Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1319-1334, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559343

RESUMO

Tripegfilgrastim is a long-acting granulocyte colony-stimulating factor (G-CSF) that has been used to prevent chemotherapy-induced neutropenia in adults. This study aimed to establish a pharmacokinetic (PK)-pharmacodynamic (PD) model to explore the impact of chemotherapy and tripegfilgrastim on absolute neutrophil counts (ANCs) and to further propose a fixed-dose regimen in pediatric patients. Because neutrophils affect the clearance of tripegfilgrastim, the semimechanistic PK-PD model was developed simultaneously by using data from 40 healthy adults and 27 pediatric patients with solid tumors. Tripegfilgrastim PK and ANC dynamics were described with a pharmacodynamics-mediated drug disposition model assuming quasi-equilibrium with five transit compartments mimicking neutrophil granulopoiesis. The effect of chemotherapy on neutrophils was included by stimulating the elimination of the G-CSF receptor at the mitotic cells. Healthy adult and pediatric patients showed significantly different value for dissociation constant of the tripegfilgrastim-G-CSF receptor complex (Kd ) and apparent volume of distribution (Vd /F). Patients treated with chemotherapy had a higher Vd /F and 62% lower Kd than healthy adults. As the age increased, the absorption rate of tripegfilgrastim was decreased. Body weight affected the G-CSF receptor-mediated internalization of tripegfilgrastim, and the baseline ANC value impacted the production rate of G-CSF receptors. Simulations from the developed model suggested that 1.5, 2.5, 4, and 6 mg single subcutaneous tripegfilgrastim doses for the respective weight groups of 10-20, 21-30, 31-44, and more than 45 kg significantly reduced the duration of Grade 4 neutropenia similar to tripegfilgrastim weight-based treatment with 100 µg/kg.


Assuntos
Neutropenia , Receptores de Fator Estimulador de Colônias de Granulócitos , Adulto , Humanos , Criança , Receptores de Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Contagem de Leucócitos , Neutropenia/induzido quimicamente , Neutropenia/prevenção & controle , Neutrófilos
2.
Clin Cancer Res ; 29(11): 2158-2169, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951682

RESUMO

PURPOSE: G-CSF enhances colon cancer development. This study defines the prevalence and effects of increased G-CSF signaling in human colon cancers and investigates G-CSF inhibition as an immunotherapeutic strategy against metastatic colon cancer. EXPERIMENTAL DESIGN: Patient samples were used to evaluate G-CSF and G-CSF receptor (G-CSFR) levels by IHC with sera used to measure G-CSF levels. Peripheral blood mononuclear cells were used to assess the rate of G-CSFR+ T cells and IFNγ responses to chronic ex vivo G-CSF. An immunocompetent mouse model of peritoneal metastasis (MC38 cells in C57Bl/6J) was used to determine the effects of G-CSF inhibition (αG-CSF) on survival and the tumor microenvironment (TME) with flow and mass cytometry. RESULTS: In human colon cancer samples, the levels of G-CSF and G-CSFR are higher compared to normal colon tissues from the same patient. High patient serum G-CSF is associated with increases in markers of poor prognosis, (e.g., VEGF, IL6). Circulating T cells from patients express G-CSFR at double the rate of T cells from controls. Prolonged G-CSF exposure decreases T cell IFNγ production. Treatment with αG-CSF shifts both the adaptive and innate compartments of the TME and increases survival (HR, 0.46; P = 0.0237) and tumor T-cell infiltration, activity, and IFNγ response with greater effects in female mice. There is a negative correlation between serum G-CSF levels and tumor-infiltrating T cells in patient samples from women. CONCLUSIONS: These findings support G-CSF as an immunotherapeutic target against colon cancer with greater potential benefit in women.


Assuntos
Neoplasias do Colo , Fator Estimulador de Colônias de Granulócitos , Humanos , Feminino , Camundongos , Animais , Leucócitos Mononucleares , Linfócitos T , Receptores de Fator Estimulador de Colônias de Granulócitos/fisiologia , Neoplasias do Colo/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
3.
Bone ; 169: 116682, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709915

RESUMO

Vertical sleeve gastrectomy (VSG), the most utilized bariatric procedure in clinical practice, greatly reduces body weight and improves a variety of metabolic disorders. However, one of its long-term complications is bone loss and increased risk of fracture. Elevated circulating sclerostin (SOST) and granulocyte-colony stimulating factor (G-CSF) concentrations have been considered as potential contributors to VSG-associated bone loss. To test these possibilities, we administrated antibodies to SOST or G-CSF receptor and investigated alterations to bone and marrow niche following VSG. Neutralizing either SOST or G-CSF receptor did not alter beneficial effects of VSG on adiposity and hepatic steatosis, and anti-SOST treatment provided a further improvement to glucose tolerance. SOST antibodies partially reduced trabecular and cortical bone loss following VSG by increasing bone formation, whereas G-CSF receptor antibodies had no effects on bone mass. The expansion in myeloid cellularity and reductions in bone marrow adiposity seen with VSG were partially eliminated by treatment with Anti-G-CSF receptor. Taken together, these experiments demonstrate that antibodies to SOST or G-CSF receptor may act through independent mechanisms to partially block effects of VSG on bone loss or marrow niche cells, respectively.


Assuntos
Medula Óssea , Receptores de Fator Estimulador de Colônias de Granulócitos , Humanos , Medula Óssea/metabolismo , Obesidade/metabolismo , Gastrectomia/efeitos adversos , Adipócitos/metabolismo
4.
Br J Dermatol ; 188(5): 636-648, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691791

RESUMO

BACKGROUND: Neutrophils have been shown to contribute to the pathophysiology of hidradenitis suppurativa (HS), a chronic, painful and debilitating inflammatory skin disease, yet their exact role remains to be fully defined. Granulocyte colony-stimulating factor (G-CSF), a major regulator of neutrophil development and survival, can be blocked by the novel, fully human anti-G-CSF receptor (G-CSFR) monoclonal antibody CSL324. OBJECTIVES: We investigated the activation and migration of neutrophils in HS and the impact of blocking G-CSFR with CSL324. METHODS: Biopsy and peripheral blood samples were taken from participants of two studies: 2018.206, a noninterventional research study of systemic and dermal neutrophils and inflammatory markers in patients with neutrophilic skin diseases, and CSL324_1001 (ACTRN12616000846426), a single-dose ascending and repeated dose, randomized, double-blind, placebo-controlled study to assess the safety, pharmacokinetics and pharmacodynamics of CSL324 in healthy adult subjects. Ex vivo experiments were performed, including neutrophil enumeration and immunophenotyping, migration, receptor occupancy and transcriptome analysis. RESULTS: The number of cells positive for the neutrophil markers myeloperoxidase (MPO) and neutrophil elastase (NE) was significantly higher in HS lesions compared with biopsies from healthy donors (HDs) (P < 0.0001 and P = 0.0223, respectively). In peripheral blood samples, mean neutrophil counts were significantly higher in patients with HS than in HDs (2.98 vs. 1.60 × 109 L-1, respectively; P = 8.8 × 10-4). Neutrophil migration pathways in peripheral blood were increased in patients with HS and their neutrophils demonstrated an increased migration phenotype, with higher mean CXCR1 on the surface of neutrophils in patients with HS (24453.20 vs. 20798.47 for HD; P = 0.03). G-CSF was a key driver of the transcriptomic changes in the peripheral blood of patients with HS and was elevated in serum from patients with HS compared with HDs (mean 6.61 vs. 3.84 pg mL-1, respectively; P = 0.013). Administration of CSL324 inhibited G-CSF-induced transcriptional changes in HDs, similar to those observed in the HS cohort, as highlighted by expression changes in genes related to neutrophil migratory capacity. CONCLUSIONS: Data suggest that neutrophils contribute to HS pathophysiology and that neutrophils are increased in lesions due to an increase in G-CSF-driven migration. CSL324 counteracted G-CSF-induced transcriptomic changes and blocked neutrophil migration by reducing cell-surface levels of chemokine receptors.


Assuntos
Hidradenite Supurativa , Receptores de Fator Estimulador de Colônias de Granulócitos , Adulto , Humanos , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Neutrófilos , Hidradenite Supurativa/tratamento farmacológico , Hidradenite Supurativa/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia
5.
Proc Natl Acad Sci U S A ; 119(43): e2121077119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269862

RESUMO

Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.


Assuntos
Neutrófilos , Receptores de Fator Estimulador de Colônias de Granulócitos , Humanos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos/genética , Citocinas
6.
Oral Health Prev Dent ; 20(1): 355-362, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259438

RESUMO

PURPOSE: To investigate the effects and mechanisms of lemon essential oil products on dental caries prevention. MATERIALS AND METHODS: Lemon essential oil microemulsions (LEOM) with concentrations of 1/8 minimum inhibitory concentration (MIC), 1/4 MIC, and 1/2 MIC were applied to S. mutans at concentrations of 0.2%, 1%, and 5% glucose, respectively. Changes in acid production capacity of S. mutans were measured based on changes in pH. The effect of the reductive coenzyme I oxidation method on LDH activity was examined. The effect of lemon essential oil microemulsion on the expression of the lactate dehydrogenase gene (ldh) was detected by a quantitative real-time polymerase chain reaction. RESULTS: Lemon essential oil microemulsion at 1/2 MIC concentration reduced the environmental pH value at different glucose concentrations, compared to those observed in the control group (p < 0.05). LDH activity of S. mutans was decreased at three subinhibitory concentrations of lemon essential oil microemulsions (p < 0.05). The effect of lemon essential oil microemulsions on S. mutans LDH activity and bacterial acid production were positively correlated (r = 0.825, p < 0.05). Lemon essential oil microemulsion at 1/2 MIC concentration downregulated the expression of the ldh gene of S. mutans at different glucose concentrations (p < 0.05). In different glucose environments, lemon essential oil microemulsions at subminimum inhibitory concentrations can inhibit the acid production of S. mutans by reducing ldh expression and LDH activity in the glycolytic pathway, proving its anti-caries potential. CONCLUSIONS: LEOM can effectively prevent dental caries and maintain the microecological balance of the oral environment.


Assuntos
Cárie Dentária , Óleos Voláteis , Humanos , Streptococcus mutans , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/farmacologia , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , NAD/metabolismo , NAD/farmacologia , Cariostáticos/farmacologia , Lactato Desidrogenases/metabolismo , Glucose/farmacologia , Biofilmes
7.
J Bone Miner Res ; 37(10): 1876-1890, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856245

RESUMO

Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fator Estimulador de Colônias de Granulócitos , Osteócitos , Receptores de Fator Estimulador de Colônias de Granulócitos , Fator de Transcrição STAT3 , Animais , Feminino , Masculino , Camundongos , Osso Cortical/diagnóstico por imagem , Fator Estimulador de Colônias de Granulócitos/genética , Interleucina-6 , Osteócitos/patologia , RNA Mensageiro , Fator de Transcrição STAT3/metabolismo
8.
J Immunol ; 208(5): 1066-1075, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140132

RESUMO

BATF3-deficient mice that lack CD8+ dendritic cells (DCs) showed an exacerbation of chronic graft-versus-host disease (cGVHD), including T follicular helper (Tfh) cell and autoantibody responses, whereas mice carrying the Sle2c2 lupus-suppressive locus with a mutation in the G-CSFR showed an expansion of CD8+ DCs and a poor mobilization of plasmacytoid DCs (pDCs) and responded poorly to cGVHD induction. Here, we investigated the contribution of CD8+ DCs and pDCs to the humoral response to protein immunization, where CD8neg DCs are thought to represent the major inducers. Both BATF3-/- and Sle2c2 mice had reduced humoral and germinal center (GC) responses compared with C57BL/6 (B6) controls. We showed that B6-derived CD4+ DCs are the major early producers of IL-6, followed by CD4-CD8- DCs. Surprisingly, IL-6 production and CD80 expression also increased in CD8+ DCs after immunization, and B6-derived CD8+ DCs rescued Ag-specific adaptive responses in BATF3-/- mice. In addition, inflammatory pDCs (ipDCs) produced more IL-6 than all conventional DCs combined. Interestingly, G-CSFR is highly expressed on pDCs. G-CSF expanded pDC and CD8+ DC numbers and IL-6 production by ipDCs and CD4+ DCs, and it improved the quality of Ab response, increasing the localization of Ag-specific T cells to the GC. Finally, G-CSF activated STAT3 in early G-CSFR+ common lymphoid progenitors of cDCs/pDCs but not in mature cells. In conclusion, we showed a multilayered role of DC subsets in priming Tfh cells in protein immunization, and we unveiled the importance of G-CSFR signaling in the development and function pDCs.


Assuntos
Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Células Progenitoras Linfoides/citologia , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Células T Auxiliares Foliculares/imunologia , Transferência Adotiva , Animais , Autoanticorpos/imunologia , Antígeno B7-1/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Antígenos CD4/biossíntese , Antígenos CD8/biossíntese , Diferenciação Celular/imunologia , Células Dendríticas/transplante , Feminino , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-6/biossíntese , Ativação Linfocitária/imunologia , Células Progenitoras Linfoides/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia
9.
Cancer Res Treat ; 54(4): 1256-1267, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34990523

RESUMO

PURPOSE: Pegfilgrastim is widely used to prevent chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) in patients with diffuse large B-cell lymphoma (DLBCL). We investigated the predictive factors affecting CIN and FN incidence in patients with DLBCL receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy with pegfilgrastim and conducted experiments to find reason for the occurrence of CIN even when pegfilgrastim was used. MATERIALS AND METHODS: We reviewed the CIN and FN events of 200 patients with DLBCL. Based on these data, we investigate the association with predictive factor and the levels of granulocyte-colony stimulating factor (G-CSF) receptor signaling pathway markers (pSTAT3, pAKT, pERK1/2, pBAD, and CXCR4) in bone marrow (BM) samples isolated from patients with DLBCL. RESULTS: FN was significantly associated with stage III/IV (hazard ratio [HR], 12.74) and low serum albumin levels (HR, 3.87). Additionally, patients with FN had lower progression-free survival (PFS; 2-year PFS, 51.1 % vs. 74.0%) and overall survival (OS; 2-year OS, 58.2% vs. 85.0%) compared to those without FN. The occurrence of CIN was associated with overexpression of G-CSF receptor signaling pathway markers, and expression levels of these markers were upregulated in BM cells co-cultured with DLBCL cells. The rate of neutrophil apoptosis was also higher in neutrophils co-cultured with DLBCL cells and was further promoted by treatment with doxorubicin. CONCLUSION: Our findings suggest that high DLBCL burden may alter the BM environment and G-CSF receptor signaling pathway, even in chemotherapy-naïve state, which may increase CIN frequency during R-CHOP chemotherapy.


Assuntos
Antineoplásicos , Neutropenia Febril , Linfoma Difuso de Grandes Células B , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida , Doxorrubicina , Neutropenia Febril/induzido quimicamente , Neutropenia Febril/tratamento farmacológico , Filgrastim , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/complicações , Polietilenoglicóis , Prednisona/efeitos adversos , Receptores de Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Estudos Retrospectivos , Rituximab/uso terapêutico , Albumina Sérica/uso terapêutico , Transdução de Sinais , Vincristina
10.
Front Immunol ; 13: 1038936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618429

RESUMO

The release of neutrophils from the bone marrow into the blood circulation is essential for neutrophil homeostasis and the protection of the organism from invading microorganisms. Granulocyte colony-stimulating factor (G-CSF) plays a pivotal role in this process and guides granulopoiesis as well as the release of bone marrow neutrophils into the blood stream both during homeostasis and in case of infection through activation of the G-CSF receptor/signal transduction and activation of transcription 3 (STAT3) signaling pathway. Here, we investigated the role of the mammalian sterile 20-like kinase 1 (MST1) for neutrophil homeostasis and neutrophil mobilization. We found increased plasma levels of G-CSF in Mst1 -/- mice compared to wild type mice both under homeostatic conditions as well as after stimulation with the proinflammatory cytokine TNF-α. In addition, G-CSF-induced mobilization of neutrophils from the bone marrow into the blood circulation in vivo was markedly reduced in the absence of MST1. Interestingly, this was not accompanied by differences in the number of blood neutrophils. Addressing the underlying molecular mechanism of MST1-regulated neutrophil mobilization, we found reduced STAT3 phosphorylation and impaired upregulation of CXCR2 in Mst1 -/- bone marrow neutrophils compared to wild type cells, while JAK2 phosphorylation was not altered. Taken together, we identify MST1 as a critical modulator of neutrophil homeostasis and neutrophil mobilization from the bone marrow, which adds another important aspect to the complex role of MST1 in regulating innate immunity.


Assuntos
Medula Óssea , Neutrófilos , Receptores de Fator Estimulador de Colônias de Granulócitos , Fator de Transcrição STAT3 , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Homeostase , Transdução de Sinais , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Front Immunol ; 13: 1095453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703974

RESUMO

Introduction: The granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, is involved in the production and function of neutrophilic granulocytes. Somatic mutations in CSF3R leading to truncated G-CSFR forms are observed in acute myeloid leukemia (AML), particularly those subsequent to severe chronic neutropenia (SCN), as well as in a subset of patients with other leukemias. Methods: This investigation introduced equivalent mutations into the zebrafish csf3r gene via genome editing and used a range of molecular and cellular techniques to understand the impact of these mutations on immune cells across the lifespan. Results: Zebrafish harboring truncated G-CSFRs showed significantly enhanced neutrophil production throughout successive waves of embryonic hematopoiesis and a neutrophil maturation defect in adults, with the mutations acting in a partially dominant manner. Discussion: This study has elucidated new insights into the impact of G-CSFR truncations throughout the life-course and created a bone fide zebrafish model for further investigation.


Assuntos
Hematopoese , Receptores de Fator Estimulador de Colônias de Granulócitos , Animais , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Leucopoese/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Peixe-Zebra
12.
Semin Immunol ; 54: 101515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34772606

RESUMO

A considerable amount of continuous proliferation and differentiation is required to produce daily a billion new neutrophils in an adult human. Of the few cytokines and factors known to control neutrophil production, G-CSF is the guardian of granulopoiesis. G-CSF/CSF3R signaling involves the recruitment of non-receptor protein tyrosine kinases and their dependent signaling pathways of serine/threonine kinases, tyrosine phosphatases, and lipid second messengers. These pathways converge to activate the families of STAT and C/EBP transcription factors. CSF3R mutations are associated with human disorders of neutrophil production, including severe congenital neutropenia, neutrophilia, and myeloid malignancies. More than three decades after their identification, cloning, and characterization of G-CSF and G-CSF receptor, fundamental questions remain about their physiology.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Neutropenia , Adulto , Síndrome Congênita de Insuficiência da Medula Óssea , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese , Humanos , Neutropenia/congênito , Neutropenia/genética , Neutropenia/patologia , Neutrófilos/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo
13.
Pharmacol Rep ; 73(2): 372-385, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389706

RESUMO

Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of hematopoietic growth factors, is 19.6 kDa glycoprotein which is responsible for the proliferation, maturation, differentiation, and survival of neutrophilic granulocyte lineage. Apart from its proven clinical application to treat chemotherapy-associated neutropenia, recent pre-clinical studies have highlighted the neuroprotective roles of G-CSF i.e., mobilization of haemopoietic stem cells, anti-apoptotic, neuronal differentiation, angiogenesis and anti-inflammatory in animal models of neurological disorders. G-CSF is expressed by numerous cell types including neuronal, immune and endothelial cells. G-CSF is released in autocrine manner and binds to its receptor G-CSF-R which further activates numerous signaling transduction pathways including PI3K/AKT, JAK/STAT and MAP kinase, and thereby promote neuronal survival, proliferation, differentiation, mobilization of hematopoietic stem and progenitor cells. The expression of G-CSF receptors (G-CSF-R) in the different brain regions and their upregulation in response to neuronal insult indicates the autocrine protective signaling mechanism of G-CSF by inhibition of apoptosis, inflammation, and stimulation of neurogenesis. These observed neuroprotective effects of G-CSF makes it an attractive target to mitigate neurodegeneration associated with neurological disorders. The objective of the review is to highlight and summarize recent updates on G-CSF as a therapeutically versatile neuroprotective agent along with mechanisms of action as well as possible clinical applications in neurodegenerative disorders including AD, PD and HD.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Biomol Struct Dyn ; 39(14): 4990-5004, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720581

RESUMO

Human granulocyte colony stimulating factor (hG-CSF) is an expensive hematopoietic growth factor that is clinically used in human for the treatment of neutropenia in diseases such as AIDS, aplastic anemia, myelodysplastic syndrome and congenital or chemotherapy-induced neutropenia. Here, through a computational biology approach, we show that human stem cell factor (hSCF) could be a better fusion partner than human thyroid peroxidase (hTPO), human erythropoietin (hEPO) and human interleukin-3 (hIL3) for co-expression with hG-CSF. Molecular modeling of hG-CSF-hSCF fusion protein with hG-CSF and hSCF receptors showed that binding of fusion protein with human granulocyte colony stimulating factor receptor (hG-CSFR) did not inhibit its binding to human stem cell factor receptor (hSCFR) and vice versa. To validate the results, coding sequences of hG-CSF and hSCF were cloned and co-expressed as fusion protein and their bioactivity was evaluated on hG-CSF responsive 3T3 cell line. The fused expression vector expressed recombinant hG-CSF-hSCF upon IPTG-induction, as revealed by real-time polymerase chain reaction (RT-PCR), sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Bioactivity analysis confirmed that rhG-CSF-hSCF protein had higher bioactivity than hG-CSF. Thus, hSCF could be a good fusion partner for hG-CSF and its co-expression as hG-CSF-hSCF may offer an alternative to individual use of two hematopoietic factors in clinics. Future studies should determine the purification strategies, folding status and mechanism of action of the recombinant proteins. Communicated by Ramaswamy H. Sarma.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Fator de Células-Tronco , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Receptores de Fator Estimulador de Colônias de Granulócitos , Proteínas Recombinantes
15.
Pharm Res ; 37(11): 215, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026512

RESUMO

PURPOSE: Granulocyte colony stimulating factor (GCSF; also known as filgrastim) is a growth factor used to induce production of granulocytes. As the first locally developed and approved biosimilar medicine of Turkey, Fraven® being a biosimilar of filgrastim has been ab initio manufactured from cell to finished product at two different production facilities. Comprehensive structural, biological and functional characterization studies were performed to compare Fraven® from two different production sites and its reference product Neupogen® sourced from Turkey. METHODS: Primary and higher-order protein structures were analyzed by high performance liquid chromatography electrospray ionization-time of flight mass spectrometry, circular dichroism, and two-dimensional nuclear magnetic resonance spectroscopy. Isoelectric focusing, SDS-Page, size exclusion chromatography, and related proteins analyses were used to compare impurities. In order to assess functional similarity, surface plasmon resonance (SPR) was used. In vitro cell proliferation assay was also performed to show dose related drug response in NFS-60 cell line. RESULTS: Primary, secondary and tertiary structures of biosimilar Fraven® manufactured at both sites were found to be highly similar to the reference Neupogen®. Product related substances and impurities were also highly similar to the reference. Comparability of GCSF receptor binding affinities of each product was shown using the KD values of SPR analysis. In vitro cell proliferation similarity was also evaluated and proven by PLA. CONCLUSION: Based on the similarity assessment, despite being manufactured at two different production sites, biosimilar Fraven® is highly similar to the reference product Turkey originated Neupogen®.


Assuntos
Medicamentos Biossimilares/farmacologia , Proliferação de Células/efeitos dos fármacos , Filgrastim/farmacologia , Fármacos Hematológicos/farmacologia , Receptores de Fator Estimulador de Colônias de Granulócitos/agonistas , Animais , Medicamentos Biossimilares/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Filgrastim/química , Fármacos Hematológicos/química , Camundongos , Conformação Proteica , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Relação Estrutura-Atividade , Equivalência Terapêutica
16.
Pharm Res ; 37(10): 207, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32996003

RESUMO

PURPOSE: To understand the impact of methionine oxidation in GCSF on efficacy (neutrophil production/activation) and safety (biochemical and histopathological changes). METHODS: Nine GCSF biosimilars were analyzed for the levels of residual iron and copper content. Oxidation in GCSF was induced by H2O2 treatment and four samples were prepared: wtGCSF (no oxidation), MetO (1138), MetO (1,138,127) and MetO (1138,127,122). These samples were used to evaluate binding affinity with the GCSF receptor (GCSFR) using biolayer interferometry, thermal stability using circular dichroism and in vitro potency using a relevant cell-based assay. In vivo pharmacodynamics examined changes in neutrophil production upon GCSF methionine oxidation, with the outcome correlated with the differential expression of genes implicated in the GCSF mediated neutrophil activation/ maturation. Pre-clinical safety studies including biochemical and histopathological changes were also performed. RESULTS: Met 122 and Met 127 have the most deleterious effect on the potency. Lower binding affinity with GCSFR was identified as the underlying cause for lower efficacy and potency. Role of Asp 110 in GCSF as the critical residue having adverse impact on efficacy in context of methionine oxidation has been elucidated. Impairment of in vitro binding affinity with GCSF manifests as in vivo pharmacodynamic differences via differential expression of downstream genes required for neutrophil maturation. CONCLUSION: The data from the present study suggests that methionine oxidation in GCSF is a critical quality attribute that needs careful monitoring and control during commercial manufacturing and subsequent supply chain stages.


Assuntos
Medicamentos Biossimilares/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Metionina/metabolismo , Neutrófilos/metabolismo , Animais , Cobre/análise , Cistina/metabolismo , Expressão Gênica , Ferro/análise , Janus Quinase 1 , Rim/patologia , Fígado/patologia , Masculino , Miocárdio/patologia , Oxirredução , Ratos Wistar , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo
17.
J Immunol ; 205(5): 1433-1440, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839213

RESUMO

Ischemia-reperfusion injury (IRI) is a complex inflammatory process that detrimentally affects the function of transplanted organs. Neutrophils are important contributors to the pathogenesis of renal IRI. Signaling by G-CSF, a regulator of neutrophil development, trafficking, and function, plays a key role in several neutrophil-associated inflammatory disease models. In this study, we investigated whether targeting neutrophils with a neutralizing mAb to G-CSFR would reduce inflammation and protect against injury in a mouse model of warm renal IRI. Mice were treated with anti-G-CSFR 24 h prior to 22-min unilateral renal ischemia. Renal function and histology, complement activation, and expression of kidney injury markers, and inflammatory mediators were assessed 24 h after reperfusion. Treatment with anti-G-CSFR protected against renal IRI in a dose-dependent manner, significantly reducing serum creatinine and urea, tubular injury, neutrophil and macrophage infiltration, and complement activation (plasma C5a) and deposition (tissue C9). Renal expression of several proinflammatory genes (CXCL1/KC, CXCL2/MIP-2, MCP-1/CCL2, CXCR2, IL-6, ICAM-1, P-selectin, and C5aR) was suppressed by anti-G-CSFR, as was the level of circulating P-selectin and ICAM-1. Neutrophils in anti-G-CSFR-treated mice displayed lower levels of the chemokine receptor CXCR2, consistent with a reduced ability to traffic to inflammatory sites. Furthermore, whole transcriptome analysis using RNA sequencing showed that gene expression changes in IRI kidneys after anti-G-CSFR treatment were indistinguishable from sham-operated kidneys without IRI. Hence, anti-G-CSFR treatment prevented the development of IRI in the kidneys. Our results suggest G-CSFR blockade as a promising therapeutic approach to attenuate renal IRI.


Assuntos
Nefropatias/tratamento farmacológico , Substâncias Protetoras/farmacologia , Receptores de Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Quimiocinas/metabolismo , Ativação do Complemento/efeitos dos fármacos , Creatinina/sangue , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/sangue , Nefropatias/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Ureia/sangue
18.
Life Sci ; 257: 118052, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634431

RESUMO

AIMS: Granulocyte colony-stimulating factor (G-CSF) is a cytokine that induces proliferation and differentiation of hematopoietic precursor cells and activation of mature neutrophils. G-CSF is overexpressed in several malignant tumors and blocking its binding to the receptor can lead to significant decrease in tumor growth, vascularization and metastasis. Furthermore, targeting G-CSF receptor has shown therapeutic benefit in other diseases such as rheumatoid arthritis, progressive neurodegenerative disorder and uveitis. Camelid single-chain antibodies (nanobodies) have exceptional properties making them appropriate for tumor imaging and therapeutic application. In this study we aim to use the rational design approach to engineer a previously described G-CSF-R targeting nanobody (VHH1), to improve its affinity toward G-CSF-R. MAIN METHODS: We redesigned the complementary determining region 3 (CDR3) domain of the VHH1 nanobody to mimic G-CSF interaction to its receptor and developed five new engineered nanobodies. Binding affinity of the engineered nanobodies was evaluated by ELISA (Enzyme-linked immunosorbent assay) on NFS60 cells. KEY FINDINGS: Enzyme-linked immunosorbent assay (ELISA) confirmed the specificity of the engineered nanobodies and ELISA-based determination of affinity revealed that two of the engineered nanobodies (1c and 5a) bind to G-CSF-R on the surface of NFS60 cells in a dose-dependent manner and with a higher potency compared to the parental nanobody. SIGNIFICANCE: Additional studies are required to better characterize these nanobodies and assess their interaction with G-CSF-R in vitro and in vivo. These newly developed nanobodies could be beneficial in tumor imaging and therapy and make a basis for development of additional engineered nanobodies.


Assuntos
Fator Estimulador de Colônias de Granulócitos/ultraestrutura , Receptores de Fator Estimulador de Colônias de Granulócitos/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos , Anticorpos Monoclonais/imunologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática , Fator Estimulador de Colônias de Granulócitos/imunologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Neovascularização Patológica/tratamento farmacológico , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única
19.
Cytogenet Genome Res ; 160(5): 255-263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32544910

RESUMO

Fusions of the Runt-related transcription factor 1 (RUNX1) with different partner genes have been associated with various hematological disorders. Interestingly, the C-terminally truncated form of RUNX1 and RUNX1 fusion proteins are similarly considered important contributors to leukemogenesis. Here, we describe a 59-year-old male patient who was initially diagnosed with acute myeloid leukemia, inv(16)(p13;q22)/CBFB-MYH11 (FAB classification M4Eo). He achieved complete remission and negative CBFB-MYH11 status with daunorubicin/cytarabine combination chemotherapy but relapsed 3 years later. Cytogenetic analysis of relapsed leukemia cells revealed CBFB-MYH11 negativity and complex chromosomal abnormalities without inv(16)(p13;q22). RNA-seq identified the glutamate receptor, ionotropic, kinase 2 (GRIK2) gene on 6q16 as a novel fusion partner for RUNX1 in this case. Specifically, the fusion of RUNX1 to the GRIK2 antisense strand (RUNX1-GRIK2as) generated multiple missplicing transcripts. Because extremely low levels of wild-type GRIK2 were detected in leukemia cells, RUNX1-GRIK2as was thought to drive the pathogenesis associated with the RUNX1-GRIK2 fusion. The truncated RUNX1 generated from RUNX1-GRIK2as induced the expression of the granulocyte colony-stimulating factor (G-CSF) receptor on 32D myeloid leukemia cells and enhanced proliferation in response to G-CSF. In summary, the RUNX1-GRIK2as fusion emphasizes the importance of aberrantly truncated RUNX1 in leukemogenesis.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , DNA Antissenso/genética , Fusão Gênica/genética , Fator Estimulador de Colônias de Granulócitos/farmacologia , Leucemia Mieloide Aguda/genética , Receptores de Ácido Caínico/genética , Deleção de Sequência/genética , Translocação Genética/genética , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , RNA Mensageiro/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/biossíntese , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Receptor de GluK2 Cainato
20.
Proteomics Clin Appl ; 14(5): e1900144, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32319217

RESUMO

PURPOSE: To evaluate cellular protein changes in response to treatment with an approved drug, ibrutinib, in cells expressing normal or mutated granulocyte-colony stimulating factor receptor (G-CSFR). G-CSFR mutations are associated with some hematological malignancies. Previous studies show the efficacy of ibrutinib (a Bruton's tyrosine kinase inhibitor) in mutated G-CSFR leukemia models but do not address broader signaling mechanisms. EXPERIMENTAL DESIGN: A label-free quantitative proteomics workflow to evaluate the cellular effects of ibrutinib treatment is established. This includes three biological replicates of normal and mutated G-CSFR expressed in a mouse progenitor cell (32D cell line) with and without ibrutinib treatment. RESULTS: The proteomics dataset shows about 1000 unique proteins quantified with nearly 400 significant changes (p value < 0.05), suggesting a highly dynamic network of cellular signaling in response to ibrutinib. Importantly, the dataset is very robust with coefficients of variation for quantitation at 13.0-20.4% resulting in dramatic patterns of protein differences among the groups. CONCLUSIONS AND CLINICAL RELEVANCE: This robust dataset is available for further mining, hypothesis generation, and testing. A detailed understanding of the restructuring of the proteomics signaling cascades by ibrutinib in leukemia biology will provide new avenues to explore its use for other related malignancies.


Assuntos
Adenina/análogos & derivados , Leucemia Mieloide/tratamento farmacológico , Mutação , Piperidinas/farmacologia , Proteômica , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Adenina/farmacologia , Adenina/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Piperidinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA