Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Cancer Cell ; 37(6): 850-866.e7, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442402

RESUMO

Anti-CD40 monoclonal antibodies (mAbs) comprise agonists and antagonists, which display promising therapeutic activities in cancer and autoimmunity, respectively. We previously showed that epitope and isotype interact to deliver optimal agonistic anti-CD40 mAbs. The impact of Fc engineering on antagonists, however, remains largely unexplored. Here, we show that clinically relevant antagonists used for treating autoimmune conditions can be converted into potent FcγR-independent agonists with remarkable antitumor activity by isotype switching to hIgG2. One antagonist is converted to a super-agonist with greater potency than previously reported highly agonistic anti-CD40 mAbs. Such conversion is dependent on the unique disulfide bonding properties of the hIgG2 hinge. This investigation highlights the transformative capacity of the hIgG2 isotype for converting antagonists to agonists to treat cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Células Dendríticas/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Dendríticas/efeitos dos fármacos , Switching de Imunoglobulina/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de IgE/fisiologia , Receptores de IgG/fisiologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/imunologia , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia
2.
Yakugaku Zasshi ; 137(5): 495-501, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28458279

RESUMO

Mast cells are hematopoietic-lineage cells that participate in immunoglobulin E (IgE)-associated immune responses, including allergic reactions and parasite resistance. Recent studies have shown that zinc (Zn) ion can behave as an intracellular signaling molecule and that Zn is involved in mast cell activation. We demonstrated that mast cells stimulated through the high-affinity IgE receptor (FcεRI) rapidly release intracellular Zn from the endoplasmic reticulum (ER), and we named this phenomenon the "Zn wave". Furthermore, we found that the L-type calcium channel (LTCC) is the gatekeeper for the Zn wave. LTCC antagonists inhibited the Zn wave, and an agonist was sufficient to induce it. Notably, LTCC was mainly localized to the ER rather than to the plasma membrane in mast cells, and the Zn wave was impaired by LTCC knockdown. We also found that the LTCC-mediated Zn wave positively controlled inflammatory cytokine gene induction by enhancing the DNA-binding activity of nuclear factor-kappa B (NF-κB). These findings indicated that the LTCC has a novel function as a gatekeeper for the Zn wave, which is involved in regulating NF-κB signaling. In this review, we describe our current understanding of Zn signaling, especially with regard to the Zn wave and the role of Zn signaling in mast cells.


Assuntos
Mastócitos/imunologia , Mastócitos/metabolismo , Transdução de Sinais/fisiologia , Zinco/metabolismo , Zinco/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Citocinas , DNA/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mediadores da Inflamação , Mastócitos/citologia , Camundongos , NF-kappa B/metabolismo , Ligação Proteica , Receptores de IgE/fisiologia , Ativação Transcricional
3.
Proc Natl Acad Sci U S A ; 111(46): E4963-71, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25369937

RESUMO

Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain's immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils.


Assuntos
Alérgenos/farmacologia , Basófilos/metabolismo , Interleucina-4/biossíntese , Papaína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Subunidades do Complexo de Proteínas Adaptadoras/fisiologia , Animais , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunização , Interleucina-13/biossíntese , Interleucina-13/genética , Interleucina-33 , Interleucina-4/genética , Interleucinas/farmacologia , Leucina/análogos & derivados , Leucina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Papaína/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de IgE/genética , Receptores de IgE/fisiologia , Receptores de IgG/genética , Receptores de IgG/fisiologia , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos
4.
Curr Top Microbiol Immunol ; 382: 111-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116098

RESUMO

Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.


Assuntos
Monoéster Fosfórico Hidrolases/fisiologia , Receptores de IgE/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Mastócitos/fisiologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Receptores de IgE/química
5.
J Clin Immunol ; 33(8): 1349-59, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24122028

RESUMO

PURPOSE: Adenosine (ADO) can enhance and inhibit mast cell degranulation. Potentiation of degranulation occurs at relatively low concentrations of ADO (10−6­10−5 M) through triggering of A3AR, whereas, inhibition occurs at higher concentrations of ADO reportedly through triggering of A2aAR. However, the discrepancy in the concentration of ADO that inhibits degranulation and that required to trigger ADORs suggests a different mechanism. The purpose of this study is to determine the mechanism by which ADO inhibits human mast cell degranulation. METHODS: We compare the effectiveness of A2aAR specific antagonist ZM241385 and equilibrative nucleoside transporter inhibitors Dipyridamole and NBMPR in preventing ADO-mediated inhibition of FcεRI-induced degranulation of human skin mast cells (hSMCs). Western blotting is done to analyze the effect of ADO on FcεRI-induced Syk phosphorylation. RESULTS: Dipyridamole and NBMPR completely and dose-dependently prevented ADO from inhibiting FcεRI-induced degranulation in all hSMC preparations. In contrast, ZM241385 at 10−5 M was effective in only 3 of 10 hSMC preparations. Moreover, NBMPR was effective even in those hSMC preparations not responsive to ZM241385. ADO inhibited degranulation induced by FcεRI crosslinking, but not that induced by complement component 5a (C5a), Substance P or calcium ionophore. Accordingly, ADO significantly attenuated FcεRI-induced phosphorylation of Syk at the critical activating tyrosine (Y525). CONCLUSION: Blocking the influx of ADO, but not A2aAR signals, is necessary and sufficient to prevent ADO from inhibiting FcεRI-induced mast cell degranulation. Thus, ADO specifically inhibits FcεRI-induced degranulation of hSMCs primarily by an intracellular mechanism that requires its influx via equilibrative nucleoside transporter 1 (ENT1).


Assuntos
Adenosina/fisiologia , Degranulação Celular/imunologia , Regulação para Baixo/imunologia , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Pele/imunologia , Adenosina/toxicidade , Células Cultivadas , Sinergismo Farmacológico , Humanos , Imunoglobulina E/fisiologia , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Mastócitos/imunologia , Proteínas de Transporte de Nucleosídeos/fisiologia , Receptores de IgE/fisiologia , Transdução de Sinais/imunologia , Pele/citologia
6.
Mol Pharmacol ; 83(4): 793-804, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313938

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a versatile phospholipid that participates in many membrane-associated signaling processes. PI(4,5)P2 production at the plasma membrane (PM) depends on levels of its precursor, phosphatidylinositol 4-phosphate (PI4P), synthesized principally by two intracellular enzymes, PI4-kinases IIIα and IIIb; the former is preferentially inhibited by phenylarsine oxide (PAO). We found that PAO and quercetin, another lipid kinase inhibitor, rapidly inhibit Ca(2+) responses to antigen in IgE-sensitized rat basophilic leukemia mast cells. Quercetin also rapidly inhibits store-operated Ca(2+) influx stimulated by thapsigargin. In addition, quercetin and PAO effectively inhibit antigen-stimulated ruffling and spreading in these cells, and they inhibit endocytosis of crosslinked IgE receptor complexes, evidently by inhibiting pinching off of endocytic vesicles containing the clustered IgE receptors. A minimal model to account for these diverse effects is inhibition of PI(4,5)P2 synthesis by PAO and quercetin. To characterize the direct effects of these agents on PI(4,5)P2 synthesis, we monitored the reappearance of the PI(4,5)P2-specific PH domain PH-phospholipase C δ-EGFP at the PM after Ca(2+) ionophore (A23187)-induced PI(4,5)P2 hydrolysis, followed by Ca(2+) chelation with excess EGTA. Resynthesized PI(4,5)P2 initially appears as micron-sized patches near the PM. Addition of quercetin subsequent to A23187-induced PI(4,5)P2 hydrolysis reduces PI(4,5)P2 resynthesis in PM-associated patches, and PAO reduces PI(4,5)P2 at the PM while enhancing PI(4,5)P2 accumulation at the Golgi complex. Taken together, these results provide evidence that PI4P generated by PI4-kinase IIIα is dynamically coupled to PI(4,5)P2 pools at the PM that are important for downstream signaling processes activated by IgE receptors.


Assuntos
Mastócitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/antagonistas & inibidores , Fosfatidilinositol 4,5-Difosfato/biossíntese , Receptores de IgE/fisiologia , Transdução de Sinais/fisiologia , Animais , Arsenicais/farmacologia , Linhagem Celular Tumoral , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Fosfatidilinositóis/antagonistas & inibidores , Fosfatidilinositóis/biossíntese , Quercetina/farmacologia , Ratos , Receptores de IgE/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Immunol ; 189(7): 3421-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22922818

RESUMO

IL-33 is an IL-1 family cytokine that displays dual functions: a cytokine via its receptor, T1/ST2, or a chromatin-binding factor within the nucleus. Functionally, it promotes Th2-associated immunity by enhancing the activation and survival of several cell types. However, the pathways regulating IL-33 expression are still unclear. Although several cells display constitutive expression of IL-33, we showed previously that mast cells expressed low levels of IL-33 constitutively but that IL-33 was induced upon IgE-mediated activation. This was mediated via a calcium-dependent mechanism. In this study, we define the pathway through which this inducible IL-33 is regulated. Importantly, this pathway does not alter expression in cells with high constitutive IL-33 expression, such as epithelial cells or fibroblasts. Our data show that, upstream of calcium, inhibition of PI3K and Sphk activity decreases inducible IL-33 expression to IgE/Ag activation. Additionally, expression of Sphk1 short hairpin RNA prevents upregulation of IL-33 expression. Downstream of calcium, NFAT activity is necessary and sufficient for inducible IL-33 expression. We also demonstrate calcium-dependent transcription from two regions of the IL-33 gene that contain putative NFAT-binding sites, one upstream of exon 1 and one upstream of the start site. Interestingly, we show that blocking other calcium pathways, including inositol triphosphate receptor, or NF-κB inhibits IgE-driven IL-1ß, another IL-1 family cytokine, but it has no influence on inducible IL-33 expression. In summary, our data demonstrate cell-specific differences in the regulation of IL-33 expression and define a pathway critical for the expression of inducible IL-33 by mast cells upon their activation.


Assuntos
Cálcio/fisiologia , Interleucinas/biossíntese , Mastócitos/imunologia , Mastócitos/metabolismo , Animais , Sítios de Ligação/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Sinalização do Cálcio/imunologia , Linhagem Celular , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Imunoglobulina E/fisiologia , Interleucina-33 , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Fatores de Transcrição NFATC/fisiologia , Células NIH 3T3 , RNA Mensageiro/biossíntese , Receptores de IgE/metabolismo , Receptores de IgE/fisiologia , Ativação Transcricional/imunologia
8.
J Immunol ; 189(6): 2727-34, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896635

RESUMO

Adaptor molecules are essential in organizing signaling molecules and in coordinating and compartmentalizing their activity. SH3-binding protein 2 (3BP2) is a cytoplasmic adaptor protein mainly expressed by hematopoietic cells that has been shown to act as a positive regulator in T, B, and NK cell signal transduction. 3BP2 is an important regulator of cytotoxic granule release in NK cells. Mast cells (MCs) similarly degranulate following Ag-dependent aggregation of the FcεRI on the cell surface. Activation of these cells induces the release of preformed inflammatory mediators and the de novo synthesis and secretion of cytokines and chemokines. Thus, MCs participate in both innate and acquired responses. We observed that 3BP2 is expressed in human MCs (huMCs) from diverse origins. Moreover, 3BP2 coimmunoprecipitates with essential MC signaling mediators such as Lyn, Syk, and phospholipase C γ; thus, a role for this adaptor in MC function was postulated. In the present work, we used the short hairpin RNA lentiviral targeting approach to silence 3BP2 expression in huMCs. Our findings point to a requirement for 3BP2 in optimal immediate and late MCs responses such as degranulation and IL-8 or GM-CSF secretion. 3BP2 was determined to be necessary for optimal phosphorylation of Syk, linker for activation of T cells, and phospholipase C γ(1), critical signals for calcium release from intracellular stores. Taken together, our results show that by participating in FcεRI- mediated signal transduction 3BP2 is an important regulator of huMC activation. Thus, 3BP2 could be a potential therapeutic target for IgE-dependent MC-mediated inflammatory disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores de IgE/fisiologia , Transdução de Sinais/imunologia , Degranulação Celular/imunologia , Linhagem Celular , Humanos , Fatores de Tempo
9.
PLoS One ; 7(7): e40566, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802969

RESUMO

The protein-tyrosine phosphatase (PTP) Shp2 has been implicated in many immunoreceptor signaling pathways, but its role in immunoreceptor FcεRI signaling, which leads to the activation of mast cells and blood basophils, is still largely undefined. Using Shp2 knockdown RBL-2H3 (RBL) mast cells, we here reported that Shp2 is required for the activation of RBL cells induced by FcεRI. FcεRΙ-evoked degranulation, calcium mobilization, and synthesis of cytokine transcripts (IL-1ß, IL-10, and monocyte chemoattractant protein 1 (MCP-1)) were reduced in Shp2 knockdown RBL cells. Signaling regulatory mechanism investigation using immunoblotting, immunoprecipitation, and GST pull-down assay reveals that the down-regulation of Shp2 expression in RBL cells leads to decreased activities of Fyn, PLCγ, JNK, p38MAPK, and Ras/Erk1/2 after FcεRΙ aggregation. Further studies suggest that Paxillin phosphoryaltion was also impaired, but PAG phosphorylation was normal after FcεRΙ stimulation as a consequence of the inhibition of Shp2 expression in RBL cells. Collectively, our data strongly indicate that Shp2 is essential for the activation of RBL cells in response to FcεRΙ aggregation. Shp2 regulates this process through Fyn and Ras with no involvement of PAG. In addition, we identify Paxillin as an indirect substrate of Shp2 in FcεRΙ-initiated signaling of RBL cells.


Assuntos
Mastócitos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores de IgE/fisiologia , Animais , Cálcio/metabolismo , Degranulação Celular , Técnicas de Silenciamento de Genes , Mastócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Receptores de IgE/imunologia , Transdução de Sinais , Proteínas ras/metabolismo , Quinases da Família src/metabolismo
10.
J Immunol ; 189(1): 120-7, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22649193

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor whose activity is modulated by xenobiotics as well as physiological ligands. These compounds may modulate inflammatory responses and contribute to the rising prevalence of allergic diseases observed in industrialized countries. Mast cells (MCs), located within tissues at the boundary of the external environment, represent a potential target of AhR ligands. In this study, we report that murine and human MCs constitutively express AhR, and its activation by the high-affinity ligand 6-formylindolo[3,2-b]carbazole (FICZ) determines a boost in degranulation. On the contrary, repeated exposure to FICZ inhibits MC degranulation. Accordingly, histamine release, in an in vivo passive systemic anaphylactic model, is exacerbated by a single dose and is attenuated by repetitive stimulation of AhR. FICZ-exposed MCs produce reactive oxygen species and IL-6 in response to cAMP-dependent signals. Moreover, AhR-activated MCs produce IL-17, a critical player in chronic inflammation and autoimmunity, suggesting a novel pathway for MC activation in the pathogenesis of these diseases. Indeed, histological analysis of patients with chronic obstructive pulmonary disease revealed an enrichment in AhR/IL-6 and AhR/IL-17 double-positive MCs within bronchial lamina propria. Thus, tissue-resident MCs could translate external chemical challenges through AhR by modulating allergic responses and contributing to the generation of inflammation-related diseases.


Assuntos
Degranulação Celular/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores de Hidrocarboneto Arílico/fisiologia , Anafilaxia/imunologia , Anafilaxia/metabolismo , Anafilaxia/patologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Degranulação Celular/genética , Linhagem Celular , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Humanos , Interleucina-17/biossíntese , Interleucina-6/biossíntese , Ligantes , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de IgE/fisiologia , Fatores de Tempo , Regulação para Cima/genética , Regulação para Cima/imunologia
11.
J Allergy Clin Immunol ; 130(3): 751-760.e2, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22564682

RESUMO

BACKGROUND: The interaction of mast cells (MCs) with regulatory T cells through the OX40 ligand (OX40L):OX40 axis downregulates FcεRI-dependent immediate hypersensitivity responses both in vitro and in vivo. Little is known on OX40L-mediated intracellular signaling or on the mechanism by which OX40L engagement suppresses MC degranulation. OBJECTIVE: We explored the role of OX40L engagement on IgE/antigen-triggered MCs both in vitro and in vivo. METHODS: The soluble form of OX40 molecule was used to selectively trigger OX40L on MCs in vitro and was used to dissect OX40L contribution in an in vivo model of systemic anaphylaxis. RESULTS: OX40L:OX40 interaction led to the recruitment of C-terminal src kinase into lipid rafts, causing a preferential suppression of Fyn kinase activity and subsequent reduction in the phosphorylation of Gab2, the phosphatidylinositol 3-OH kinase regulatory subunit p85, and Akt, without affecting the Lyn pathway. Dampening of Fyn kinase activity also inhibited RhoA activation and microtubule nucleation, key regulators of MC degranulation. The in vivo administration of a blocking antibody to OX40L in wild-type mice caused enhanced immediate hypersensitivity, whereas the administration of soluble OX40 to regulatory T-cell-depleted or OX40-deficient mice reduced MC degranulation. CONCLUSIONS: The engagement of OX40L selectively suppresses Fyn-initiated signals required for MC degranulation and serves to limit immediate hypersensitivity. Our data suggest that soluble OX40 can restore the aberrant or absent regulatory T-cell activity, revealing a previously unappreciated homeostatic role for OX40L in setting the basal threshold of MC response.


Assuntos
Mastócitos/fisiologia , Glicoproteínas de Membrana/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Receptores de IgE/fisiologia , Fatores de Necrose Tumoral/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Anafilaxia/etiologia , Animais , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/fisiologia , Ligante OX40 , Fosfoproteínas/fisiologia , Fosforilação , Proteína rhoA de Ligação ao GTP
12.
Biol Pharm Bull ; 35(2): 178-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22293347

RESUMO

Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3ß, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.


Assuntos
Anti-Inflamatórios/farmacologia , Mastócitos/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Mastócitos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Morfolinas/farmacologia , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/metabolismo , Receptores de IgE/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Toxicol Appl Pharmacol ; 258(1): 99-108, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22036726

RESUMO

Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clone 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 µM treatment, with dose-responsive suppression through 30 µM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema.


Assuntos
Antibacterianos/farmacologia , Mastócitos/efeitos dos fármacos , Triclosan/farmacologia , Animais , Ionóforos de Cálcio/farmacologia , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Mastócitos/fisiologia , Ratos , Receptores de IgE/fisiologia
14.
Iran J Allergy Asthma Immunol ; 10(2): 73-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21625015

RESUMO

IgE-mediated cell signaling, induced by cross-linking of high affinity receptor for IgE (FcεRI) in the presence of antigen (Ag), is a well known mechanism described for mast cell activation in allergy and hypersensitivity reactions, which induces a spectrum of cellular responses such as secretion and up-regulation of cell surface FcεRI. Although for several years IgE binding to FcεRI was considered to be a passive sensitization process, the outcomes of several recent studies have revealed a variety of different cellular responses to IgE binding compared to IgE plus Antigen binding. The present study applied a functional proteomics-based approach to investigate mast cell signaling events and provided new insights to FcεRI-mediated cell signaling in RBL-2H3.1 cells, and may point to the activation of alternative signaling pathways in response to IgE or IgE plus Ag. Comparative analysis by 2-D PAGE of RBL cells activated with IgE plus Ag for three and four hours compared to non-activated cells was followed by mass spectrometric protein identification and provided evidence for the induction of Stathmin 1 (STMN1) gene expression in response to IgE plus Ag activation.Complementary SDS-PAGE analysis showed a distinct up-regulation of STMN1 induction in response to challenge with IgE plus Ag compared to sensitization with IgE only. Phosphoproteomics analysis gave evidence for significant increase at phosphorylation of STMN1 on ser16 after 1min, though a slight rise at 5 min, and on ser38 after 1 and 5min sensitization with IgE and a similar result was observed for 1min IgE plus Ag-activation. IgE plus Ag-activation was also found to induce the phosphorylation of ser38 to a greater extent than sensitization with IgE. In contrast, IgE alone was more effective than IgE plus Ag at inducing phosphorylation of ser16. Collectively this study provides further insights into the role of stathmin 1 in FcRI-mediated activation of cells of mast cell lineage and might shed light on the diverse response of these cells to IgE or IgE plus Ag.


Assuntos
Imunoglobulina E/imunologia , Mastócitos/fisiologia , Estatmina/fisiologia , Animais , Linhagem Celular Tumoral , Leucemia Basofílica Aguda/patologia , Fosforilação , Ratos , Receptores de IgE/fisiologia , Transdução de Sinais
15.
J Immunol ; 187(2): 932-41, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21653832

RESUMO

Mast cells are major players in allergic responses. IgE-dependent activation through FcεR leads to degranulation and cytokine production, both of which require Gab2. To clarify how the signals diverge at Gab2, we established Gab2 knock-in mice that express Gab2 mutated at either the PI3K or SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) binding sites. Examination of these mutants showed that both binding sites were required for the degranulation and anaphylaxis response but not for cytokine production or contact hypersensitivity. Furthermore, the PI3K, but not the SHP2, binding site was important for granule translocation during degranulation. We also identified a small GTPase, ADP-ribosylation factor (ARF)1, as the downstream target of PI3K that regulates granule translocation. FcεRI stimulation induced ARF1 activation, and this response was dependent on Fyn and the PI3K binding site of Gab2. ARF1 activity was required for FcεRI-mediated granule translocation. These data indicated that Fyn/Gab2/PI3K/ARF1-mediated signaling is specifically involved in granule translocation and the anaphylaxis response.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Degranulação Celular/imunologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/metabolismo , Mastócitos/imunologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfoproteínas/fisiologia , Receptores de IgE/fisiologia , Fator 1 de Ribosilação do ADP/deficiência , Fator 1 de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal , Anafilaxia/genética , Anafilaxia/imunologia , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Células da Medula Óssea/enzimologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Degranulação Celular/genética , Linhagem Celular , Membrana Celular/enzimologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Grânulos Citoplasmáticos/enzimologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Técnicas de Introdução de Genes , Mastócitos/enzimologia , Mastócitos/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Transporte Proteico/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia
16.
J Immunol ; 186(6): 3484-96, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21307287

RESUMO

IgE-mediated allergic inflammation occurs when allergens cross-link IgE on the surface of immune cells, thereby triggering the release of inflammatory mediators as well as enhancing Ag presentations. IgE is frequently present in airway secretions, and its level can be enhanced in human patients with allergic rhinitis and bronchial asthma. However, it remains completely unknown how IgE appears in the airway secretions. In this study, we show that CD23 (FcεRII) is constitutively expressed in established or primary human airway epithelial cells, and its expression is significantly upregulated when airway epithelial cells were subjected to IL-4 stimulation. In a transcytosis assay, human IgE or IgE-derived immune complex (IC) was transported across a polarized Calu-3 monolayer. Exposure of the Calu-3 monolayer to IL-4 stimulation also enhanced the transcytosis of either human IgE or the IC. A CD23-specific Ab or soluble CD23 significantly reduced the efficiency of IgE or IC transcytosis, suggesting a specific receptor-mediated transport by CD23. Transcytosis of both IgE and the IC was further verified in primary human airway epithelial cell monolayers. Furthermore, the transcytosed Ag-IgE complexes were competent in inducing degranulation of the cultured human mast cells. Because airway epithelial cells are the first cell layer to come into contact with inhaled allergens, our study implies CD23-mediated IgE transcytosis in human airway epithelial cells may play a critical role in initiating and contributing to the perpetuation of airway allergic inflammation.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Polaridade Celular/imunologia , Imunoglobulina E/metabolismo , Receptores de IgE/fisiologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Transcitose/imunologia , Alérgenos/administração & dosagem , Animais , Complexo Antígeno-Anticorpo/fisiologia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Polaridade Celular/genética , Cricetinae , Cricetulus , Células HEK293 , Células HT29 , Humanos , Imunoglobulina E/fisiologia , Mediadores da Inflamação/administração & dosagem , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Receptores de IgE/biossíntese , Receptores de IgE/genética , Mucosa Respiratória/patologia , Transcitose/genética , Células U937
17.
Brain Behav Immun ; 25(1): 127-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20854894

RESUMO

Circadian rhythm is expressed in most organisms, and many functions and parameters in the immune system are associated with time-of-day. However, it is largely unknown if local circadian clocks in immune cells directly control physiological outcomes. We hypothesized that a circadian clock in murine bone marrow derived mast cells (BMMCs) modulates IgE-dependent activation in vitro. Mature BMMCs, grown from bone marrow of C57BL/6 mice, were synchronized with serum rich media (50% horse serum). Total RNA was harvested from BMMCs at 4 h intervals for up to 72 h following synchronization and expression of circadian genes (mPer1, mPer2, Bmal1, Rev-erbα, and Dbp) was measured by quantitative PCR. Serum shock synchronized expression of circadian genes (mPer2, Bmal1, Rev-erbα, and Dbp) in BMMCs. Synchronized BMMCs stimulated via the high affinity IgE receptor (FcεRI) at different time intervals display circadian rhythms in IL-13 and IL-6 mRNA expression. The expression of fcer1a gene and FcεRIα protein displayed a circadian pattern following serum shock, with mean periods of 18.9 and 28.6 h, respectively. These results demonstrate that synchronized BMMCs provide an in vitro model to study circadian mechanism(s) associated with allergic disease and that circadian oscillation of cytokine production following IgE-dependent activation is at least in part due to circadian oscillation of FcεRIα.


Assuntos
Células da Medula Óssea/fisiologia , Relógios Circadianos/fisiologia , Imunoglobulina E/fisiologia , Mastócitos/fisiologia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Citocinas/biossíntese , Citometria de Fluxo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/biossíntese , Proteínas Circadianas Period/genética , Receptores de IgE/biossíntese , Receptores de IgE/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doença do Soro/patologia
18.
J Immunol ; 186(2): 1060-7, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21160045

RESUMO

Human peripheral blood BCRµ(+) B cells express high levels of CD23 and circulate preloaded with IgE. The Ag specificity of CD23-bound IgE presumably differs from the BCR and likely reflects the Ag-specific mix of free serum IgE. CD23-bound IgE is thought to enhance B cell Ag presentation to T cells raising the question of how a B cell might respond when presented with a broad mix of Ags and CD23-bound IgE specificities. We recently reported that an increase in CD23(+) B cells is associated with the development of resistance to schistosomiasis, highlighting the potential importance of CD23-bound IgE in mediating immunity. We sought to determine the relationship between BCR and CD23-bound IgE-mediated B cell activation in the context of schistosomiasis. We found that crude schistosome Ags downregulate basal B cell activation levels in individuals hyperexposed to infectious worms. Schistosome-specific IgE from resistant, occupationally exposed Kenyans recovered responses of B cells to schistosome Ag. Furthermore, cross-linking of CD23 overrode intracellular signals mediated via the BCR, illustrating its critical and dominating role in B cell activation. These results suggest that CD23-bound IgE augments and dominates recall responses through naive B cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Imunidade Inata/imunologia , Imunoglobulina E/metabolismo , Ativação Linfocitária/imunologia , Receptores de IgE/fisiologia , Fase de Repouso do Ciclo Celular/imunologia , Esquistossomose mansoni/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/metabolismo , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Humanos , Imunidade Inata/genética , Imunoglobulina E/fisiologia , Memória Imunológica/genética , Líquido Intracelular/imunologia , Líquido Intracelular/parasitologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos NZB , Ligação Proteica/imunologia , Receptores de IgE/biossíntese , Receptores de IgE/metabolismo , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/prevenção & controle
19.
J Immunol ; 185(6): 3268-76, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20733205

RESUMO

The term serial engagement was introduced to describe the ability of a single peptide, bound to a MHC molecule, to sequentially interact with TCRs within the contact region between a T cell and an APC. In addition to ligands on surfaces, soluble multivalent ligands can serially engage cell surface receptors with sites on the ligand, binding and dissociating from receptors many times before all ligand sites become free and the ligand leaves the surface. To evaluate the role of serial engagement in Syk activation, we use a detailed mathematical model of the initial signaling cascade that is triggered when FcepsilonRI is aggregated on mast cells by multivalent Ags. Although serial engagement is not required for mast cell signaling, it can influence the recruitment of Syk to the receptor and subsequent Syk phosphorylation. Simulating the response of mast cells to ligands that serially engage receptors at different rates shows that increasing the rate of serial engagement by increasing the rate of dissociation of the ligand-receptor bond decreases Syk phosphorylation. Increasing serial engagement by increasing the rate at which receptors are cross-linked (for example by increasing the forward rate constant for cross-linking or increasing the valence of the ligand) increases Syk phosphorylation. When serial engagement enhances Syk phosphorylation, it does so by partially reversing the effects of kinetic proofreading. Serial engagement rapidly returns receptors that have dissociated from aggregates to new aggregates before the receptors have fully returned to their basal state.


Assuntos
Imunoglobulina E/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mastócitos/enzimologia , Mastócitos/imunologia , Modelos Imunológicos , Proteínas Tirosina Quinases/metabolismo , Receptores de IgE/metabolismo , Regulação para Cima/imunologia , Animais , Sítios de Ligação de Anticorpos/genética , Linhagem Celular Tumoral , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Imunoglobulina E/química , Imunoglobulina E/fisiologia , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/fisiologia , Leucemia Basofílica Aguda/enzimologia , Leucemia Basofílica Aguda/imunologia , Ligantes , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mastócitos/metabolismo , Valor Preditivo dos Testes , Transporte Proteico/genética , Transporte Proteico/imunologia , Ratos , Receptores de IgE/química , Receptores de IgE/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Quinase Syk , Regulação para Cima/genética
20.
FASEB J ; 24(10): 4047-57, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20554927

RESUMO

Mast cells contribute to allergy through IgE-dependent activation via the high-affinity IgE receptor FcεRI. The role of the FcεRIß chain (MS4A2) in mast cell function is not understood fully, although it serves to amplify FcεRI-dependent signaling. We demonstrate the expression of a novel MS4A2 truncation lacking exon 3 in human mast cells termed MS4A2(trunc). MS4A2(trunc) gene expression was regulated negatively by the mast cell growth factor stem cell factor (SCF), and its expression was not detected in the SCF receptor gain-of-function human mast cell line HMC-1. Unlike MS4A2, MS4A2(trunc) did not traffic to the cytoplasmic membrane but instead was associated with the nuclear membrane. Overexpression of MS4A2(trunc) induced human lung mast cell death and profoundly inhibited HMC-1 cell proliferation by inducing G(2)-phase cell cycle arrest and apoptosis. Thus, we have identified a novel splice variant of MS4A2 that might be important in the regulation of human mast cell proliferation and survival. This finding demonstrates that the MS4A2 gene has multiple roles, extending beyond the regulation of acute allergic responses. By understanding the mechanisms regulating its function, it might be possible to induce its expression in mast cells in vivo, which could lead to better treatments for diseases such as mastocytosis and asthma.


Assuntos
Proliferação de Células , Sobrevivência Celular/fisiologia , Mastócitos/citologia , Receptores de IgE/fisiologia , Sequência de Aminoácidos , Apoptose , Sequência de Bases , Western Blotting , Ciclo Celular , DNA , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Receptores de IgE/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA