Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(3): e0151934, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986966

RESUMO

Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such "Cys-less" receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the "Cys-loop" proline is absolutely conserved, suggesting the more fitting name "Pro loop" for that motif, and "Pro-loop receptors" for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/genética , Receptores de Neurotransmissores/genética , Animais , Archaea/classificação , Archaea/genética , Archaea/fisiologia , Sequência Conservada/genética , Sequência Conservada/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Eucariotos/genética , Eucariotos/fisiologia , Evolução Molecular , Fungos/genética , Fungos/fisiologia , Invertebrados/genética , Invertebrados/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Filogenia , Plantas/genética , Receptores de Neurotransmissores/fisiologia , Alinhamento de Sequência
2.
J Neurophysiol ; 110(1): 103-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23576702

RESUMO

Picrotoxin is extensively and specifically used to inhibit GABAA receptors and other members of the Cys-loop receptor superfamily. We find that picrotoxin acts independently of known Cys-loop receptors to shorten the period of the circadian clock markedly by specifically advancing the accumulation of PERIOD2 protein. We show that this mechanism is surprisingly tetrodotoxin-insensitive, and the effect is larger than any known chemical or genetic manipulation. Notably, our results indicate that the circadian target of picrotoxin is common to a variety of human and rodent cell types but not Drosophila, thereby ruling out all conserved Cys-loop receptors and known regulators of mammalian PERIOD protein stability. Given that the circadian clock modulates significant aspects of cell physiology including synaptic plasticity, these results have immediate and broad experimental implications. Furthermore, our data point to the existence of an important and novel target within the mammalian circadian timing system.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Proteínas Circadianas Period/metabolismo , Picrotoxina/farmacologia , Animais , Linhagem Celular , Relógios Circadianos/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Drosophila , Humanos , Técnicas In Vitro , Camundongos , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia
3.
J Phys Chem B ; 116(46): 13637-43, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23088363

RESUMO

An invertebrate glutamate-gated chloride channel (GluCl) has recently been crystallized in an open-pore state. This channel is homologous to the human Cys-loop receptor family of pentameric ligand-gated ion channels, including anion-selective GlyR and GABAR and cation-selective nAChR and 5HT(3). We implemented molecular dynamics (MD) in conjunction with an elastic network model to perturb the X-ray structure of GluCl and investigated the open channel stability and its ion permeation characteristics. Our study suggests that TM2 helical tilting may close GluCl near the hydrophobic constriction L254 (L9'), similar to its cation-selective homologues. Ion permeation characteristics were determined by Brownian dynamics simulations using a hybrid MD/continuum electrostatics approach to evaluate the free energy profiles for ion transport. Near the selectivity filter region (P243 or P-2'), the free energy barrier for Na(+) transport is over 4 k(B)T higher than that for Cl(-), indicating anion selectivity of the channel. Furthermore, three layers of positivity charged rings in the extracellular domain also contribute to charge selectivity and facilitate Cl(-) permeability over Na(+). Collectively, the charge selectivity of GluCl may be determined by overall electrostatic and ion dehydration effects, perhaps not deriving from a single region of the channel (the selectivity filter region near the intracellular entrance).


Assuntos
Canais de Cloreto/metabolismo , Simulação de Dinâmica Molecular , Ânions , Canais de Cloreto/farmacocinética , Cristalografia por Raios X , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Humanos , Modelos Biológicos
4.
Trends Pharmacol Sci ; 33(9): 482-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22789930

RESUMO

Cys loop, glutamate, and P2X receptors are ligand-gated ion channels (LGICs) with 5, 4, and 3 protomers, respectively. There is now growing atomic level understanding of their gating mechanisms. Although each family is unique in the architecture of the ligand-binding pocket, the pathway for motions to propagate from ligand-binding domain to transmembrane domain, and the gating motions of the transmembrane domain, there are common features among the LGICs, which are the focus of the present review. In particular, agonists and competitive antagonists apparently induce opposite motions of the binding pocket. A simple way to control the motional direction is ligand size. Agonists, usually small, induce closure of the binding pocket, leading to opening of the channel pore, whereas antagonists, usually large, induce opening of the binding pocket, thereby stabilizing the closed pore. A cross-family comparison of the gating mechanisms of the LGICs, focusing in particular on the role played by ligand size, provides new insight on channel activation/inhibition and design of pharmacological compounds.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Ativação do Canal Iônico , Receptores Ionotrópicos de Glutamato/química , Receptores Purinérgicos P2X/química , Animais , Sítios de Ligação , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Humanos , Receptores Ionotrópicos de Glutamato/fisiologia , Receptores Purinérgicos P2X/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-22233560

RESUMO

Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Receptores de Glutamato/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Receptores de Glutamato/química , Receptores de Glutamato/genética
6.
J Physiol Paris ; 106(1-2): 23-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21995938

RESUMO

Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Ativação do Canal Iônico/fisiologia , Sequência de Aminoácidos , Animais , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/classificação , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Neurotransmissores/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
8.
PLoS One ; 6(2): e17152, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21390329

RESUMO

BACKGROUND: GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. PRINCIPAL FINDINGS: We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, ß2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. SIGNIFICANCE: Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem.


Assuntos
Anestésicos/efeitos adversos , Doenças do Sistema Imunitário/induzido quimicamente , Sistema Imunitário/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Anestésicos/farmacologia , Bicuculina/farmacologia , Linhagem Celular , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/agonistas , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Avaliação Pré-Clínica de Medicamentos , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiologia , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/metabolismo , Hospedeiro Imunocomprometido/efeitos dos fármacos , Hospedeiro Imunocomprometido/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/fisiologia , Muscimol/farmacologia , Picrotoxina/farmacologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
9.
Biophys J ; 101(12): 2912-8, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22208189

RESUMO

The Gloeobacter ligand-gated ion channel (GLIC) is a bacterial homolog of vertebrate Cys-loop ligand-gated ion channels. Its pore-lining region in particular has a high sequence homology to these related proteins. Here we use electrophysiology to examine a range of compounds that block the channels of Cys-loop receptors to probe their pharmacological similarity with GLIC. The data reveal that a number of these compounds also block GLIC, although the pharmacological profile is distinct from these other proteins. The most potent compound was lindane, a GABA(A) receptor antagonist, with an IC50 of 0.2 µM. Docking studies indicated two potential binding sites for this ligand in the pore, at the 9' or between the 0' and 2' residues. Similar experiments with picrotoxinin (IC50 = 2.6 µM) and rimantadine (IC50 = 2.6 µM) reveal interactions with 2'Thr residues in the GLIC pore. These locations are strongly supported by mutagenesis data for picrotoxinin and lindane, which are less potent in a T2'S version of GLIC. Overall, our data show that the inhibitory profile of the GLIC pore has considerable overlap with those of Cys-loop receptors, but the GLIC pore has a unique pharmacology.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/antagonistas & inibidores , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Proteínas de Bactérias/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Hexaclorocicloexano/farmacologia , Humanos , Picrotoxina/análogos & derivados , Picrotoxina/farmacologia , Ligação Proteica , Rimantadina/farmacologia , Sesterterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA