Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646032

RESUMO

The γ-aminobutyric acid (GABA) type B receptor (GABAB-R) belongs to class C of the G-protein coupled receptors (GPCRs). Together with the GABAA receptor, the receptor mediates the neurotransmission of GABA, the main inhibitory neurotransmitter in the central nervous system (CNS). In recent decades, the receptor has been extensively studied with the intention being to understand pathophysiological roles, structural mechanisms and develop drugs. The dysfunction of the receptor is linked to a broad variety of disorders, including anxiety, depression, alcohol addiction, memory and cancer. Despite extensive efforts, few compounds are known to target the receptor, and only the agonist baclofen is approved for clinical use. The receptor is a mandatory heterodimer of the GABAB1 and GABAB2 subunits, and each subunit is composed of an extracellular Venus Flytrap domain (VFT) and a transmembrane domain of seven α-helices (7TM domain). In this review, we briefly present the existing knowledge about the receptor structure, activation and compounds targeting the receptor, emphasizing the role of the receptor in previous and future drug design and discovery efforts.


Assuntos
Baclofeno/química , Desenvolvimento de Medicamentos , Antagonistas de Receptores de GABA-B/química , Modelos Moleculares , Receptores de GABA-B/química , Baclofeno/uso terapêutico , Sítios de Ligação , Antagonistas de Receptores de GABA-B/uso terapêutico , Humanos , Ligantes , Conformação Proteica em alfa-Hélice , Receptores de GABA-B/metabolismo
2.
J Med Chem ; 62(19): 8819-8830, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509708

RESUMO

Targeting multiprotein receptor complexes, rather than receptors directly, is a promising concept in drug discovery. This is particularly relevant to the GABAB receptor complex, which plays a prominent role in many brain functions and diseases. Here, we provide the first studies targeting a key protein-protein interaction of the GABAB receptor complex-the interaction with KCTD proteins. By employing the µSPOT technology, we first defined the GABAB receptor-binding epitope mediating the KCTD interaction. Subsequently, we developed a highly potent peptide-based inhibitor that interferes with the KCTD/GABAB receptor complex and efficiently isolates endogenous KCTD proteins from mouse brain lysates. X-ray crystallography and SEC-MALS revealed inhibitor induced oligomerization of KCTD16 into a distinct hexameric structure. Thus, we provide a template for modulating the GABAB receptor complex, revealing a fundamentally novel approach for targeting GABAB receptor-associated neuropsychiatric disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Peptídeos/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores de GABA-B/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
3.
J Biomol NMR ; 71(1): 53-67, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29845494

RESUMO

Solid-state near-rotary-resonance measurements of the spin-lattice relaxation rate in the rotating frame (R1ρ) is a powerful NMR technique for studying molecular dynamics in the microsecond time scale. The small difference between the spin-lock (SL) and magic-angle-spinning (MAS) frequencies allows sampling very slow motions, at the same time it brings up some methodological challenges. In this work, several issues affecting correct measurements and analysis of 15N R1ρ data are considered in detail. Among them are signal amplitude as a function of the difference between SL and MAS frequencies, "dead time" in the initial part of the relaxation decay caused by transient spin-dynamic oscillations, measurements under HORROR condition and proper treatment of the multi-exponential relaxation decays. The multiple 15N R1ρ measurements at different SL fields and temperatures have been conducted in 1D mode (i.e. without site-specific resolution) for a set of four different microcrystalline protein samples (GB1, SH3, MPD-ubiquitin and cubic-PEG-ubiquitin) to study the overall protein rocking in a crystal. While the amplitude of this motion varies very significantly, its correlation time for all four sample is practically the same, 30-50 µs. The amplitude of the rocking motion correlates with the packing density of a protein crystal. It has been suggested that the rocking motion is not diffusive but likely a jump-like dynamic process.


Assuntos
Simulação de Dinâmica Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Cristalização , Movimento (Física) , Receptores de GABA-B/química , Fatores de Tempo , Ubiquitina/química , Domínios de Homologia de src
4.
BMC Cancer ; 18(1): 263, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514603

RESUMO

BACKGROUND: High-grade chondrosarcoma, which has a high incidence of local recurrence and pulmonary metastasis despite surgical resection, is associated with poor prognosis. Therefore, new and effective adjuvant therapies are urgently required for this disease. Gamma-aminobutyric acid (GABA), which acts as a neurotrophic factor during nervous system development, is related to the proliferation and migration of certain cancer cells. The GABAergic system, which is composed of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), and GABA receptors, has an important function in nerve growth and development of neural crest. Therefore, the GABAergic system may play important functional roles in the proliferation of chondrosarcoma cells, which are derived from neural crest cells. We examined the anti-tumor effects of the GABAergic system on a chondrosarcoma cell line. METHODS: We evaluated the underlying mechanisms of the anti-tumor effects of the GABAergic system, such as the involvement of different signaling pathways, apoptosis, and cell cycle arrest, in the high-grade chondrosarcoma cell line OUMS-27. In addition, we performed whole-cell patch-clamp recordings for Ca2+ currents and evaluated the changes in intracellular Ca2+ concentration via Ca2+ channels, which are related to the GABAB receptor in high-grade chondrosarcoma cells. RESULTS: The GABAB receptor antagonist CGP had anti-tumor effects on high-grade chondrosarcoma cells in a dose-dependent manner. The activities of caspase 3 and caspase 9 were significantly elevated in CGP-treated cells compared to in untreated cells. The activity of caspase 8 did not differ significantly between untreated cells and CGP-treated cells. However, caspase 8 tended to be up-regulated in CGP-treated cells. The GABAB receptor antagonist exhibited anti-tumor effects at the G1/S cell cycle checkpoint and induced apoptosis via dual inhibition of the PI3/Akt/mTOR and MAPK signaling pathways. Furthermore, the changes in intracellular Ca2+ via GABAB receptor-related Ca2+ channels inhibited the proliferation of high-grade chondrosarcoma cells by inducing and modulating apoptotic pathways. CONCLUSIONS: The GABAB receptor antagonist may improve the prognosis of high-grade chondrosarcoma by exerting anti-tumor effects via different signaling pathways, apoptosis, cell cycle arrest, and Ca2+ channels in high-grade chondrosarcoma cells.


Assuntos
Apoptose , Neoplasias Ósseas/patologia , Cálcio/metabolismo , Proliferação de Células , Condrossarcoma/patologia , Receptores de GABA-B/metabolismo , Neoplasias Ósseas/metabolismo , Ciclo Celular , Condrossarcoma/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Humanos , Técnicas de Patch-Clamp , Receptores de GABA-B/química , Transdução de Sinais , Células Tumorais Cultivadas
5.
J Chem Phys ; 148(5): 055101, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29421894

RESUMO

We use Markov state models (MSMs) to analyze the dynamics of a ß-hairpin-forming peptide in Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five major free-energy minima can be identified. To estimate the dominant MC relaxation times of the peptide, we build MSMs using a range of different time resolutions or lag times. We show that stable relaxation-time estimates can be obtained from the MSM eigenfunctions through fits to autocorrelation data. The eigenfunctions remain sufficiently accurate to permit stable relaxation-time estimation down to small lag times, at which point simple estimates based on the corresponding eigenvalues have large systematic uncertainties. The presence of the crowders has a stabilizing effect on the peptide, especially with BPTI crowders, which can be attributed to a reduced unfolding rate ku, while the folding rate kf is left largely unchanged.


Assuntos
Aprotinina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Receptores de GABA-B/química , Animais , Bovinos , Cadeias de Markov , Método de Monte Carlo , Dobramento de Proteína , Temperatura
6.
Sci Rep ; 7(1): 13609, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051549

RESUMO

Spontaneous activity of serotonergic neurons of the dorsal raphe nucleus (DRN) regulates mood and motivational state. Potentiation of serotonergic function is one of the therapeutic strategies for treatment of various psychiatric disorders, such as major depression, panic disorder and obsessive-compulsive disorder. However, the control mechanisms of the serotonergic firing activity are still unknown. In this study, we examined the control mechanisms for serotonergic spontaneous activity and effects of chronic antidepressant administration on these mechanisms by using modified ex vivo electrophysiological recording methods. Serotonergic neurons remained firing even in the absence of glutamatergic and GABAergic ionotropic inputs, while blockade of L-type voltage dependent Ca2+ channels (VDCCs) in serotonergic neurons decreased spontaneous firing activity. L-type VDCCs in serotonergic neurons received gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition, which maintained serotonergic slow spontaneous firing activity. Chronic administration of an antidepressant, citalopram, disinhibited the serotonergic spontaneous firing activity by weakening the GABAB receptor-mediated inhibition of L-type VDCCs in serotonergic neurons. Our results provide a new mechanism underlying the spontaneous serotonergic activity and new insights into the mechanism of action of antidepressants.


Assuntos
Antidepressivos/farmacologia , Canais de Cálcio Tipo L/metabolismo , Receptores de GABA-B/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/química , Citalopram/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de GABA-B/química , Neurônios Serotoninérgicos/fisiologia
7.
J Phys Chem B ; 121(48): 10804-10817, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043804

RESUMO

Proton-assisted recoupling (PAR) is examined by exploring optimal experimental conditions and magnetization transfer rates in a variety of biologically relevant nuclear spin-systems, including simple amino acids, model peptides, and two proteins-nanocrystalline protein G (GB1), and importantly amyloid beta 1-42 (M0Aß1-42) fibrils. A selective PAR protocol, SUBPAR (setting up better proton assisted recoupling), is described to observe magnetization transfer in one-dimensional spectra, which minimizes experiment time (in comparison to two-dimensional experiments) and thereby enables an efficient assessment of optimal PAR conditions for a desired magnetization transfer. In the case of the peptide spin systems, experimental and simulated PAR data sets are compared on a semiquantitative level, thereby elucidating the interactions influencing PAR magnetization transfer and their manifestations in different spin transfer networks. Using the optimum Rabi frequencies determined by SUBPAR, PAR magnetization transfer trajectories (or buildup curves) were recorded and compared to simulated results for short peptides. PAR buildup curves were also recorded for M0Aß1-42 and examined conjointly with a recent structural model. The majority of salient cross-peak intensities observed in the M0Aß1-42 PAR spectra are well-modeled with a simple biexponential equation, although the fitting parameters do not show any strong correlation to internuclear distances. Nevertheless, these parameters provide a wealth of invaluable semiquantitative structural constraints for the M0Aß1-42. The results presented here offer a complete protocol for recording PAR 13C-13C correlation spectra with high-efficiency and using the resulting information in protein structural studies.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Peptídeos/química , Prótons , Receptores de GABA-B/química
8.
J Chem Phys ; 144(17): 175105, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155657

RESUMO

Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the ß-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.


Assuntos
Simulação por Computador , Método de Monte Carlo , Peptídeos/química , Animais , Aprotinina/química , Humanos , Dobramento de Proteína , Receptores de GABA-B/química , Termodinâmica
9.
Angew Chem Int Ed Engl ; 55(15): 4692-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948522

RESUMO

α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.


Assuntos
Motivos de Aminoácidos , Bloqueadores dos Canais de Cálcio/farmacologia , Conotoxinas/química , Cisteína/análise , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Conotoxinas/farmacologia , Humanos , Receptores de GABA-B/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Xenopus
10.
Phys Chem Chem Phys ; 17(43): 28789-801, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26451400

RESUMO

We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.


Assuntos
Dineínas do Citoplasma/química , Receptores de GABA-B/química , Isótopos de Carbono/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Teoria Quântica
11.
PLoS One ; 10(4): e0121637, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848767

RESUMO

Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1ßAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1ß-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Complexo Antígeno-Anticorpo/toxicidade , Baclofeno/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Mediadores da Inflamação/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Líquido da Lavagem Broncoalveolar/química , Técnicas Imunoenzimáticas , Lipopolissacarídeos/farmacologia , Masculino , Ratos , Ratos Long-Evans , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Cell Signal ; 27(6): 1178-1185, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725285

RESUMO

The γ-amino butyric acid (GABA) type B receptors (GABA(B)R) function as chemoattractant receptors in response to GABA(B)R agonists in human neutrophils. The goal of this study was to define signaling mechanisms regulating GABA(B)R-mediated chemotaxis and cytoskeletal rearrangement. In a proteomic study we identified serine/threonine kinase Akt, tyrosine kinases Src and Pyk2, microtubule regulator kinesin and microtubule affinity-regulating kinase (MARK) co-immunoprecipitating with GABA(B)R. To define the contributions of these candidate signaling events in GABA(B)R-mediated chemotaxis, we used rat basophilic leukemic cells (RBL-2H3 cells) stably transfected with human GABA(B1b) and GABA(B2) receptors. The GABA(B)R agonist baclofen induced Akt phosphorylation and chemotaxis by binding to its specific GABA(B)R since pretreatment of cells with CGP52432, a GABA(B)R antagonist, blocked such effects. Moreover, baclofen induced Akt phosphorylation was shown to be dependent upon PI-3K and Src kinases. Baclofen failed to stimulate actin polymerization in suspended RBL cells unless exposed to a baclofen gradient. However, baclofen stimulated both actin and tubulin polymerization in adherent RBL-GABA(B)R cells. Blockade of actin and tubulin polymerization by treatment of cells with cytochalasin D or nocodazole respectively, abolished baclofen-mediated chemotaxis. Furthermore, baclofen stimulated Pyk2 and STAT3 phosphorylation, both known regulators of cell migration. In conclusion, GABA(B)R stimulation promotes chemotaxis in RBL cells which is dependent on signaling via PI3-K/Akt, Src kinases and on rearrangement of both microtubules and actin cytoskeleton. These data define mechanisms of GABA(B)R-mediated chemotaxis which may potentially be used to therapeutically regulate cellular response to injury and disease.


Assuntos
Quimiotaxia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de GABA-B/metabolismo , Quinases da Família src/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Baclofeno/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Citocalasina D/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Humanos , Nocodazol/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Receptores de GABA-B/química , Receptores de GABA-B/genética , Fator de Transcrição STAT3/metabolismo , Tubulina (Proteína)/metabolismo
13.
J Am Chem Soc ; 137(9): 3283-90, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25721133

RESUMO

An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Cadeias de Markov , Peptídeos/química , Conformação Proteica , Receptores de GABA-B/química
14.
Nat Chem Biol ; 11(2): 134-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25503927

RESUMO

G protein-coupled receptors (GPCRs) are major players in cell communication. Although they form functional monomers, increasing evidence indicates that GPCR dimerization has a critical role in cooperative phenomena that are important for cell signal integration. However, the structural bases of these phenomena remain elusive. Here, using well-characterized receptor dimers, the metabotropic glutamate receptors (mGluRs), we show that structural changes at the dimer interface are linked to receptor activation. We demonstrate that the main dimer interface is formed by transmembrane α helix 4 (TM4) and TM5 in the inactive state and by TM6 in the active state. This major change in the dimer interface is required for receptor activity because locking the TM4-TM5 interface prevents activation by agonist, whereas locking the TM6 interface leads to a constitutively active receptor. These data provide important information on the activation mechanism of mGluRs and improve our understanding of the structural basis of the negative cooperativity observed in these GPCR dimers.


Assuntos
Multimerização Proteica , Receptores de Glutamato Metabotrópico/química , Alanina/genética , Animais , Células COS , Chlorocebus aethiops , Cisteína/genética , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/genética , Receptores de GABA-B/química , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Ativação Transcricional , Transfecção
15.
J Histochem Cytochem ; 60(4): 269-79, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266766

RESUMO

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system. Metabotropic GABA(B) receptors are heterodimeric G-protein-coupled receptors (GPCRs) consisting of GABA(B1) and GABA(B2) subunits. The intracellular C-terminal domains of GABA(B) receptors are involved in heterodimerization, oligomerization, and association with other proteins, which results in a large receptor complex. Multiple splice variants of the GABA(B1) subunit have been identified in which GABA(B1a) and GABA(B1b) are the most abundant isoforms in the nervous system. Isoforms GABA(B1c) through GABA(B1n) are minor isoforms and are detectable only at mRNA levels. Some of the minor isoforms have been detected in peripheral tissues and encode putative soluble proteins with C-terminal truncations. Interestingly, increased expression of GABA(B) receptors has been detected in several human cancer cells and tissues. Moreover, GABA(B) receptor agonist baclofen inhibited tumor growth in rat models. GABA(B) receptor activation not only induces suppressing the proliferation and migration of various human tumor cells but also results in inactivation of CREB (cAMP-responsive element binding protein) and ERK in tumor cells. Their structural complexity makes it possible to disrupt the functions of GABA(B) receptors in various ways, raising GABA(B) receptor diversity as a potential therapeutic target in some human cancers.


Assuntos
Neoplasias/terapia , Receptores de GABA-B/metabolismo , Animais , Baclofeno/farmacologia , Movimento Celular , Proliferação de Células , Dimerização , Agonistas GABAérgicos/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ratos , Receptores de GABA-B/química , Transdução de Sinais
16.
J Biomol NMR ; 51(4): 497-504, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038648

RESUMO

Experiments detecting low gyromagnetic nuclei have recently been proposed to utilize the relatively slow relaxation properties of these nuclei in comparison to (1)H. Here we present a new type of (15)N direct-detection experiment. Like the previously proposed CaN experiment (Takeuchi et al. in J Biomol NMR 47:271-282, 2010), the hCaN experiment described here sequentially connects amide (15)N resonances, but utilizes the initial high polarization and the faster recovery of the (1)H nucleus to shorten the recycling delay. This allows recording 2D (15)N-detected NMR experiments on proteins within a few hours, while still obtaining superior resolution for (13)C and (15)N, establishing sequential assignments through prolines, and at conditions where amide protons exchange rapidly. The experiments are demonstrated on various biomolecules, including the small globular protein GB1, the 22 kDa HEAT2 domain of eIF4G, and an unstructured polypeptide fragment of NFAT1, which contains many SerPro sequence repeats.


Assuntos
Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Fator de Iniciação Eucariótico 4G/química , Humanos , Fatores de Transcrição NFATC/química , Conformação Proteica , Receptores de GABA-B/química
17.
Mol Pharmacol ; 77(4): 539-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061447

RESUMO

The rho 1 GABA receptor is inhibited by a number of neuroactive steroids. A previous study (J Pharmacol Exp Ther 323:236-247, 2007) focusing on the electrophysiological effects of inhibitory steroids on the rho 1 receptor found that steroid inhibitors could be divided into three major groups based on how mutations to residues in the M2 transmembrane domain modified inhibition. It was proposed that the steroids act through distinct mechanisms. We selected representatives of the three groups (pregnanolone, tetrahydrodeoxycorticosterone, pregnanolone sulfate, allopregnanolone sulfate, and beta-estradiol) and probed how these steroids, as well as the nonsteroidal inhibitor picrotoxinin, modify GABA-elicited fluorescence changes from the Alexa 546 C5 maleimide fluorophore attached to residues in the extracellular region of the receptor. The fluorophore responds with changes in quantum yield to changes in the environment, allowing it to probe for structural changes taking place during channel activation or modulation. The results indicate that the modulators have specific effects on fluorescence changes suggesting that distinct conformational changes accompany inhibition. The findings are consistent with the steroids acting as allosteric inhibitors of the rho 1 GABA receptor and support the hypothesis that divergent mechanisms underlie the action of inhibitory steroids on the rho 1 GABA receptor.


Assuntos
Antagonistas de Receptores de GABA-B , Neurotransmissores/farmacologia , Receptores de GABA-B/química , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Fluorescência , Humanos , Mutação , Picrotoxina/análogos & derivados , Picrotoxina/farmacologia , Conformação Proteica , Receptores de GABA-B/genética , Sesterterpenos , Ácido gama-Aminobutírico/farmacologia
18.
J Neurosci ; 29(50): 15796-809, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20016095

RESUMO

Downregulation of G-protein-coupled receptors (GPCRs) provides an important mechanism for reducing neurotransmitter signaling during sustained stimulation. Chronic stimulation of M(2) muscarinic receptors (M(2)Rs) causes internalization of M(2)R and G-protein-activated inwardly rectifying potassium (GIRK) channels in neuronal PC12 cells, resulting in loss of function. Here, we show that coexpression of GABA(B) R2 receptors (GBR2s) rescues both surface expression and function of M(2)R, including M(2)R-induced activation of GIRKs and inhibition of cAMP production. GBR2 showed significant association with M(2)R at the plasma membrane but not other GPCRs (M(1)R, mu-opioid receptor), as detected by fluorescence resonance energy transfer measured with total internal reflection fluorescence microscopy. Unique regions of the proximal C-terminal domains of GBR2 and M(2)R mediate specific binding between M(2)R and GBR2. In the brain, GBR2, but not GBR1, biochemically coprecipitates with M(2)R and overlaps with M(2)R expression in cortical neurons. This novel heteromeric association between M(2)R and GBR2 provides a possible mechanism for altering muscarinic signaling in the brain and represents a previously unrecognized role for GBR2.


Assuntos
Receptor Muscarínico M2/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais/fisiologia , Animais , Membrana Celular/metabolismo , Humanos , Células PC12 , Ligação Proteica/fisiologia , Ratos , Receptor Muscarínico M2/química , Receptores de GABA-B/química
19.
J Physiol ; 587(1): 139-53, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19015197

RESUMO

Binding of gamma-aminobutyric acid (GABA) to its receptor initiates a conformational change to open the channel, but the mechanism of the channel activation is not well understood. To this end, we scanned loop F (K210-F227) in the N-terminal domain of the rho1 GABA receptor expressed in Xenopus oocytes using a site-specific fluorescence technique. We detected GABA-induced fluorescence changes at six positions (K210, K211, L216, K217, T218 and I222). At these positions the fluorescence changes were dose dependent and highly correlated to the current dose-response, but with lower Hill coefficients. The competitive antagonist 3-aminopropyl(methyl)phosphinic acid (3-APMPA) induced fluorescence changes in the same direction at the four middle or lower positions. The non-competitive antagonist picrotoxin blocked nearly 50% of GABA-induced fluorescence changes at T218 and I222, but only <20% at K210 and K217 and 0% at K211 and L216 positions. Interestingly, the picrotoxin-blocked fraction of the GABA-induced fluorescence changes was highly correlated to the Hill coefficient of the GABA-induced dose-dependent fluorescence change. The PTX-insensitive mutant L216C exhibited the lowest Hill coefficient, similar to that in binding. Thus, the PTX-sensitive fraction reflects the conformational change related to channel gating, whereas the PTX-insensitive fraction represents a binding effect. The binding effect is further supported by the picrotoxin resistance of a competitive antagonist-induced fluorescence change. A cysteine accessibility test further confirmed that L216C and K217C partially line the binding pocket, and I222C became more exposed by GABA. Our results are consistent with a mechanism that an outward movement of the lower part of loop F is coupled to the channel activation.


Assuntos
Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Feminino , Corantes Fluorescentes , Agonistas dos Receptores de GABA-B , Antagonistas de Receptores de GABA-B , Humanos , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Picrotoxina/farmacologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas , Receptores de GABA-B/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
20.
Med Mol Morphol ; 41(1): 20-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18470677

RESUMO

Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain, is also located in many peripheral nonneuronal tissues. The glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mouse is a useful model for studying the distribution of GABAergic cells in many tissues and organs. The lungs of these mice contain cells with an intense GFP signal exclusively in the airway epithelium. We aimed to characterize the GFP-positive cells and to clarify their relationship with the GABAergic system. We identified the GFP-positive cells as pulmonary neuroendocrine cells (PNECs) by immunohistochemistry for the protein gene product 9.5 and calcitonin gene-related peptide and by ultrastructural analysis. Immunohistochemistry for GADs and GABA revealed GAD65/67 and GABA in GFP-positive PNECs. Reverse transcription-polymerase chain reaction analyses revealed mRNAs encoding the GABA(B) receptor subunits necessary for the assembly of functional receptors, R1 and R2, in the lung. GABA(B) receptor subunit R1 and R2 proteins were expressed in many airway epithelial cells including alveolar epithelial cells other than GFP-positive PNECs. The present findings demonstrated that PNECs in the airway epithelium have a GABA production system and indicated that GABA plays functional roles in airway epithelial cells through GABA(B) receptors.


Assuntos
Glutamato Descarboxilase/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Subunidades Proteicas , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA