ROD), in patients with CKD exceeds that of the general population and is a major public health concern. That CKD is associated with compromised bone health is widely accepted, yet the mechanisms underlying impaired bone metabolism in CKD are not fully understood. Therefore, clarification of the molecular mechanisms by which CKD produces ROD is of crucial significance. We have shown that activin A, a member of the transforming growth factor (TGF)-ß super family, is an important positive regulator of receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis with Smad-mediated signaling being crucial for inducing osteoclast development and function. Recently, we have demonstrated systemic activation of activin receptors and activin A levels in CKD mouse models, such as diabetic CKD and Alport (AL) syndrome. In these CKD mouse models, bone remodeling caused by increased osteoclast numbers and activated osteoclastic bone resorption was observed and treatment with an activin receptor ligand trap repaired CKD-induced-osteoclastic bone resorption and stimulated individual osteoblastic bone formation, irrespective of parathyroid hormone (PTH) elevation. These findings have opened a new field for exploring mechanisms of activin A-enhanced osteoclast formation and function in CKD. Activin A appears to be a strong candidate for CKD-induced high-turnover ROD. Therefore, the treatment with the decoy receptor for activin A might be a good candidate for treatment for CKD-induced osteopenia or osteoporosis, indicating that the new findings from in these studies will lead to the identification of novel therapeutic targets for CKD-related and osteopenia and osteoporosis in general. In this review, we describe the impact of CKD-induced Smad signaling in osteoclasts, osteoblasts and vascular cells in CKD.


Assuntos
Ativinas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Rim/metabolismo , Transdução de Sinais , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Ativinas/genética , Animais , Remodelação Óssea , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Rim/patologia , Camundongos , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
17.
J Alzheimers Dis ; 63(4): 1433-1443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843236

RESUMO

The pathophysiology of Alzheimer's disease (AD) includes signaling defects mediated by the transforming growth factor ß-bone morphogenetic protein-growth and differentiation factor (TGFß-BMP-GDF) family of proteins. In animal models of AD, administration of BMP9/GDF2 improves memory and reduces amyloidosis. The best characterized type I receptor of BMP9 is ALK1. We characterized ALK1 expression in the hippocampus using immunohistochemistry. In the rat, ALK1 immunoreactivity was found in CA pyramidal neurons, most frequently and robustly in the CA2 and CA3 fields. In addition, there were sporadic ALK1-immunoreactive cells in the stratum oriens, mainly in CA1. The ALK1 expression pattern in human hippocampus was similar to that of rat. Pyramidal neurons within the CA2, CA3, and CA4 were strongly ALK1-immunoreactive in hippocampi of cognitively intact subjects with no neurofibrillary tangles. ALK1 signal was found in the axons of alveus and fimbria, and in the neuropil across CA fields. Relatively strongest ALK1 neuropil signal was observed in CA1 where pyramidal neurons were occasionally ALK1-immunoractive. As in the rat, horizontally oriented neurons in the stratum oriens of CA1 were both ALK1- and GAD67-immunoreactive. Analysis of ALK1 immunoreactivity across stages of AD pathology revealed that disease progression was characterized by overall reduction of the ALK1 signal in CA3 in advanced, but not early, stages of AD. These data suggest that the CA3 pyramidal neurons may remain responsive to the ALK1 ligands, e.g., BMP9, during initial stages of AD and that ALK1 may constitute a therapeutic target in early and moderate AD.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Receptores de Ativinas/metabolismo , Doença de Alzheimer/patologia , Região CA3 Hipocampal/metabolismo , Progressão da Doença , Idoso , Doença de Alzheimer/metabolismo , Animais , Feminino , Glutamato Descarboxilase/metabolismo , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos , Ratos Wistar
18.
Cell Death Dis ; 9(2): 174, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416020

RESUMO

BMP2 expression is spatiotemporally correlated with embryo implantation and is crucial for endometrial decidualization and fertility in mice. BMP2 has been reported to increase the mesenchymal adhesion molecule N-cadherin and enhance cell invasion in cancer cells; moreover, studies suggest that N-cadherin promotes placental trophoblast invasion. However, whether BMP2 can promote trophoblast cell invasion during placentation remains unknown. The objective of our study was to investigate the effects of BMP2 on human trophoblast cell invasion and the involvement of N-cadherin and SMAD signaling. Primary and immortalized (HTR8/SVneo) cultures of human extravillous trophoblast (EVT) cells were used as study models. Treatment with recombinant human BMP2 increased HTR8/SVneo cell transwell Matrigel invasion as well as N-cadherin mRNA and protein levels, but had no significant effect on cell proliferation. Likewise, BMP2 treatment enhanced primary human EVT cell invasion and N-cadherin production. Basal and BMP2-induced invasion were attenuated by small interfering RNA-mediated downregulation of N-cadherin in both HTR8/SVneo and primary EVT cells. Intriguingly, BMP2 induced the phosphorylation/activation of both canonical SMAD1/5/8 and non-canonical SMAD2/3 signaling in HTR8/SVneo and primary EVT cells. Knockdown of SMAD2/3 or common SMAD4 totally abolished the effects of BMP2 on N-cadherin upregulation in HTR8/SVneo cells. Upregulation of SMAD2/3 phosphorylation and N-cadherin were totally abolished by type I receptor activin receptor-like kinases 2/3 (ALK2/3) inhibitor DMH1; moreover, knockdown of ALK2 or ALK3 inhibited N-cadherin upregulation. Interestingly, activation of SMAD2/3 and upregulation of N-cadherin were partially attenuated by ALK4/5/7 inhibitor SB431542 or knockdown of ALK4, but not ALK5. Our results show that BMP2 promotes trophoblast cell invasion by upregulating N-cadherin via non-canonical ALK2/3/4-SMAD2/3-SMAD4 signaling.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Caderinas/genética , Movimento Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Regulação para Cima/efeitos dos fármacos , Receptores de Ativinas/metabolismo , Caderinas/metabolismo , Linhagem Celular , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
19.
Sci Rep ; 8(1): 1561, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367682

RESUMO

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a widespread disease causing obstruction of the nasal cavity. Its cause remains unclear. The transforming growth-factor beta (TGF-ß) superfamily and their receptors, termed Activin receptor-like kinases (ALKs), have recently been suggested to play a role in local airway inflammation, but have so far not been evaluated in human nasal epithelial cells (HNECs) from CRSwNP patients. We demonstrated that ALK1-7 were expressed in the nasal polyp epithelium, and the expression of ALK1-6 was markedly elevated in polyps compared to nasal mucosa from healthy controls. Stimulation with the ALK ligand TGF-ß1 decreased Ki67 expression in HNECs from CRSwNP patients, not evident in controls. Likewise, TGF-ß1, Activin A and Activin B, all ALK ligands, decreased IL-8 release and Activin A and Activin B reduced ICAM1 expression on HNECs from CRSwNP patients, not seen in controls. Pre-stimulation with TGF-ß1, Activin A, BMP4 and Activin B attenuated a TNF-α-induced ICAM1 upregulation on HNECs of CRSwNP. No effect was evident in controls. In conclusion, an increased expression of ALK1-6 was found on polyp epithelial cells and ligand stimulation appeared to reduce proliferation and local inflammation in polyps.


Assuntos
Receptores de Ativinas/metabolismo , Células Epiteliais/fisiologia , Mucosite/patologia , Pólipos Nasais/complicações , Sinusite/patologia , Adulto , Biópsia , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Mucosite/prevenção & controle , Sinusite/prevenção & controle
20.
Sci Rep ; 7(1): 12345, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28955045

RESUMO

Taeniids exhibit a great adaptive plasticity, which facilitates their establishment, growth, and reproduction in a hostile inflammatory microenvironment. Transforming Growth Factor-ß (TGFß), a highly pleiotropic cytokine, plays a critical role in vertebrate morphogenesis, cell differentiation, reproduction, and immune suppression. TGFß is secreted by host cells in sites lodging parasites. The role of TGFß in the outcome of T. solium and T. crassiceps cysticercosis is herein explored. Homologues of the TGFß family receptors (TsRI and TsRII) and several members of the TGFß downstream signal transduction pathway were found in T. solium genome, and the expression of Type-I and -II TGFß receptors was confirmed by RT-PCR. Antibodies against TGFß family receptors recognized cysticercal proteins of the expected molecular weight as determined by Western blot, and different structures in the parasite external tegument. In vitro, TGFß promoted the growth and reproduction of T. crassiceps cysticerci and the survival of T. solium cysticerci. High TGFß levels were found in cerebrospinal fluid from untreated neurocysticercotic patients who eventually failed to respond to the treatment (P = 0.03) pointing to the involvement of TGFß in parasite survival. These results indicate the relevance of TGFß in the infection outcome by promoting cysticercus growth and treatment resistance.


Assuntos
Cysticercus/imunologia , Interações Hospedeiro-Parasita/imunologia , Neurocisticercose/imunologia , Taenia solium/imunologia , Fator de Crescimento Transformador beta/imunologia , Receptores de Ativinas/genética , Receptores de Ativinas/imunologia , Receptores de Ativinas/metabolismo , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/metabolismo , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Cysticercus/genética , Cysticercus/metabolismo , Modelos Animais de Doenças , Resistência a Medicamentos/imunologia , Genoma Helmíntico/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Proteínas de Helminto/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neurocisticercose/líquido cefalorraquidiano , Neurocisticercose/tratamento farmacológico , Neurocisticercose/parasitologia , Transdução de Sinais/imunologia , Suínos , Taenia solium/genética , Taenia solium/metabolismo , Fator de Crescimento Transformador beta/líquido cefalorraquidiano , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA