Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Adv Res ; 54: 43-57, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36716956

RESUMO

BACKGROUND: Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW: This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW: The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Transtornos Relacionados ao Uso de Opioides , Camundongos , Humanos , Animais , Receptores de Imidazolinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transdução de Sinais
2.
Life Sci ; 312: 121210, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410408

RESUMO

AIMS: Reduced cardiac autophagy, ischemic injury, sympathetic overactivity, and apoptosis all contribute to metabolic syndrome (MetS)-associated cardiovascular risks. NR4A2, an orphan nuclear receptor NR4A family member, induces autophagy while suppressing apoptosis in myocardial infarction. Moxonidine, a sympathoinhibitor imidazoline1 receptor (I1R) agonist, has beneficial metabolic and hemodynamic effects; however, whether autophagy and/or NR4A2 signaling are involved in moxonidine's cardiovascular effects via I1R activation, is unknown, and is the aim of this study. MATERIALS AND METHODS: To induce MetS, rats were fed 3 % salt in their diet and 10 % fructose in their drinking water for 12 weeks. MetS-rats were given either moxonidine (6 mg/kg/day, gavage), efaroxan (I1R antagonist, 0.6 mg/kg/day, i.p), both treatments, or vehicles for the last two weeks. Blood pressure, lipid profile, and glycemic control were evaluated. Histopathological examination, circulating cardiac troponin I (c-TnI), proinflammatory interleukin-6 (IL-6), apoptosis (active caspase-3 and Fas-immunostaining), interstitial fibrosis [transforming growth factor-ß1 (TGF-ß1), Mallory's trichrome staining], and extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], were used to assess cardiac pathology. Cardiac NR4A2 and its downstream factor, p53, as well as autophagic flux markers, SQSTM1/p62, LC3, and Beclin-1 were also determined. KEY FINDINGS: Moxonidine significantly ameliorated MetS-induced metabolic and hemodynamic derangements and the associated cardiac pathology. Moxonidine restored NR4A2 and p53 myocardial levels and enhanced autophagic flux via modulating SQSTM1/p62, LC3, and Beclin-1. Efaroxan reversed the majority of the moxonidine-induced improvements. SIGNIFICANCE: The current study suggests that autophagy modulation via I1R activation is involved in moxonidine-mediated cardiac beneficial effects in MetS.


Assuntos
Síndrome Metabólica , Ratos , Animais , Receptores de Imidazolinas/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Proteína Beclina-1/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteína Supressora de Tumor p53 , Autofagia
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163298

RESUMO

Nischarin (Nisch) is a cytosolic scaffolding protein that harbors tumor-suppressor-like characteristics. Previous studies have shown that Nisch functions as a scaffolding protein and regulates multiple biological activities. In the current study, we prepared a complete Nisch knockout model, for the first time, by deletion of exons 5 and 6. This knockout model was confirmed by Qrt-PCR and Western blotting with products from mouse embryonic fibroblast (MEF) cells. Embryos and adult mice of knockouts are significantly smaller than their wild-type counterparts. Deletion of Nisch enhanced cell migration, as demonstrated by wound type and transwell migration assays. Since the animals were small in size, we investigated Nisch's effect on metabolism by conducting several assays using the Seahorse analyzer system. These data indicate that Nisch null cells have lower oxygen consumption rates, lower ATP production, and lower levels of proton leak. We examined the expression of 15 genes involved in lipid and fat metabolism, as well as cell growth, and noted a significant increase in expression for many genes in Nischarin null animals. In summary, our results show that Nischarin plays an important physiological role in metabolic homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores de Imidazolinas/metabolismo , Consumo de Oxigênio/genética , Trifosfato de Adenosina/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Respiração Celular , Fibroblastos , Expressão Gênica/genética , Receptores de Imidazolinas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Consumo de Oxigênio/fisiologia
4.
Biol Direct ; 16(1): 21, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34727954

RESUMO

BACKGROUND: Recently, overwhelming evidence supports that long noncoding RNAs (lncRNAs) play crucial roles in the occurrence and progression of tumors. However, the role and mechanism of lncRNA TFAP2A-AS1 in human gastric cancer (GC) remains unclear. Thus, the biological role and regulatory mechanisms of TFAP2A-AS1 in GC were explored. METHODS: Quantitative real-time PCR (qPCR) was applied to detect gene expression. Western blot was used to measure protein expression. Cell proliferation and migration were determined by functional assays. Fluorescence in situ hybridization (FISH) assays were performed to determine the subcellular distribution of TFAP2A-AS1 in GC. Mechanism investigations were conducted to explore the downstream genes of TFAP2A-AS1 and the upstream transcription factor of TFAP2A-AS1 in GC cells. RESULTS: TFAP2A-AS1 inhibits the proliferation and migration of GC cells. In the downstream regulation mechanism, miR-3657 was verified as the downstream gene of TFAP2A-AS1 and NISCH as the target of miR-3657. NISCH also suppresses cell proliferation and migration in GC. In the upstream regulation mechanism, transcription factor KLF15 positively mediates TFAP2A-AS1 to suppress GC cell proliferation and migration. CONCLUSION: KLF15-mediated TFAP2A-AS1 hampers cell proliferation and migration in GC via miR-3657/NISCH axis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Imidazolinas , Hibridização in Situ Fluorescente , Fatores de Transcrição Kruppel-Like , RNA Antissenso , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição
5.
Biochem Biophys Res Commun ; 585: 29-35, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34781058

RESUMO

Epidemiologic evidence has suggested a relationship between di (2-ethylhexyl) phthalate (DEHP) prenatal exposure and autism spectrum disorders (ASD), but the underlying mechanisms are still at large unknown. In this study, pregnant mice were intragastrically administered with DEHP once a day from GD 3 to GD 17 and the neurobehavioral changes of offspring were evaluated. In addition to the repetitive stereotyped behaviors, DEHP at the concentration of 50 mg/kg/day and above significantly impaired the sociability of the offspring (P < 0.05) and decreased the density of dendritic spines of pyramidal neurons in the prefrontal cortex (P < 0.05). At the same time, the expression of Nischarin protein in prefrontal lobe increased (P < 0.05). Similarly, after 12-h incubation of DEHP at the concentration of 100 nM, the total spine density, especially the mushroom and stubby spine populations, significantly decreased in the primary cultured prefrontal cortical neurons (P < 0.05). However, the inhibitory effect of DEHP were reversed by knockdown of Nischarin expression. Collectively, these results suggest that prenatal DEHP exposure induces Nischarin expression, causes dendritic spine loss, and finally leads to autism-like behavior in mouse offspring.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Dietilexilftalato/toxicidade , Receptores de Imidazolinas/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Transtorno do Espectro Autista/induzido quimicamente , Linhagem Celular Tumoral , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Feminino , Receptores de Imidazolinas/genética , Camundongos Endogâmicos ICR , Plastificantes/toxicidade , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Comportamento Social
6.
Eur J Med Chem ; 222: 113540, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118720

RESUMO

Recent findings unveil the pharmacological modulation of imidazoline I2 receptors (I2-IR) as a novel strategy to face unmet medical neurodegenerative diseases. In this work, we report the chemical characterization, three-dimensional quantitative structure-activity relationship (3D-QSAR) and ADMET in silico of a family of benzofuranyl-2-imidazoles that exhibit affinity against human brain I2-IR and most of them have been predicted to be brain permeable. Acute treatment in mice with 2-(2-benzofuranyl)-2-imidazole, known as LSL60101 (garsevil), showed non-warning properties in the ADMET studies and an optimal pharmacokinetic profile. Moreover, LSL60101 induced hypothermia in mice while decreased pro-apoptotic FADD protein in the hippocampus. In vivo studies in the familial Alzheimer's disease 5xFAD murine model with the representative compound, revealed significant decreases in the protein expression levels of antioxidant enzymes superoxide dismutase and glutathione peroxidase in hippocampus. Overall, LSL60101 plays a neuroprotective role by reducing apoptosis and modulating oxidative stress.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzofuranos/farmacologia , Imidazóis/farmacologia , Receptores de Imidazolinas/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Receptores de Imidazolinas/metabolismo , Ligantes , Masculino , Camundongos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Commun Biol ; 4(1): 269, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649389

RESUMO

The success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Vacinas Anticâncer/farmacologia , Fibrossarcoma/tratamento farmacológico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fibrossarcoma/imunologia , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores de Imidazolinas/imunologia , Receptores de Imidazolinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral
8.
Neurotherapeutics ; 17(3): 1005-1015, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572830

RESUMO

Anti-cancer therapy based on the repeated administration of oxaliplatin is limited by the development of a disabling neuropathic syndrome with detrimental effects on the patient's quality of life. The lack of effective pharmacological approaches calls for the identification of innovative therapeutic strategies based on new targets. We focused our attention on the imidazoline I1 receptor (I1-R) and in particular on the selective I1-R agonist 2-(1-([1,1'-biphenyl]-2-yl)propan-2-yl)-4,5-dihydro-1H-imidazole) (carbophenyline). The purpose of this work was the preclinical evaluation of the efficacy of carbophenyline on oxaliplatin-induced neuropathic pain in mice. Carbophenyline, acutely per os administered (0.1-10 mg kg-1), induced a dose-dependent anti-hyperalgesic effect that was completely blocked by the pre-treatment with the I1-R antagonist 3 or the I1/α2 receptor antagonist efaroxan, confirming the I1-R-dependent mechanism. Conversely, pre-treatment with the I2-R antagonist BU224 did not block the anti-nociceptive effect evoked by carbophenyline. Repeated oral administrations of carbophenyline (1 mg kg-1) for 14 days, starting from the first day of oxaliplatin injection, counteracted the development of neuropathic pain in all behavioral tests (cold plate, Von Frey, and paw pressure tests) carried out 24 h after the last carbophenyline treatment on days 7 and 14. In the dorsal horn of the spinal cord, carbophenyline significantly decreased the oxaliplatin-induced astrocyte activation detected by immunofluorescence staining by the specific labelling with GFAP antibody. In conclusion, carbophenyline showed anti-neuropathic properties both after acute and chronic treatment with preventive effect against oxaliplatin-induced astrocyte activation in the spinal cord. Therefore, I1-R agonists emerge as a new class of candidates for the management of oxaliplatin-induced neuropathic pain.


Assuntos
Imidazóis/administração & dosagem , Receptores de Imidazolinas/agonistas , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Oxaliplatina/toxicidade , Medição da Dor/efeitos dos fármacos , Animais , Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Células HT29 , Humanos , Imidazóis/química , Camundongos , Medição da Dor/métodos
9.
Int J Cancer ; 146(9): 2576-2587, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525254

RESUMO

Previously, our lab discovered the protein Nischarin and uncovered its role in regulating cell migration and invasion via its interactions with several proteins. We subsequently described a role for Nischarin in breast cancer, in which it is frequently underexpressed. To characterize Nischarin's role in breast tumorigenesis and mammary gland development more completely, we deleted a critical region of the Nisch gene (exons 7-10) from the mouse genome and observed the effects. Mammary glands in mutant animals showed delayed terminal end bud formation but did not develop breast tumors spontaneously. Therefore, we interbred the animals with transgenic mice expressing the mouse mammary tumor virus-polyoma middle T-antigen (MMTV-PyMT) oncogene. The MMTV-PyMT mammary glands lacking Nischarin showed increased hyperplasia compared to wild-type animal tissues. Furthermore, we observed significantly increased tumor growth and metastasis in Nischarin mutant animals. Surprisingly, Nischarin deletion decreased activity of AMPK and subsequently its downstream effectors. Given this finding, we treated these animals with metformin, which enhances AMPK activity. Here, we show for the first time, metformin activates AMPK signaling and inhibits tumor growth of Nischarin lacking PyMT tumors suggesting a potential use for metformin as a cancer therapeutic, particularly in the case of Nischarin-deficient breast cancers.


Assuntos
Transformação Celular Neoplásica/patologia , Receptores de Imidazolinas/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Metformina/farmacologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Feminino , Hipoglicemiantes/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Mamárias Animais/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Knockout , Invasividade Neoplásica
10.
Clin Exp Pharmacol Physiol ; 47(4): 609-619, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31869439

RESUMO

Insulin resistance and chronic alcoholism are risk factors for renal dysfunction. This study investigated the therapeutic effects of two imidazoline-1 receptor (I1R) agonists on renal dysfunction in rats after chronic, sequential fructose and ethanol administration. Daily drinking water was supplemented with fructose (10%, w/v) for 12 weeks and then with ethanol (20%, v/v) for another 8 weeks. Rats were treated with rilmenidine and clonidine in the last two weeks of the study. Blood glucose and serum insulin (sIns) levels, lipid profiles, kidney function and renal histopathology were evaluated at the end of the experiment. Additionally, renal gene expression of nischarin, phosphatidylcholine-specific phospholipase C (PC-PLC) and prostaglandin E2 (PGE2) were measured. Renal levels of superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS) and total NO (tNO) were detected, and we determined the relative renal gene expression levels of alpha smooth muscle actin (α-SMA), hydroxyproline, interleukin 10 (IL-10), tumour necrosis factor alpha (TNF-α) and caspase-3. The results showed significant deterioration of blood glucose, sIns, lipid profiles, kidney function and renal histopathology in fructose/ethanol-fed rats. Additionally, markers of inflammation, fibrosis, apoptosis and oxidative stress were upregulated. The administration of rilmenidine or clonidine significantly improved blood glucose and sIns levels and reduced renal dysfunction. Our work showed that chronic, sequential fructose and ethanol administration induced fasting hyperglycaemia and renal impairment, and these effects were ameliorated by I1R agonists.


Assuntos
Etanol/efeitos adversos , Frutose/efeitos adversos , Receptores de Imidazolinas/agonistas , Rim/efeitos dos fármacos , Rim/fisiopatologia , Animais , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Frutose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Ratos , Fatores de Tempo
11.
Crit Care Med ; 48(1): e40-e47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634234

RESUMO

OBJECTIVES: The knowledge that agmatine is found in the human body has existed for several years; however, its role in sepsis has not yet been studied. In the present study, we investigate the role of agmatine in the progression and treatment of sepsis. DESIGN: Clinical/laboratory investigations. SETTING: Medical centers/University-based research laboratory. SUBJECTS: Elective ICU patients with severe sepsis and healthy volunteers; C57BL/6 mice weighing 18-22 g. INTERVENTIONS: Serum agmatine level and its associations with inflammatory markers were assessed in patients with sepsis. Agmatine was administered intraperitoneally to mice before a lipopolysaccharide challenge. Human peripheral blood mononuclear cells and murine macrophages were pretreated with agmatine followed by lipopolysaccharide stimulation. MEASUREMENTS AND MAIN RESULTS: Serum agmatine levels were significantly decreased in patients with sepsis and lipopolysaccharide-induced mice, and correlated with Acute Physiology and Chronic Health Evaluation II score, procalcitonin, tumor necrosis factor-α, and interleukin-6 levels. In a therapeutic experiment, exogenous agmatine attenuated the cytokine production of peripheral blood mononuclear cells from patients with sepsis and healthy controls. Agmatine also exerted a significant beneficial effect in the inflammatory response and organ damage and reduced the death rate in lipopolysaccharide-induced mice. Imidazoline I2 receptor agonist 2-benzofuran-2-yl blocked the pharmacological action of agmatine; whereas, other imidazoline receptor ligands did not. Furthermore, agmatine significantly impaired the inflammatory response by inactivating nuclear factor-κB, but not protein 38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and inducible nitric oxide synthase signaling in macrophages. Activation of imidazoline I2 receptor or knockdown of ribosomal S6 kinase 2 counteracted the effects of agmatine on phosphorylation and degradation of inhibitor of nuclear factor-κBα. CONCLUSIONS: Endogenous agmatine metabolism correlated with the progression of sepsis. Supplemental exogenous agmatine could ameliorate the lipopolysaccharide-induced systemic inflammatory responses and multiple organ injuries through the imidazoline I2 receptor-ribosomal S6 kinase 2-nuclear factor-κB pathway. Agmatine could be used as both a clinical biomarker and a promising pharmaconutrient in patients with severe sepsis.


Assuntos
Agmatina/uso terapêutico , Receptores de Imidazolinas/fisiologia , NF-kappa B/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Sepse/tratamento farmacológico , Transdução de Sinais/fisiologia , Agmatina/farmacologia , Animais , Células Cultivadas , Progressão da Doença , Humanos , Receptores de Imidazolinas/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348885

RESUMO

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
13.
Cancer Res ; 79(9): 2099-2101, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043427

RESUMO

The intercellular exchange of exosomes may play a regulatory function in tumor progression and metastasis. Maziveyi and colleagues demonstrated that Nischarin regulated the secretion of exosomes from breast cancer cells. Loss of Nischarin expression increased exosome production and promoted tumor cell growth and migration, supporting that Nischarin can influence the behavior of surrounding cancer cells. This study identified a novel function of the tumor suppressor Nischarin in exosome biology and cancer progression.See related article by Maziveyi et al., p. 2152.


Assuntos
Neoplasias da Mama/genética , Exossomos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Imidazolinas/genética , Peptídeos e Proteínas de Sinalização Intracelular
14.
Biochem Biophys Res Commun ; 512(3): 460-466, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30902386

RESUMO

Morphine is a potent opioid analgesic used to alleviate moderate or severe pain, but the development of drug tolerance and dependence limits its use in pain management. Our previous studies showed that the candidate protein for I1 imidazoline receptor, imidazoline receptor antisera-selected (IRAS)/Nischarin, interacts with µ opioid receptor (MOR) and modulates its trafficking. However, there is no report of the effect of IRAS on morphine tolerance and physical dependence. In the present study, we found that IRAS knockout (KO) mice showed exacerbated analgesic tolerance and physical dependence compared to wild-type (WT) mice by chronic morphine treatment. Chronic morphine treatment down-regulated the expression of MOR in spinal cord of IRAS KO mice, while had no significant effect on MOR expression in WT mice. We observed the compensatory increase of cAMP accumulation in spinal cord after morphine tolerance, and this change was more significant in KO mice than WT mice. Furthermore, KO mice showed more elevation in the phosphorylation of AMPA receptor GluR1-S845 than WT mice, while the total expression of GluR1 remained unchanged after morphine dependence. Altogether, these data suggest that IRAS may play an important role in the development of morphine tolerance and physical dependence in vivo through modulating MOR expression, as well as AMPA GluR1-S845 phosphorylation, which might be one of the mechanisms underlying the development of opiate addiction.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos , Receptores de Imidazolinas/metabolismo , Dependência de Morfina/metabolismo , Morfina/farmacologia , Animais , AMP Cíclico/metabolismo , Receptores de Imidazolinas/genética , Camundongos , Camundongos Knockout , Dependência de Morfina/genética
15.
Cancer Res ; 79(9): 2152-2166, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30635277

RESUMO

Exosomes are small extracellular microvesicles that are secreted by cells when intracellular multivesicular bodies fuse with the plasma membrane. We have previously demonstrated that Nischarin inhibits focal adhesion formation, cell migration, and invasion, leading to reduced activation of focal adhesion kinase. In this study, we propose that the tumor suppressor Nischarin regulates the release of exosomes. When cocultured on exosomes from Nischarin-positive cells, breast cancer cells exhibited reduced survival, migration, adhesion, and spreading. The same cocultures formed xenograft tumors of significantly reduced volume following injection into mice. Exosomes secreted by Nischarin-expressing tumors inhibited tumor growth. Expression of only one allele of Nischarin increased secretion of exosomes, and Rab14 activity modulated exosome secretions and cell growth. Taken together, this study reveals a novel role for Nischarin in preventing cancer cell motility, which contributes to our understanding of exosome biology. SIGNIFICANCE: Regulation of Nischarin-mediated exosome secretion by Rab14 seems to play an important role in controlling tumor growth and migration.See related commentary by McAndrews and Kalluri, p. 2099.


Assuntos
Neoplasias da Mama , Exossomos , Animais , Linhagem Celular Tumoral , Movimento Celular , Receptores de Imidazolinas , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos
16.
Behav Pharmacol ; 30(5): 429-434, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30383551

RESUMO

Pharmacotherapies for fibromyalgia treatment are lacking. This study examined the antinociceptive and antidepressant-like effects of imidazoline I2 receptor (I2R) agonists in a reserpine-induced model of fibromyalgia in rats. Rats were treated for 3 days with vehicle or reserpine. The von Frey filament test was used to assess the antinociceptive effects of I2 receptor agonists, and the forced swim test was used to assess the antidepressant-like effects of these drugs. 2-BFI (3.2-10 mg/kg, intraperitoneally), phenyzoline (17.8-56 mg/kg, intraperitoneally), and CR4056 (3.2-10 mg/kg, intraperitoneally) all dose-dependently produced significant antinociceptive effects, which were attenuated by the I2R antagonist idazoxan. Only CR4056 significantly reduced the immobility time in the forced swim test in both vehicle-treated and reserpine-treated rats. These data suggest that I2R agonists may be useful to treat fibromyalgia-related pain and comorbid depression.


Assuntos
Hiperalgesia/tratamento farmacológico , Idazoxano/farmacologia , Receptores de Imidazolinas/metabolismo , Analgésicos/farmacologia , Animais , Benzofuranos/farmacologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Fibromialgia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Idazoxano/metabolismo , Imidazóis/farmacologia , Receptores de Imidazolinas/agonistas , Imidazolinas/metabolismo , Imidazolinas/farmacologia , Masculino , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reserpina/farmacologia
17.
PLoS One ; 13(6): e0198945, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912916

RESUMO

Malat1 is a long noncoding RNA with a wide array of functions, including roles in regulating cancer cell migration and metastasis. However, the nature of its involvement in control of these oncogenic processes is incompletely understood. In the present study, we investigate the role of Malat1 and the effects of Malat1 KO in a breast cancer cell model. Our selection of Malat1 as the subject of inquiry followed initial screening experiments seeking to identify lncRNAs which are altered in the presence or absence of Nischarin, a gene of interest previously discovered by our lab. Nischarin is a well characterized tumor suppressor protein and actively represses cell proliferation, migration, and invasion in breast cancer. Our microarray screen for lncRNAs revealed multiple lncRNAs to be significantly elevated in cells ectopically expressing Nischarin compared to control cancer cells, which have only marginal Nisch expression. Using these cells, we assess how the link between Nischarin and Malat1 affects cancer cell function, finding that Malat1 confers an inhibitory effect on cell growth and migration which is lost following Malat1 KO, but in a Nisch-dependent context. Specifically, Malat1 KO in the background of low Nischarin expression had a limited effect on cell functions, while Malat1 KO in cells with high levels of Nischarin led to significant increases in cell proliferation and migration. In summary, this project provides further clarity concerning the function of Malat1, specifically in breast cancer, while also indicating that the Nischarin expression context is an important factor in the determining how Malat1 activity is governed in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Imidazolinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Eur J Pharmacol ; 824: 148-156, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29452086

RESUMO

Chronic alcoholism is a risk factor for kidney injury. Clonidine is an α2-adrenergic receptor/imidazoline-1 receptor agonist that can reduce blood pressure and maintain renal functions. This study aims to investigate the possible ameliorative effects of clonidine on ethanol induced kidney injury and its mechanism of action. Kidney injury was induced in rats by adding ethanol to drinking water for eight weeks. Clonidine effects on kidney functions and histopathology were measured. Moreover, phentolamine (α-adrenergic receptor antagonist), efaroxan (imidazoline-1 receptor antagonist) and rilmenidine (imidazoline-1 receptor agonist) were used to clarify the role of imidazoline-1 receptor in mediating renal ameliorative effects. Also, the effect of clonidine on liver functions and metabolic changes, in addition to renal oxidative stress, inflammatory and apoptotic pathways were measured. Results showed that, clonidine improved renal functions and reduced ethanol induced renal inflammation and fibrosis. On the other hand, efaroxan, only, blocked clonidine effects on kidney functions. Rilmenidine decreased kidney injury like clonidine. Both clonidine and rilmenidine increased renal nischarin gene expression. Furthermore, clonidine improved liver functions, increased serum insulin and decreased serum advanced glycation end products (metabolic markers). Also, clonidine reduced renal oxidative stress as reflected by decreased myeloperoxidase, malondialdehyde, inducible nitric oxide synthase and total nitric oxide levels and increased superoxide dismutase level. Moreover, clonidine reduced renal tumor necrosis factor-α (inflammatory marker) and caspase-3 (apoptotic marker) levels, while increased renal prostaglandine E2 and interleukin-10 levels (anti-inflammatory markers). In conclusion, clonidine can reduce ethanol induced kidney injury, at least in part, by stimulating imidazoline-1 receptor signaling.


Assuntos
Clonidina/farmacologia , Etanol/efeitos adversos , Receptores de Imidazolinas/metabolismo , Rim/efeitos dos fármacos , Rim/lesões , Animais , Apoptose/efeitos dos fármacos , Clonidina/uso terapêutico , Citoproteção/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Mol Cancer ; 17(1): 21, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415725

RESUMO

BACKGROUND: During metastasis, tumor cells move through the tracks of extracellular matrix (ECM). Focal adhesions (FAs) are the protein complexes that link the cell cytoskeleton to the ECM and their presence is necessary for cell attachment. The tumor suppressor Nischarin interacts with a number of signaling proteins such as Integrin α5, PAK1, LIMK1, LKB1, and Rac1 to prevent cancer cell migration. Although previous findings have shown that Nischarin exerts this migratory inhibition by interacting with other proteins, the effects of these interactions on the entire FA machinery are unknown. METHODS: RT-PCR, Western Blotting, invadopodia assays, and immunofluorescence were used to examine FA gene expression and determine whether Nischarin affects cell attachment, as well as the proteins that regulate it. RESULTS: Our data show that Nischarin prevents cell migration and invasion by altering the expression of key focal adhesion proteins. Furthermore, we have found that Nischarin-expressing cells have reduced ability to attach the ECM, which in turn leads to a decrease in invadopodia-mediated matrix degradation. CONCLUSIONS: These experiments demonstrate an important role of Nischarin in regulating cell attachment, which adds to our understanding of the early events of the metastatic process in breast cancer.


Assuntos
Neoplasias da Mama/genética , Adesão Celular/genética , Receptores de Imidazolinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Podossomos/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Receptores de Imidazolinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Podossomos/metabolismo
20.
Sci Rep ; 7(1): 12496, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970529

RESUMO

Chronic otitis media with effusion (COME) is the most common cause of hearing loss in children, and known to have high heritability. Mutant mouse models have identified Fbxo11, Evi1, Tgif1, and Nisch as potential risk loci. We recruited children aged 10 and under undergoing surgical treatment for COME from 35 hospitals in the UK, and their nuclear family. We performed association testing with the loci FBXO11, EVI1, TGIF1 and NISCH and sought to replicate significant results in a case-control cohort from Finland. We tested 1296 families (3828 individuals), and found strength of association with the T allele at rs881835 (p = 0.006, OR 1.39) and the G allele at rs1962914 (p = 0.007, OR 1.58) at TGIF1, and the A allele at rs10490302 (p = 0.016, OR 1.17) and the G allele at rs2537742 (p = 0.038, OR 1.16) at FBXO11. Results were not replicated. This study supports smaller studies that have also suggested association of otitis media with polymorphism at FBX011, but this is the first study to report association with the locus TGIF1. Both FBX011 and TGIF1 are involved in TGF-ß signalling, suggesting this pathway may be important in the transition from acute to chronic middle ear inflammation, and a potential molecular target.


Assuntos
Proteínas F-Box/genética , Loci Gênicos , Proteínas de Homeodomínio/genética , Otite Média com Derrame/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta1/genética , Alelos , Animais , Criança , Pré-Escolar , Doença Crônica , Estudos de Coortes , Modelos Animais de Doenças , Proteínas F-Box/metabolismo , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Humanos , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Masculino , Camundongos , Otite Média com Derrame/metabolismo , Otite Média com Derrame/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA