Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cell Oncol (Dordr) ; 46(2): 315-330, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808605

RESUMO

PURPOSE: Liver metastasis, a lethal malignancy of gastric cancer (GC) patients, execrably impairs their prognosis. As yet, however, few studies have been designed to identify the driving molecules during its formation, except screening evidence pausing before their functions or mechanisms. Here, we aimed to survey a key driving event within the invasive margin of liver metastases. METHODS: A metastatic GC tissue microarray was used for exploring malignant events during liver-metastasis formation, followed by assessing the expression patterns of glial cell-derived neurotrophic factor (GDNF) and GDNF family receptor alpha 1 (GFRA1). Their oncogenic functions were determined by both loss- and gain-of-function studies in vitro and in vivo, and validated by rescue experiments. Multiple cell biological studies were performed to identify the underlying mechanisms. RESULTS: In the invasive margin, GFRA1 was identified as a pivotal molecule involved in cellular survival during liver metastasis formation, and we found that its oncogenic role depends on tumor associated macrophage (TAM)-derived GDNF. In addition, we found that the GDNF-GFRA1 axis protects tumor cells from apoptosis under metabolic stress via regulating lysosomal functions and autophagy flux, and participates in the regulation of cytosolic calcium ion signalling in a RET-independent and non-canonical way. CONCLUSION: From our data we conclude that TAMs, homing around metastatic nests, induce the autophagy flux of GC cells and promote the development of liver metastasis via GDNF-GFRA1 signalling. This is expected to improve the comprehension of metastatic pathogenesis and to provide a novel direction of research and translational strategies for the treatment of metastatic GC patients.


Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Macrófagos Associados a Tumor/metabolismo , Autofagia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768269

RESUMO

The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.


Assuntos
Criopreservação , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteína com Dedos de Zinco da Leucemia Promielocítica , Espermatogônias , Células-Tronco , Humanos , Masculino , Biomarcadores/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Dedos de Zinco
3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361981

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has been shown to counteract seizures when overexpressed or delivered into the brain in various animal models of epileptogenesis or chronic epilepsy. The mechanisms underlying this effect have not been investigated. We here demonstrate for the first time that GDNF enhances GABAergic inhibitory drive onto mouse pyramidal neurons by modulating postsynaptic GABAA receptors, particularly in perisomatic inhibitory synapses, by GFRα1 mediated activation of the Ret receptor pathway. Other GDNF receptors, such as NCAM or Syndecan3, are not contributing to this effect. We observed similar alterations by GDNF in human hippocampal slices resected from epilepsy patients. These data indicate that GDNF may exert its seizure-suppressant action by enhancing GABAergic inhibitory transmission in the hippocampal network, thus counteracting the increased excitability of the epileptic brain. This new knowledge can contribute to the development of novel, more precise treatment strategies based on a GDNF gene therapy approach.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hipocampo , Proteínas Proto-Oncogênicas c-ret , Células Piramidais , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Sinapses/metabolismo , Células Piramidais/metabolismo
4.
Genes (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36292572

RESUMO

The use of next-generation sequencing (NGS) has helped in identifying many genes that cause congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis (BRA) is the most severe presentation of CAKUT, and its association with autosomal recessively inherited genes is expanding. Highly consanguineous populations can impact the detection of recessively inherited genes. Here, we report two families harboring homozygous missense variants in recently described genes, NPNT and GFRA1. Two consanguineous families with neonatal death due to CAKUT were investigated. Fetal ultrasound of probands identified BRA in the first family and severe renal cystic dysplasia in the second family. Exome sequencing coupled with homozygosity mapping was performed, and Sanger sequencing was used to confirm segregation of alleles in both families. In the first family with BRA, we identified a homozygous missense variant in GFRA1: c.362A>G; p.(Tyr121Cys), which is predicted to damage the protein structure. In the second family with renal cystic dysplasia, we identified a homozygous missense variant in NPNT: c.56C>G; p.(Ala19Gly), which is predicted to disrupt the signal peptide site. We report two Saudi Arabian consanguineous families with CAKUT phenotypes that included renal agenesis caused by missense variants in GFRA1 and NPNT, confirming the role of these two genes in human kidney development.


Assuntos
Sistema Urinário , Humanos , Recém-Nascido , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Rim , Mutação , Sinais Direcionadores de Proteínas/genética , Arábia Saudita , Sistema Urinário/anormalidades
5.
Mol Neurobiol ; 59(10): 6321-6340, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35925441

RESUMO

Glial cell-line derived neurotrophic factor (GDNF) is a powerful astroglioma (AG) proliferation and migration factor that is highly expressed in AG cells derived from astrocytes. However, it is still unclear whether high levels of GDNF promote AG occurrence or if they are secondary to AG formation. We previously reported that high concentrations of GDNF (200 and 500 ng/mL) can inhibit DNA damage-induced rat primary astrocytes (RA) apoptosis, suggesting that high concentrations of GDNF may be involved in the malignant transformation of astrocytes to AG cells. Here we show that 200 ng/mL GDNF significantly increased the proliferation and migration ability of RA cells and human primary astrocytes (HA). This treatment also induced RA cells to highly express Pgf, Itgb2, Ibsp, Loxl2, Lif, Cxcl10, Serpine1, and other genes that enhance AG proliferation and migration. LOXL2 is an important AG occurrence and development promotion factor and was highly expressed in AG tissues and cells. High concentrations of GDNF promote LOXL2 expression and secretion in RA cells through GDNF family receptor alpha-1(GFRα1)/rearranged during transfection proto-oncogene (RET)/mitogen-activated protein kinase (MAPK)/phosphorylated cyclic AMP response element binding protein (pCREB) signaling. GDNF-induced LOXL2 significantly promotes RA and HA cell proliferation and migration, and increases the expression of Ccl2, Gbp5, MMP11, TNN, and other genes that regulate the extracellular microenvironment in RA cells. Our results demonstrate that high concentrations of GDNF activate LOXL2 expression and secretion via the GFRα1/RET/MAPK/pCREB signal axis, which leads to remodeling of the astrocyte extracellular microenvironment through molecules such as Ccl2, Gbp5, MMP11, TNN. This ultimately results in abnormal astrocyte proliferation and migration. Collectively, these findings suggest that high GDNF concentrations may promote the malignant transformation of astrocytes to AG cells.


Assuntos
Astrócitos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Aminoácido Oxirredutases , Animais , Astrócitos/metabolismo , Proliferação de Células , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Metaloproteinase 11 da Matriz , Proteínas Quinases Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-ret , Ratos
6.
J Immunol Res ; 2022: 7375879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832649

RESUMO

Prostate cancer (PCa) is the most common cancer affecting men, with increasing global mortality and morbidity rates. Despite the progress in the diagnosis and treatment of PCa, patient outcomes remain poor, and novel therapeutic targets for PCa are urgently needed. Recently, circular RNAs (circRNAs) have been studied in-depth as potential biomarkers for many diseases. In this study, circRNA microarrays using four pairs of PCa tissues were utilized to show that circGFRA1 was upregulated in PCa tumor tissues. CircGFRA1 is suggested to play an oncogene role in PCa progression as the silencing of circGFRA1 inhibited the proliferation, migration, and immune escape activity of PCa cells. Furthermore, by utilizing bioinformatics analysis, RIP, RNA pull-down, and luciferase reporter assays, our results showed that LMX1B could bind to the GFRA1 promoter and regulate circGFRA1 expression in PCa cells and circGFRA1 upregulated HECTD1 expression through sponging miR-3064-5p. This novel LMX1B/circGFRA1/miR-3064-5p/HECTD1 axis identified in PCa provides new insights for developing novel therapeutic strategies for PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Circular , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Proteínas com Homeodomínio LIM , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição , Evasão Tumoral
7.
Int J Med Sci ; 19(4): 659-668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582425

RESUMO

Glial cell line-derived neurotrophic factor family receptor alpha (GFRα) members have been widely connected to the mechanisms contributing to cell growth, differentiation, cell migration and tissue maturation. Here we review GFRα biological functions and discussed the evidence indicating whether GFRα signaling complex present novel opportunities for oncogenic intervention and treatment resistance. Thus, our work systematically reviewed the emerging role of GFRα family members in cancers, and provided novel insights for further researches.


Assuntos
Proteínas de Drosophila , Neoplasias , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Neoplasias/genética , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-ret
8.
Cells ; 11(8)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35455974

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly investigated in the testes. Considering this background, this study aimed to understand the roles of the Gdnf-Gfrα1 signaling pathway in zebrafish testes by combining in vivo, in silico and ex vivo approaches. Our analysis showed that zebrafish exhibit two paralogs for Gndf (gdnfa and gdnfb) and its receptor, Gfrα1 (gfrα1a and gfrα1b), in accordance with a teleost-specific third round of whole genome duplication. Expression analysis further revealed that both ligands and receptors were expressed in zebrafish adult testes. Subsequently, we demonstrated that gdnfa is expressed in the germ cells, while Gfrα1a/Gfrα1b was detected in early spermatogonia (mainly in types Aund and Adiff) and Sertoli cells. Functional ex vivo analysis showed that Gdnf promoted the creation of new available niches by stimulating the proliferation of both type Aund spermatogonia and their surrounding Sertoli cells but without changing pou5f3 mRNA levels. Strikingly, Gdnf also inhibited late spermatogonial differentiation, as shown by the decrease in type B spermatogonia and down-regulation of dazl in a co-treatment with Fsh. Altogether, our data revealed that a germ cell-derived factor is involved in maintaining germ cell stemness through the creation of new available niches, supporting the development of spermatogonial cysts and inhibiting late spermatogonial differentiation in autocrine- and paracrine-dependent manners.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Peixe-Zebra , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Mamíferos/metabolismo , Espermatogônias/metabolismo , Nicho de Células-Tronco , Peixe-Zebra/metabolismo
9.
PLoS Biol ; 20(2): e3001517, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202387

RESUMO

Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15's anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15's specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.


Assuntos
Camptotecina/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Obesidade/prevenção & controle , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Camptotecina/farmacocinética , Linhagem Celular , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Células HL-60 , Humanos , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Células PC-3
10.
Nat Commun ; 13(1): 543, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087060

RESUMO

The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress.


Assuntos
Colinérgicos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Medula Óssea/metabolismo , Quimiocina CXCL12/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptores Adrenérgicos beta 3/metabolismo , Fatores de Risco
11.
J Cell Mol Med ; 25(21): 10248-10256, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34668628

RESUMO

CircRNAs (circular RNA) are reported to regulate onset and progress multiple cancers. Nonetheless, the function along with the underlying mechanisms of circRNAs in HER-2-positive breast cancer (BC) remains unclear. CircRNA microarrays were performed to elucidate expression profiles of HER-2-positive BC cells. circRNA levels were quantified using qRT-PCR assay. Various in vitro along with in vivo assays were employed to further explore the effects of circGFRA1 in the progress of HER-2-positive BC and interactions of circGFRA1, miR-1228 and AIFM2 in Her-2-positive BC. CircGFRA1 was remarkably upregulated in HER-2-positive BC. Knockdown of circGFRA1 could attenuate HER-2-positive BC progression by inhibiting the proliferation, infiltration and migratory ability of HER-2-positive BC cells. Through ceRNA mechanism, circGFRA1 could bind to miR-1228 and alleviate inhibitory activity of miR-1228 on targeted gene AIFM2. In summary, circGFRA1-miR-1228-AIFM2 axis regulates HER-2-positive BC. CircGFRA1 is a novel promising treatment option for HER-2-positive BC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , MicroRNAs/genética , Proteínas Mitocondriais/genética , RNA Circular/genética , Receptor ErbB-2/genética , Animais , Apoptose/genética , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Ferroptose , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Interferência de RNA , Receptor ErbB-2/metabolismo
12.
Pharmacol Res ; 172: 105815, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391932

RESUMO

Neurotrophic factors and their receptors have been identified to promote tumor progression. GFRα1, the receptor for glial cell line-derived neurotrophic factor (GDNF), has been demonstrated to be predominantly expressed in adult liver tissue. Our preliminary data showed that GFRα1 is significantly downregulated in hepatocellular carcinoma (HCC) tissue, compared to the matched non-neoplastic tissue. However, the role of GFRα1 in HCC progression remains unknown. Here we found that the expression of GFRα1 in HCC tissue is inversely correlated with the poorer prognosis of HCC patients. Silencing of GFRα1 expression markedly enhances HCC cell growth, tumor metastasis, as well as shortens the survival of HCC tumor-bearing mice. Forced expression of GFRα1 in HCC cells significantly reverses the tumor-promoting effects of GFRα1 silencing, and AAV8-mediated GFRα1 transfection in HCC tumor tissues significantly impedes tumor growth and prolongs the survival of HCC tumor-bearing mice. These results are also verified in vivo in GFRα1 knock-out mice model, with increased DEN-induced HCC carcinogenesis. Mechanistically, GFRα1 could inhibit epithelial-to-mesenchymal transition (EMT) of HCC cells, by upregulating expression of Claudin-1 and ZO-1. Of note, silencing of GFRα1 expression promotes oxaliplatin-mediated HCC cell apoptosis resulting in prolonged survival of HCC-bearing mice, and forced expression of GFRα1 markedly increased oxaliplatin resistance of HCC cells. These results demonstrate that deficiency of GFRα1 promotes HCC progression but enhances chemotherapeutic anti-tumor efficacy, suggesting that GFRα1 may be a candidate prognostic biomarker and a potential therapeutic target in HCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Neoplasias Hepáticas , Oxaliplatina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Camundongos Transgênicos , Oxaliplatina/farmacologia , Prognóstico , Resultado do Tratamento
13.
PLoS One ; 16(5): e0251911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34015032

RESUMO

Spermatogenesis requires that a careful balance be maintained between the self-renewal of spermatogonial stem cells (SSCs) and their commitment to the developmental pathway through which they will differentiate into spermatozoa. Recently, a series of studies employing various in vivo and in vitro models have suggested a role of the wingless-related MMTV integration site gene family/beta-catenin (WNT/CTNNB1) pathway in determining the fate of SSCs. However, conflicting data have suggested that CTNNB1 signaling may either promote SSC self-renewal or differentiation. Here, we studied the effects of sustained CTNNB1 signaling in SSCs using the Ctnnb1tm1Mmt/+; Ddx4-CreTr/+ (ΔCtnnb1) mouse model, in which a stabilized form of CTNNB1 is expressed in all germ cells. ΔCtnnb1 mice were found to have reduced testis weights and partial germ cell loss by 4 months of age. Germ cell transplantation assays showed a 49% reduction in total functional SSC numbers in 8 month-old transgenic mice. In vitro, Thy1-positive undifferentiated spermatogonia from ΔCtnnb1 mice formed 57% fewer clusters, which was associated with decreased cell proliferation. A reduction in mRNA levels of genes associated with SSC maintenance (Bcl6b, Gfra1, Plzf) and increased levels for markers associated with progenitor and differentiating spermatogonia (Kit, Rarg, Sohlh1) were detected in these cluster cells. Furthermore, RNAseq performed on these clusters revealed a network of more than 900 genes regulated by CTNNB1, indicating that CTNNB1 is an important regulator of spermatogonial fate. Together, our data support the notion that CTNNB1 signaling promotes the transition of SSCs to undifferentiated progenitor spermatogonia at the expense of their self-renewal.


Assuntos
Espermatogênese/genética , Espermatogônias/crescimento & desenvolvimento , Células-Tronco/metabolismo , beta Catenina/genética , Células-Tronco Germinativas Adultas/patologia , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Masculino , Camundongos , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Espermatogônias/patologia , Células-Tronco/patologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
14.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562323

RESUMO

Aggressive chemotherapy treatment may lead to male infertility. Prepubertal boys do not produce sperm at this age, however, they have spermatogonial stem cells in their testes. Here, we examined the effect of intraperitoneal injection of cyclophosphamide (CP) on the capacity of immature mice (IM) to develop spermatogenesis in vivo and in vitro [using methylcellulose culture system (MCS)]. Our results show a significant decrease in testicular weight, total number of testicular cells, and the number of Sertoli, peritubular, premeiotic, and meiotic/post-meiotic cells, but an increase in the percentages of damaged seminiferous tubules in CP-treated IM compared to control. The functionality of Sertoli cells was significantly affected. The addition of testosterone to isolated cells from seminiferous tubules of CP-treated IM significantly increased the percentages of premeiotic (CD9-positive cells) and meiotic/post-meiotic cells (ACROSIN-positive cells) developed in MCS compared to control. The addition of FSH did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly decreased the percentages of CD9-positive cells and ACROSIN-positive cells. The addition of IL-1 did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly increased the percentages of VASA-positive cells and BOULE-positive cells compared to IL-1 or testosterone. Addition of TNF significantly increased only CD9-positive cells in MCS compared to control, but in combination with testosterone, it significantly decreased ACROSIN-positive cells compared to testosterone. Our results show a significant impairment of spermatogenesis in the testes of CP-treated IM, and that spermatogonial cells from these mice proliferate and differentiate to meiotic/post-meiotic cells under in vitro culture conditions.


Assuntos
Ciclofosfamida/toxicidade , Citocinas/farmacologia , Hormônios/farmacologia , Infertilidade Masculina/patologia , Tamanho do Órgão/efeitos dos fármacos , Espermatogênese , Espermatogônias/patologia , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Técnicas In Vitro , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/metabolismo , Integrina alfa6/genética , Integrina alfa6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mutagênicos/toxicidade , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo
15.
Nat Commun ; 12(1): 1041, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589633

RESUMO

Growing evidence supports that pharmacological application of growth differentiation factor 15 (GDF15) suppresses appetite but also promotes sickness-like behaviors in rodents via GDNF family receptor α-like (GFRAL)-dependent mechanisms. Conversely, the endogenous regulation of GDF15 and its physiological effects on energy homeostasis and behavior remain elusive. Here we show, in four independent human studies that prolonged endurance exercise increases circulating GDF15 to levels otherwise only observed in pathophysiological conditions. This exercise-induced increase can be recapitulated in mice and is accompanied by increased Gdf15 expression in the liver, skeletal muscle, and heart muscle. However, whereas pharmacological GDF15 inhibits appetite and suppresses voluntary running activity via GFRAL, the physiological induction of GDF15 by exercise does not. In summary, exercise-induced circulating GDF15 correlates with the duration of endurance exercise. Yet, higher GDF15 levels after exercise are not sufficient to evoke canonical pharmacological GDF15 effects on appetite or responsible for diminishing exercise motivation.


Assuntos
Regulação do Apetite/fisiologia , Exercício Físico/fisiologia , Comportamento Alimentar/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Resistência Física/fisiologia , Adulto , Animais , Creatina Quinase/sangue , Creatina Quinase/genética , Regulação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-10/sangue , Interleucina-10/genética , Interleucina-6/administração & dosagem , Leptina/sangue , Leptina/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motivação/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Fatores de Tempo
16.
Sci Rep ; 11(1): 386, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431945

RESUMO

Circular RNAs (circRNAs) play essential roles in tumorigenesis and tumor progression. CircRNA GFRA1 (circGFRA1) was dysregulated in many cancer samples and acted as an independent marker for prediction of survivals in various cancer patients. However, the functions and molecular mechanisms of circGFRA1 in hepatocellular carcinoma (HCC) remain unclear. We collected 62 HCC tissues and normal adjacent tissues to evaluate the expression of circGFRA1 and the relationship between circGFRA1 expression and HCC patients' survival. We carried out a list of characterization experiments to investigate the roles and underling mechanisms of circGFRA1 and miR-498 in HCC progressions. CircGFRA1 was greatly increased in HCC tissues and cells, and the over-expression of circGFRA1 was intimately related with the advanced clinical stage and poor survival of HCC patients. The expression of circGFRA1 was negatively correlated with the expression of miR-498, but a positive correlation was found between circGFRA1 and NAP1L3 expression in HCC tissues. Silencing circGFRA1 inhibited the growth and invasion of hepatocellular carcinoma. Moreover, miR-498 over-expression or NAP1L3 inhibition could abrogate the oncogene role of circGFRA1 in HCC in vivo. Our findings indicated that circGFRA1 contributed to HCC progression by modulating the miR-498/NAP1L3 axis in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Neoplasias Hepáticas/patologia , RNA Circular/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/genética
17.
Mol Cell Biochem ; 476(5): 2061-2073, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515383

RESUMO

Studies have reported that miR-195-5p plays a role in the Hirschsprung disease (HSCR). Our previous work found GDNF family receptor alpha 4 (GFRA4) is also associated with HSCR. In this study, we focused on whether miR-195-5p induces the absence of enteric neurons and enteric neural crest in HSCR by regulating GFRA4. The expression levels of GFRA4 and miR-195-5p in colon tissues were evaluated by real-time PCR (RT-PCR) assay. We overexpressed GFRA4 or miR-195-5p in SH-SY5Y cells, the cell proliferation, cell cycle, apoptosis and invasion were subsequently investigated by CCK-8 assay, EdU staining, Flow cytometry analysis and Transwell assay, respectively. We also established the xenograft model to detect the effect of miR-195-5p on tumor growth and GFRA4 and p-RET expressions. GFRA4 expression was significantly downregulated in the HSCR colon tissues when compared with that in the control tissues. Overexpression of GFRA4 significantly promoted proliferation, invasion and cell cycle arrest, and inhibited apoptosis of SH-SY5Y cells. We also proved that GFRA4 is a direct target of miR-195-5p, and miR-195-5p inhibited proliferation, invasion, cell cycle arrest and differentiation, and accelerated apoptosis in SH-SY5Y cells which can be reversed by GFRA4 overexpression. Furthermore, we demonstrated that miR-195-5p suppressed tumor growth, and observably decreased GFRA4 and p-RET expressions. Our findings suggest that miR-195-5p plays an important role in the pathogenesis of HSCR. MiR-195-5p inhibited proliferation, invasion and cell cycle arrest, and accelerated apoptosis of nerve cells by targeting GFRA4.


Assuntos
Proliferação de Células , Sistema Nervoso Entérico/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Hirschsprung/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular Tumoral , Sistema Nervoso Entérico/patologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Humanos , Camundongos , MicroRNAs/genética , Neurônios/patologia
18.
PLoS Genet ; 16(11): e1009159, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175846

RESUMO

Tumor metastasis is the major cause of poor prognosis and mortality in colorectal cancer (CRC). However, early diagnosis of highly metastatic CRC is currently difficult. In the present study, we screened for a novel biomarker, GDNF family receptor alpha 1 (GFRA1) based on the expression and methylation data in CRC patients from The Cancer Genome Altlas (TCGA), followed by further analysis of the correlation between the GFRA1 expression, methylation, and prognosis of patients. Our results show DNA hypomethylation-mediated upregulation of GFRA1 in invasive CRC, and it was found to be correlated with poor prognosis of CRC patients. Furthermore, GFRA1 methylation-modified sequences were found to have potential as methylation diagnostic markers of highly metastatic CRC. The targeted demethylation of GFRA1 by dCas9-TET1CD and gRNA promoted CRC metastasis in vivo and in vitro. Mechanistically, demethylation of GFRA1 induces epithelial-mesenchymal transition (EMT) by promoting AKT phosphorylation and increasing c-Jun expression in CRC cells. Collectively, our findings indicate that GFRA1 hypomethylation can promote CRC invasion via inducing EMT, and thus, GFRA1 methylation can be used as a biomarker for the early diagnosis of highly metastasis CRC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Neoplasias Pulmonares/genética , Animais , Proliferação de Células/genética , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Desmetilação do DNA , Metilação de DNA , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Invasividade Neoplásica/genética , Fosforilação/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA-Seq , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233403

RESUMO

Oncolytic herpes simplex viruses (oHSV) are under development for the treatment of a variety of human cancers, including breast cancer, a leading cause of cancer mortality among women worldwide. Here we report the design of a fully retargeted oHSV for preferential infection of breast cancer cells through virus recognition of GFRα1, the cellular receptor for glial cell-derived neurotrophic factor (GDNF). GFRα1 displays a limited expression profile in normal adult tissue, but is upregulated in a subset of breast cancers. We generated a recombinant HSV expressing a completely retargeted glycoprotein D (gD), the viral attachment/entry protein, that incorporates pre-pro-GDNF in place of the signal peptide and HVEM binding domain of gD and contains a deletion of amino acid 38 to eliminate nectin-1 binding. We show that GFRα1 is necessary and sufficient for infection by the purified recombinant virus. Moreover, this virus enters and spreads in GFRα1-positive breast cancer cells in vitro and caused tumor regression upon intratumoral injection in vivo. Given the heterogeneity observed between and within individual breast cancers at the molecular level, these results expand our ability to deliver oHSV to specific tumors and suggest opportunities to enhance drug or viral treatments aimed at other receptors.


Assuntos
Neoplasias da Mama/terapia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Nectinas/genética , Simplexvirus/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Chlorocebus aethiops , Feminino , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Células MCF-7 , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Ligação Proteica/genética , Células Vero
20.
Acta Histochem ; 122(8): 151627, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33002788

RESUMO

Spermatogonial stem cells (SSCs) are very sensitive to chemotherapy and radiotherapy, so male infertility is a great challenge for prepubertal cancer survivors. Cryoconservation of testicular cells before cancer treatment can preserve SSCs from treatment side effects. Different two-dimensional (2D) and three-dimensional (3D) culture systems of SSCs have been used in many species as a useful technique to in vitro spermatogenesis. We evaluated the proliferation of SSCs in 2D and 3D culture systems of platelet-rich plasma (PRP). testicular cells of four brain-dead patients cultivated in 2D pre-culture system, characterization of SSCs performed by RT-PCR, flow cytometry, immunocytochemistry and their functionality assessed by xenotransplantation to azoospermia mice. PRP prepared and dosimetry carried out to determine the optimized dose of PRP. After preparation of PRP scaffold, cytotoxic and histological evaluation performed and SSCs cultivated into three groups: control, 2D culture by optimized dose of PRP and PRP scaffold. The diameter and number of colonies measured and relative expression of GFRa1 and c-KIT evaluated by real-time PCR. Results indicated the expression of PLZF, VASA, OCT4, GFRa1 and vimentin in colonies after 2D pre-culture, xenotransplantation demonstrated proliferated SSCs have proper functionality to homing in mouse testes. The relative expression of c-KIT showed a significant increase as compared to the control group (*: p < 0.05) in PRP- 2D group, expression of GFRa1 and c-KIT in PRP scaffold group revealed a significant increase as compared to other groups (***: p < 0.001). The number and diameter of colonies in the PRP-2D group showed a considerable increase (p < 0.01) as compared to the control group. In PRP- scaffold group, a significant increase (p < 0.01) was seen only in the number of colonies related to the control group. Our results suggested that PRP scaffold can reconstruct a suitable structure to the in vitro proliferation of SSCs.


Assuntos
Azoospermia/terapia , Técnicas de Cultura de Células , Plasma Rico em Plaquetas/química , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Animais , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Transplante Heterólogo/métodos , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA