Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.070
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(37): 20444-20457, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39250600

RESUMO

An imbalance in the macrophage phenotype is closely related to various inflammatory diseases. Here, we discovered that gypenoside LXXV (GP-75), a type of saponin from Gynostemma pentaphyllum, can reprogram M1-like macrophages into M2-like ones. On a mechanistic level, GP-75 inhibits NF-κB-COX2 signaling by targeting the glucocorticoid receptor (GR). Administration of GP-75, either orally or by intraperitoneal injection, significantly alleviates ulcerative colitis in mice, a pathogenesis associated with macrophage polarization. Clodronate liposomes, which deplete macrophages in mice, as well as GR antagonist RU486, abrogate the anticolitis effect of GP-75, thus confirming the pivotal role of macrophages in GP-75 function. We also showed that GP-75 has no toxicity in mice. Overall, this is the first report that demonstrates the effect of GP-75 on macrophage reprograming and as an agent against colitis. Because G. pentaphyllum is gaining popularity as a functional food, our findings offer new perspectives on the use of gypenosides as potential nutraceuticals for medical purposes.


Assuntos
Gynostemma , Macrófagos , Camundongos Endogâmicos C57BL , Extratos Vegetais , Receptores de Glucocorticoides , Animais , Gynostemma/química , Camundongos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Masculino , Colite/tratamento farmacológico , Colite/metabolismo , Colite/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia
2.
Methods Mol Biol ; 2846: 17-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141227

RESUMO

ChIP-qPCR offers the opportunity to identify interactions of DNA-binding proteins such as transcription factors and their respective DNA binding sites. Thereby, transcription factors can interfere with gene expression, resulting in up- or downregulation of their target genes. Utilizing ChIP, it is possible to identify specific DNA binding sites that are bound by the DNA-binding proteins in dependence on treatment or prevailing conditions. During ChIP, DNA-binding proteins are reversibly cross-linked to their DNA binding sites and the DNA itself is fragmented. Using bead-captured antibodies, the target proteins are isolated while still binding their respective DNA response element. Using quantitative PCR, these DNA fragments are amplified and quantified. In this protocol, DNA binding sites of the glucocorticoid receptor are identified by treatment with the synthetic glucocorticoid Dexamethasone in murine bone marrow-derived macrophages.


Assuntos
Imunoprecipitação da Cromatina , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Animais , Imunoprecipitação da Cromatina/métodos , Camundongos , Sítios de Ligação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ligação Proteica , Dexametasona/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , DNA/metabolismo , DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Methods Mol Biol ; 2846: 91-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141231

RESUMO

ChIP-exo is a powerful tool for achieving enhanced sensitivity and single-base-pair resolution of transcription factor (TF) binding, which utilizes a combination of chromatin immunoprecipitation (ChIP) and lambda exonuclease digestion (exo) followed by high-throughput sequencing. ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode, and single ligation) is an updated and simplified version of the original ChIP-exo method, which has reported an efficient adapter ligation through the DNA circularization step. Building upon an established method, we present a protocol for generating NGS (next-generation sequencing) ready and high-quality ChIP-nexus library for glucocorticoid receptor (GR). This method is specifically optimized for bone marrow-derived macrophage (BMDM) cells. The protocol is initiated by the formation of DNA-protein cross-links in intact cells. This is followed by chromatin shearing, chromatin immunoprecipitation, ligation of sequencing adapters, digestion of adapter-ligated DNA using lambda exonuclease, and purification of single-stranded DNA for circularization and library amplification.


Assuntos
Imunoprecipitação da Cromatina , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Camundongos , Macrófagos/metabolismo , DNA/metabolismo , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação da Cromatina/métodos , Ligação Proteica , Sítios de Ligação
4.
Exp Neurol ; 380: 114922, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142371

RESUMO

OBJECTIVE: Multiple factors contribute to the development of perioperative neurocognitive disorders (PND). This study was designed to investigate whether Histone Deacetylase 6 (HDAC6) was involved in the formation of postoperative cognitive dysfunction in elderly mice by regulating the degree of acetylation of heat shock protein (HSP90) and related protein functions and quantities. METHODS: C57BL/6 J male mice were randomly divided into six groups: control naive (group Control), anesthesia (group Anesthesia), splenectomy surgery (group Surgery), splenectomy surgery plus dissolvent (group Vehicles), splenectomy surgery plus the inhibitor ACY-1215 (group Ricolinostat), and splenectomy surgery plus the inhibitor RU-486(group Mifepristone). After the mice were trained for Morris Water Maze (MWM) test for five days, anesthesia and operational surgery were carried out the following day. Cognitive function was assessed on the 1st, 3rd and 7th days post-surgery. The hippocampi were harvested on days 1, 3, and 7 post-surgeries for Western blots and ELISA assays. RESULTS: Mice with the splenectomy surgery displayed the activation of the hypothalamic-pituitary-adrenal axis (HPA-axis), marked an increase in adrenocorticotropic hormone (ACTH), glucocorticoid, mineralocorticoid at the molecular level and impaired spatial memory in the MWM test. The hippocampus of surgical groups showed a decrease in acetylated HSP90, a rise in glucocorticoid receptor (GR)-HSP90 association, and an increase in GR phosphorylation and translocation. HDAC6 was increased after the surgical treated. Using two specific inhibitors, HDAC6 inhibitor Ricolinostat (ACY-1215) and GR inhibitor Mifepristone (RU-486), can partially mitigate the effects caused by surgical operation. CONCLUSIONS: Abdominal surgery may impair hippocampal spatial memory, possibly through the HDAC6-triggered increase in the function of HSP90, consequently strengthening the negative role of steroids in cognitive function. Targeting HDAC6- HSP90/GR signaling may provide a potential avenue for the treatment of the impairment of cognitive function after surgery.


Assuntos
Proteínas de Choque Térmico HSP90 , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides , Transdução de Sinais , Animais , Masculino , Camundongos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Esplenectomia , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Mifepristona/farmacologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/etiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Envelhecimento/metabolismo , Histona Desacetilases/metabolismo , Pirimidinas/farmacologia , Ácidos Hidroxâmicos/farmacologia
5.
J Immunol ; 213(7): 971-987, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178124

RESUMO

Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.


Assuntos
Aspergilose , Aspergillus fumigatus , Dexametasona , Glucocorticoides , NF-kappa B , Neutrófilos , Peixe-Zebra , Animais , Aspergillus fumigatus/imunologia , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peixe-Zebra/imunologia , NF-kappa B/metabolismo , Aspergilose/imunologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hifas/imunologia , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Larva/imunologia , Larva/microbiologia , Receptores de Glucocorticoides/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Imunidade Inata/efeitos dos fármacos , Humanos
6.
Cancer Res Commun ; 4(9): 2415-2426, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177285

RESUMO

PURPOSE: In preclinical models, glucocorticoid receptor (GR) signaling drives resistance to taxane chemotherapy in multiple solid tumors via upregulation of antiapoptotic pathways. ORIC-101 is a potent and selective GR antagonist that was investigated in combination with taxane chemotherapy as an anticancer regimen preclinically and in a phase 1 clinical trial. PATIENTS AND METHODS: The ability of ORIC-101 to reverse taxane resistance was assessed in cell lines and xenograft models, and a phase 1 study (NCT03928314) was conducted in patients with advanced solid tumors to determine the dose, safety, and antitumor activity of ORIC-101 with nab-paclitaxel. RESULTS: ORIC-101 reversed chemoprotection induced by glucocorticoids in vitro and achieved tumor regressions when combined with paclitaxel in both taxane-naïve and -resistant xenograft models. In the phase 1 study, 21 patients were treated in dose escalation and 62 patients were treated in dose expansion. All patients in dose expansion had previously progressed on a taxane-based regimen. In dose escalation, five objective responses were observed. A preplanned futility analysis in dose expansion showed a 3.2% (95% confidence interval, 0.4-11.2) objective response rate with a median progression-free survival of 2 months (95% confidence interval, 1.8-2.8) across all four cohorts, leading to study termination. Pharmacodynamic analysis of tissue and plasma showed GR pathway downregulation in most patients in cycle 1. CONCLUSIONS: ORIC-101 with nab-paclitaxel showed limited clinical activity in taxane-resistant solid tumors. Despite clear inhibition of GR pathway signaling, the insufficient clinical signal underscores the challenges of targeting a single resistance pathway when multiple mechanisms of resistance may be in play. SIGNIFICANCE: Glucocorticoid receptor (GR) upregulation is a mechanism of resistance to taxane chemotherapy in preclinical cancer models. ORIC-101 is a small molecule GR inhibitor. In this phase 1 study, ORIC-101 plus nab-paclitaxel did not show meaningful clinical benefit in patients who previously progressed on taxanes despite successful GR pathway downregulation.


Assuntos
Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Paclitaxel , Receptores de Glucocorticoides , Humanos , Paclitaxel/uso terapêutico , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Feminino , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Masculino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , Albuminas/administração & dosagem , Albuminas/uso terapêutico , Albuminas/farmacologia , Animais , Adulto , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral
7.
Int J Pediatr Otorhinolaryngol ; 184: 112079, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173268

RESUMO

OBJECTIVE: In recent years, the clinical efficacy of medications for adenoid hypertrophy has been demonstrated. Topical nasal steroids have effects to shrink hypertrophic adenoids and improve symptoms of associated diseases. However, the mechanism which topical steroid administrations cause adenoid shrinkage remains unclear, herein, sensitivity for topical steroids in the mucosal epithelium of adenoids was evaluated histologically by comparing with tonsils. METHODS: Histological analysis was performed on adenoids and tonsils removed from 32 pediatric patients with adenoid hypertrophy. In hematoxylin-eosin-stained specimens, the morphology of the mucosal epithelium and eosinophil infiltration were evaluated. The expression of the glucocorticoid receptor (GR), interleukin (IL)-4, and IL-25 in the mucosal epithelium was evaluated, and the staining intensity was scored as 0 (none), 1 (weak), and 2 (strong). The number of eosinophils and expression scores of GR, IL-4, and IL-25 were statistically compared between adenoids and tonsils and analyzed correlations with adenoids sizes. RESULTS: Adenoids were covered with ciliated epithelium, and eosinophils in the mucosal epithelium and submucosal area was higher than tonsils (p < 0.05). GR expression in the most superficial layer of the mucosal epithelium was observed in adenoids, and the expression intensity score was higher than that in tonsils (p < 0.05). IL-4 and IL-25 were more widely expressed in the mucosal epithelium of adenoids than in tonsils, and their expression intensity scores were also higher than in tonsils (p < 0.05). A correlation was found between adenoid size and the intensity of IL-25 expression in the adenoid epithelium (p < 0.05). CONCLUSION: Eosinophilic inflammations in adenoids mucosal epithelium could be one of etiology of adenoid hypertrophy, and the GR and eosinophilic inflammation in the adenoids mucosal epithelium might be target of topical nasal steroids to shrink hypertrophic adenoids.


Assuntos
Tonsila Faríngea , Eosinófilos , Hipertrofia , Tonsila Palatina , Receptores de Glucocorticoides , Humanos , Tonsila Faríngea/patologia , Tonsila Faríngea/metabolismo , Receptores de Glucocorticoides/metabolismo , Masculino , Criança , Feminino , Eosinófilos/metabolismo , Pré-Escolar , Tonsila Palatina/patologia , Interleucina-17/metabolismo , Mucosa/patologia , Mucosa/metabolismo , Interleucina-4/metabolismo , Epitélio/patologia , Epitélio/metabolismo , Glucocorticoides , Citocinas/metabolismo , Adolescente
8.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39201464

RESUMO

Glucocorticoid receptor (GR) overexpression has been linked to increased tumour aggressiveness and treatment resistance. GR antagonists have been shown to enhance treatment effectiveness. Emerging research has investigated mifepristone, a GR antagonist, as an anticancer agent with limited research in the context of oral cancer. This study investigated the effect of mifepristone at micromolar (µM) concentrations of 1, 5, 10 and 20 on the proliferation and migration of oral cancer cells, at 24 and 48 h. Scratch and scatter assays were utilised to assess cell migration, MTT assays were used to measure cell proliferation, Western blotting was used to investigate the expression of GR and the activation of underlying Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signalling pathways, and immunofluorescence (IF) was used to determine the localisation of proteins in HaCaT (immortalised human skin keratinocytes), TYS (oral adeno squamous cell carcinoma), and SAS-H1 cells (squamous cell carcinoma of human tongue). Mifepristone resulted in a dose-dependent reduction in the proliferation of HaCaT, TYS, and SAS-H1 cells. Mifepristone at a concentration of 20 µM effectively reduced collective migration and scattering of oral cancer cells, consistent with the suppression of the PI3K-Akt and MAPK signalling pathways, and reduced expression of N-Cadherin. An elongated cell morphology was, however, observed, which may be linked to the localisation pattern of E-Cadherin in response to mifepristone. Overall, this study found that a high concentration of mifepristone was effective in the suppression of migration and proliferation of oral cancer cells via the inhibition of PI3K-Akt and MAPK signalling pathways. Further investigation is needed to define its impact on epithelial-mesenchymal transition (EMT) markers.


Assuntos
Movimento Celular , Proliferação de Células , Mifepristona , Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Humanos , Mifepristona/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
9.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201590

RESUMO

Glucocorticoids (GCs) are widely used for treating hematological malignancies despite their multiple adverse effects. The biological response to GCs relies on glucocorticoid receptor (GR) transrepression (TR) that mediates the anticancer effects and transactivation (TA) associated with the side effects. Selective GR agonists (SEGRAs) preferentially activating GR TR could offer greater benefits in cancer treatment. One of the well-characterized SEGRAs, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium-chloride (CpdA), exhibited anticancer activity; however, its translational potential is limited due to chemical instability. To overcome this limitation, we obtained CpdA derivatives, CpdA-01-CpdA-08, employing two synthetic strategies and studied their anti-tumor activity: 4-(1-hydroxy-2-(piperidin-1-yl)ethyl)phenol or CpdA-03 demonstrated superior GR affinity and stability compared to CpdA. In lymphoma Granta and leukemia CEM cell lines, CpdA-03 ligand exhibited typical SEGRA properties, inducing GR TR without triggering GR TA. CpdA-03 effects on cell viability, growth, and apoptosis were similar to the reference GR ligand, dexamethasone (Dex), and the source compound CpdA. In vivo testing of CpdA-03 activity against lymphoma on the transplantable P388 murine lymphoma model showed that CpdA-03 reduced tumor volume threefold, outperforming Dex and CpdA. In conclusion, in this work, we introduce a novel SEGRA CpdA-03 as a promising agent for lymphoma treatment with fewer side effects.


Assuntos
Antineoplásicos , Receptores de Glucocorticoides , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenetilaminas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Acetatos , Tiramina/análogos & derivados
10.
PeerJ ; 12: e17539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952964

RESUMO

The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1ß) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1ß expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1ß), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1ß), pre-frontal cortex (IL-1ß), and hypothalamus (IL-1ß). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.


Assuntos
Glucocorticoides , Metirapona , Camundongos Endogâmicos C57BL , Mifepristona , Privação do Sono , Animais , Masculino , Metirapona/farmacologia , Privação do Sono/metabolismo , Privação do Sono/tratamento farmacológico , Camundongos , Mifepristona/farmacologia , Glucocorticoides/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética
11.
J Steroid Biochem Mol Biol ; 243: 106575, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38950871

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the nuclear steroid receptors that bind estrogens (ER) and progestogens (PRs) and does not exhibit HER2 (Human epidermal growth factor 2) receptor overexpression. Even in the face of initially effective chemotherapies, TNBC patients often relapse. One primary cause for therapy-resistant tumor progression is the activation of cellular stress signaling pathways. The glucocorticoid receptor (GR), a corticosteroid-activated transcription factor most closely related to PR, is a mediator of both endocrine/host stress and local tumor microenvironment (TME)-derived and cellular stress responses. Interestingly, GR expression is associated with a good prognosis in ER+ breast cancer but predicts poor prognosis in TNBC. Classically, GR's transcriptional activity is regulated by circulating glucocorticoids. Additionally, GR is regulated by ligand-independent signaling events. Notably, the stress-activated protein kinase, p38 MAP kinase, phosphorylates GR at serine 134 (Ser134) in response to TME-derived growth factors and cytokines, including HGF and TGFß1. Phospho-Ser134-GR (p-Ser134-GR) associates with cytoplasmic and nuclear signaling molecules, including 14-3-3ζ, aryl hydrocarbon receptors (AhR), and hypoxia-inducible factors (HIFs). Phospho-GR/HIF-containing transcriptional complexes upregulate gene sets whose protein products include the components of inducible oncogenic signaling pathways (PTK6) that further promote cancer cell survival, chemoresistance, altered metabolism, and migratory/invasive behavior in TNBC. Recent studies have implicated liganded p-Ser134-GR (p-GR) in dexamethasone-mediated upregulation of genes related to TNBC cell motility and dysregulated metabolism. Herein, we review the tumor-promoting roles of GR and discuss how both ligand-dependent and ligand-independent/stress signaling-driven inputs to p-GR converge to orchestrate metastatic TNBC progression.


Assuntos
Receptores de Glucocorticoides , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Feminino , Microambiente Tumoral , Estresse Fisiológico , Animais , Regulação Neoplásica da Expressão Gênica
12.
Horm Behav ; 164: 105603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029339

RESUMO

Deficiencies in maternal nutrition have long-term consequences affecting brain development of the progeny and its behavior. In the present work, female mice were exposed to a normal-protein or a low-protein diet during gestation and lactation. We analyzed behavioral and molecular consequences of malnutrition in dams and how it affects female offspring at weaning. We have observed that a low-protein diet during pregnancy and lactation leads to anxiety-like behavior and anhedonia in dams. Protein malnutrition during the perinatal period delays physical and neurological development of female pups. Glucocorticoid levels increased in the plasma of malnourished female offspring but not in dams when compared to the control group. Interestingly, the expression of glucocorticoid receptor (GR) was reduced in hippocampus and amygdala on both malnourished dams and female pups. In addition, malnourished pups exhibited a significant increase in the expression of Dnmt3b, Gadd45b, and Fkbp5 and a reduction in Bdnf VI variant mRNA in hippocampus. In contrast, a reduction on Dnmt3b has been observed on the amygdala of weaned mice. No changes have been observed on global methylation levels (5-methylcytosine) in hippocampal genomic DNA neither in dams nor female offspring. In conclusion, deregulated behaviors observed in malnourished dams might be mediated by a low expression of GR in brain regions associated with emotive behaviors. Additionally, low-protein diet differentially deregulates the expression of genes involved in DNA methylation/demethylation machinery in female offspring but not in dams, providing an insight into regional- and age-specific mechanisms due to protein malnutrition.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Metilação de DNA , Hipocampo , Comportamento Materno , Efeitos Tardios da Exposição Pré-Natal , Receptores de Glucocorticoides , Proteínas de Ligação a Tacrolimo , Animais , Feminino , Gravidez , Camundongos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Comportamento Materno/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Hipocampo/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Dieta com Restrição de Proteínas , DNA Metiltransferase 3B , Deficiência de Proteína/metabolismo , Deficiência de Proteína/complicações , Ansiedade/etiologia , Glucocorticoides/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais Recém-Nascidos , Proteínas GADD45 , Antígenos de Diferenciação
13.
Cell Rep Methods ; 4(7): 100818, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986614

RESUMO

Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.


Assuntos
Peptídeos , Proteômica , SARS-CoV-2 , Proteômica/métodos , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Peptídeos/metabolismo , Peptídeos/química , COVID-19/metabolismo , COVID-19/virologia , Células HEK293 , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Plasmídeos/genética , Plasmídeos/metabolismo , Espectrometria de Massas/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Mapeamento de Interação de Proteínas/métodos
14.
J Agric Food Chem ; 72(30): 16739-16748, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39033544

RESUMO

Glucocorticoid-induced osteoporosis (GIOP) is the common reason for secondary osteoporosis. Dendrobine (DEN) is the major biologically active component of Dendrobium officinale with anti-inflammatory and antiaging properties. Whether DEN could alleviate osteogenic inhibition in GIOP rats is still unknown. The influence on osteogenic function caused by DEN on dexamethasone-treated bone marrow mesenchymal stem cells and rats was observed. The in vitro results showed that DEN reversed the inhibition of osteogenic differentiation by dexamethasone. Moreover, DEN supplementation attenuated dexamethasone-induced bone loss in vivo. DEN activated JNK and p38 MAPK pathways and restrained GR nuclear translocation, which could be prevented by the JNK (SP600125) or p38 (SB203580) pathway inhibitor. This study verified that DEN alleviated dexamethasone-induced nuclear translocation of GR, and inhibition of osteogenesis via JNK and p38 pathways, laying the foundation for DEN as a therapeutic agent for GIOP.


Assuntos
Glucocorticoides , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Masculino , Ratos , Diferenciação Celular/efeitos dos fármacos , Dexametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Extratos Vegetais/farmacologia , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética
15.
Adipocyte ; 13(1): 2369776, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38982594

RESUMO

BACKGROUND: Bariatric surgery is the most effective treatment for severe obesity. There can be variation in the degree of weight reduction following bariatric surgery. It is unknown whether single nucleotide polymorphisms (SNPs) in the glucocorticoid receptor locus (GRL) affect postoperative weight loss and metabolic outcomes. MATERIALS/METHODS: We studied the association between selected candidate SNPs and postoperative weight loss and metabolic outcomes in patients with severe obesity undergoing bariatric surgery. The polymorphisms rs41423247 (Bcl1), rs56149945 (N363S) and rs6189/rs6190 (ER22/23EK) were analysed. RESULTS: The 139 participants included 95 women (68.3%) and had a median (interquartile range) age of 53.0 (46.0-60.0) years and mean (SD) weight of 140.8 (28.8) kg and body mass index of 50.3 (8.6) kg/m2. At baseline, 59 patients had type 2 diabetes (T2D), 60 had hypertension and 35 had obstructive sleep apnoea syndrome treated with continuous positive airway pressure (CPAP). 84 patients (60.4%) underwent gastric bypass and 55 (39.6%) underwent sleeve gastrectomy. There were no significant differences in weight loss, glycated haemoglobin (HbA1c) or lipid profile categorized by genotype status, sex or median age. There was significant weight reduction after bariatric surgery with a postoperative BMI of 34.1 (6.8) kg/m2 at 24 months (p < 0.001). CONCLUSION: While GRL polymorphisms with a known deleterious effect on adipose tissue mass and function may have a small, additive effect on the prevalence of obesity and related metabolic disorders in the population, we suggest that the relatively weak biological influence of these SNPs is readily overcome by bariatric surgery.


Assuntos
Cirurgia Bariátrica , Polimorfismo de Nucleotídeo Único , Receptores de Glucocorticoides , Redução de Peso , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Redução de Peso/genética , Estudos Prospectivos , Resultado do Tratamento , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Obesidade Mórbida/cirurgia , Obesidade Mórbida/genética , Obesidade Mórbida/metabolismo , Adulto
16.
Physiol Rep ; 12(14): e16124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016119

RESUMO

Alpha-1-antitrypsin (AAT) plays a homeostatic role in attenuating excessive inflammation and augmenting host defense against microbes. We demonstrated previously that AAT binds to the glucocorticoid receptor (GR) resulting in significant anti-inflammatory and antimycobacterial consequences in macrophages. Our current investigation aims to uncover AAT-regulated genes that rely on GR in macrophages. We incubated control THP-1 cells (THP-1control) and THP-1 cells knocked down for GR (THP-1GR-KD) with AAT, performed bulk RNA sequencing, and analyzed the findings. In THP-1control cells, AAT significantly upregulated 408 genes and downregulated 376 genes. Comparing THP-1control and THP-1GR-KD cells, 125 (30.6%) of the AAT-upregulated genes and 154 (41.0%) of the AAT-downregulated genes were significantly dependent on GR. Among the AAT-upregulated, GR-dependent genes, CSF-2 that encodes for granulocyte-monocyte colony-stimulating factor (GM-CSF), known to be host-protective against nontuberculous mycobacteria, was strongly upregulated by AAT and dependent on GR. We further quantified the mRNA and protein of several AAT-upregulated, GR-dependent genes in macrophages and the mRNA of several AAT-downregulated, GR-dependent genes. We also discussed the function(s) of selected AAT-regulated, GR-dependent gene products largely in the context of mycobacterial infections. In conclusion, AAT regulated several genes that are dependent on GR and play roles in host immunity against mycobacteria.


Assuntos
Macrófagos , Receptores de Glucocorticoides , alfa 1-Antitripsina , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Células THP-1 , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética
17.
J Ethnopharmacol ; 334: 118567, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996951

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euonymus alatus (Thunb.) Siebold. (EA), a traditional Chinese medicine, is widely used in the treatment of diabetes. Our group has previously found that EA could treat diabetic retinopathy (DR) and stigmast-4-en-3-one (Numbered E6) is the active substance responsible for inhibiting angiogenesis in vitro by EA. However, the effects and mechanisms of E6 in the treatment of DR is still unknown. AIM OF THE STUDY: The aim of this study was to investigate the effects and mechanisms of E6 in EA on DR. Additionally, a comparison was made between the effects of E6 and triamcinolone acetonide (TA), as well as the side effects of E6 and dexamethasone. MATERIALS AND METHODS: Ocular affinity assessment and pharmacokinetic parameter prediction were conducted to evaluate the potential of E6 to treat DR. Retinal endothelial cells were used to investigate the in vitro inhibitory effect of E6 on vascular proliferation. Additionally, chicken embryos, zebrafish, and mice were used to investigate the in vivo anti-vascular proliferation effect of E6. Finally, diabetic mice were used to investigate whether E6 improves diabetic retinopathy and to compare its efficacy with that of TA. We then used network pharmacology to study the targets of E6 and performed molecular docking; followed by immunofluorescence experiments, ELISA, Western blot, and tube formation experiments to further investigate its mechanism. Finally, we compared the side effects of E6 with those of dexamethasone. RESULTS: E6 was found to have an affinity for the eye and to inhibit vascular proliferation both in vivo and in vitro. Moreover, E6 was found to be more efficacious than TA in the treatment of DR. Molecular docking experiments predicted that the glucocorticoid receptor (GR) is a potential target of E6, and immunofluorescence analyses confirmed that E6 upregulated the expression of the GR in the retina of hyperglycemic mice. In addition, western blotting results and tube formation experiments showed that E6 also attenuated angiogenesis by inhibiting the Hippo and VEGF pathways. Finally, by comparing the effects of E6 and dexamethasone on glucose regulation and osteoporosis, E6 was found to have fewer side effects. CONCLUSIONS: E6 is a highly effective drug for the treatment of DR, superior to TA and with fewer side effects than dexamethasone. Its mechanism involves the activation of glucocorticoid receptor and inhibition of Hippo and VEGF pathways to alleviate angiogenesis and inflammation. This study is the first to investigate the role and mechanism of E6 in improving DR. The findings suggest that E6 has unique advantages in the treatment of DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Euonymus , Receptores de Glucocorticoides , Peixe-Zebra , Animais , Retinopatia Diabética/tratamento farmacológico , Camundongos , Receptores de Glucocorticoides/metabolismo , Embrião de Galinha , Diabetes Mellitus Experimental/tratamento farmacológico , Euonymus/química , Masculino , Simulação de Acoplamento Molecular , Dexametasona/farmacologia , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores da Angiogênese/farmacologia , Triancinolona Acetonida/farmacologia , Angiogênese
18.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000204

RESUMO

Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.


Assuntos
Medo , Hipocampo , Proteínas de Ligação a Tacrolimo , Animais , Masculino , Medo/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Hipocampo/metabolismo , Ratos , Corticosterona/metabolismo , Corticosterona/sangue , Ratos Sprague-Dawley , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Receptores de Glucocorticoides/metabolismo , Extinção Psicológica/fisiologia
19.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G531-G544, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39041676

RESUMO

Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with H. pylori revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric H. pylori immunity.NEW & NOTEWORTHY Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to Helicobacter pylori infection.


Assuntos
Glucocorticoides , Infecções por Helicobacter , Helicobacter pylori , Ativação de Macrófagos , Macrófagos , Camundongos Knockout , Receptores de Glucocorticoides , Animais , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Glucocorticoides/farmacologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Transdução de Sinais
20.
Ann Clin Lab Sci ; 54(3): 313-325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39048174

RESUMO

OBJECTIVE: This study was designed to determine the comparative efficacy of Doxofylline (DOXO) compared to low-dose theophylline (LDT) in treating corticosteroid-resistant asthma. METHODS: This study was conducted on 56 adult BALB/C mice aged six to eight weeks old with an average weight of 20-25 g. They were divided into seven groups: control group, ovalbumin (OVA)+lipopolysaccharide (LPS) group, OVA+LPS+dexamethasone (DEXA) group, OVA+LPS+LDT group, OVA+LPS+ group, OVA+LPS+DEXA+LDT group, and OVA +LPS+DEXA+DOXO group. All mice were administered IP DOXO+DEXA. All the doses were administrated one day before the first challenge and lasted for five consecutive days after one hour of the OVA challenge until sacrificed. Lung biochemical parameters, including interleukin (IL)-2, IL-4, IL-8, IL-10, and IL-17 levels, were measured using enzyme-linked immunosorbent assay (ELISA). In addition, Histone deacetylase (HDAC) activity and lung histological analysis were also performed. Furthermore, the glucocorticoid receptor was measured by nexttec™. RESULTS: The OVA+LPS group exhibited significantly (p<0.05) elevated levels of interleukin (IL)-2, IL-4, IL-8, IL-10, and IL-17 compared to controls, indicative of airway inflammation. Moreover, OVA+LPS induction significantly (p<0.05) increased the levels of Interferon-gamma (IFN-γ), NF[Formula: see text]B, Tumor Necrosis Factor (TNFα), and Immunoglobulin E (IgE) parameters, indicating severe inflammation and immune response and successfully induced the disease model. Meanwhile, LDT and DOXO in conjunction with DEXA, further augmented HDAC2 activity compared to DEXA alone. Similarly, the administration of LDT increased the expression of GR by 64.5% (23.72±0.34), while DOXO increased the expression of GR by 94.10% (27.99±0.15), which restores it back to control. Furthermore, according to Hematoxylin and eosin (H&E) stained sections, the DOXO group exhibited a slight improvement in these histopathological features, suggesting a modest therapeutic effect. Masson's Trichrome staining showed a slightly improved patchy collagen deposition within alveolar spaces in intra-alveolar and interstitial inflammatory cell accumulation in DOXO group, and the combination of these drugs (DEXA+LDT group) improved collagen deposition moderately within alveolar spaces in intra-alveolar and interstitial inflammatory cell accumulation. Overall, treatment with DOXO, LDT alone, and with DEXA combination led to reductions in cytokine levels, with DOXO and LDT showing significant (p<0.05) efficacy to DEXA used alone, which showed non-significant (p>0.05) efficacy. CONCLUSIONS: Doxofylline and LDT were found to be effective therapeutic agents when used alone or in combination with Dexamethasone. However, randomized controlled trials are required to evaluate its further efficacy.


Assuntos
Asma , Dexametasona , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Teofilina , Animais , Teofilina/farmacologia , Teofilina/análogos & derivados , Teofilina/administração & dosagem , Asma/tratamento farmacológico , Asma/patologia , Dexametasona/farmacologia , Dexametasona/administração & dosagem , Camundongos , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Citocinas/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Ovalbumina , Receptores de Glucocorticoides/metabolismo , Histona Desacetilases/metabolismo , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA