Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Epigenetics ; 19(1): 2352683, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38723244

RESUMO

Some benign and malignant breast tumours are similar in pathological morphology, which are difficult to be distinguished in clinical diagnosis. In this study, we intended to explore novel biomarkers for differential diagnosis of benign and malignant breast tumours. Methylation EPIC 850K beadchip and RNA-sequencing were used to analyse 29 tissue samples from patients with early-stage breast cancer (BC) and benign breast tumours for differently methylated and expressed genes. The altered methylation of IL21R was semi-quantitatively validated in an independent study with 566 tissue samples (279 BC vs. 287 benign breast tumours) using mass spectrometry. Binary logistic regression analysis was performed to evaluate the association between IL21R methylation and BC. BC-associated IL21R hypomethylation and overexpression were identified in the discovery round. In the validation round, BC patients presented significant IL21R hypomethylation compared to women with benign breast tumours (ORs ≥1.29 per-10% methylation, p-values ≤ 5.69E-14), and this hypomethylation was even enhanced in BC patients with ER-negative and PR-negative tumours as well as with triple-negative tumours. The methylation of IL21R showed efficient discriminatory power to distinguish benign breast tumours from BC (area under curve (AUC) = 0.88), and especially from ER-negative BC (AUC = 0.95), PR-negative BC (AUC = 0.93) and triple-negative BC (AUC = 0.96). We disclosed significant IL21R hypomethylation in patients with BC compared to women with benign breast tumours, and revealed the somatic change of DNA methylation could be a potential biomarker for molecular pathology of BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Metilação de DNA , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Diagnóstico Diferencial , Subunidade alfa de Receptor de Interleucina-21 , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo
2.
Pharmacol Res ; 203: 107178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583686

RESUMO

Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.


Assuntos
Bleomicina , Ativação de Macrófagos , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Bleomicina/toxicidade , Camundongos , Masculino , Receptores de Interleucina/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/imunologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Células THP-1 , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/induzido quimicamente , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
3.
Nature ; 628(8008): 620-629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509369

RESUMO

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Assuntos
Infecções por Vírus Epstein-Barr , Interleucina-27 , Receptores de Interleucina , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Alelos , Linfócitos B/patologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Finlândia , Frequência do Gene , Herpesvirus Humano 4 , Homozigoto , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/terapia , Interleucina-27/imunologia , Interleucina-27/metabolismo , Mutação com Perda de Função , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Resultado do Tratamento
4.
Inflammation ; 47(2): 807-821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117410

RESUMO

Interleukin-27 receptor (IL-27R) is expressed in a variety of immune cells and structural cells, including dendritic cells. The mechanism of IL-27 in asthma has not been fully elucidated. This study aimed to examine whether IL-27 regulated the CD39/ATP axis of dendritic cells in asthma. Our results showed that in ovalbumin (OVA)-induced asthma mouse model, IL-27Rα-/- asthmatic mice showed increased airway resistance, increased infiltration of inflammatory cells in lung tissue, proliferation of goblet cells, enhanced expression of Muc5 AC around airway epithelium, increased total number of cells and eosinophils, increased levels of total IgE, OVA-IgE, IL-4, IL-5, IL-13 and IL-17 A, and increased expression of transcription factors GATA-3 and RORγt in lung tissue. The expression of CD39 mRNA and protein in the lung tissue of IL-27Rα-/- asthmatic mice decreased, and the expression of NLRP3, ASC and Caspase-1 in NLRP3 inflammasome components increased. The concentration of ATP was significantly increased compared with WT asthmatic mice. In vitro experiments showed that the expression of CD39 in lung dendritic cells of IL-27Rα-/- asthmatic mice decreased, while the expression of NLRP3 inflammasome components NLRP3, ASC and Caspase-1 increased. These findings indicate that IL-27 directly and indirectly regulates immunoinflammatory responses in asthma by acting on dendritic cells CD39/ATP Axis.


Assuntos
Trifosfato de Adenosina , Antígenos CD , Apirase , Asma , Células Dendríticas , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Asma/imunologia , Asma/metabolismo , Asma/induzido quimicamente , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Inflamação/metabolismo , Inflamação/imunologia , Interleucinas/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina/toxicidade , Receptores de Interleucina/metabolismo , Hipersensibilidade Respiratória/metabolismo
5.
Mol Immunol ; 164: 28-38, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944204

RESUMO

The immune system contributes to the pathophysiology of endometriosis. The role of ThGM cells, which produce granulocyte macrophage-colony-stimulating factor (GM-CSF), in the pathogenesis of endometriosis remains unknown. To analyze the features of ThGM cells in endometriosis, a mouse endometriosis model was established. ThGM cells in the spleen, peritoneal fluid (PF), and endometriotic lesions (EL) were measured by flow cytometry, based on the expression of surface markers and intracellular proteins. Live ThGM cells were sorted according to chemokine receptor expression profiles and their effects on other CD4+ T cell subsets were determined by co-culture assays. An adoptive transfer assay was performed to characterize the effect of ThGM cells on endometriosis. We found that ThGM cells were present in endometriotic PF and EL. Live EL ThGM cells were enriched in CD4+CXCR3-CCR8-CCR4+CCR10+ T cells. EL ThGM cells differentially express interleukin-35 receptor (IL-35R), consisting of an IL-35R+ subset and an IL-35R- subset. The IL-35R+ subset expressed less GM-CSF, interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α) and proliferated slower than the IL-35R- subset. Meanwhile, the IL-35R+ subset was weaker than the IL-35R- subset in promoting the functions of Th1 and Th17 cells. ThGM cell transfer did not influence EL development but significantly alleviated pro-inflammatory cytokines in PF and ELs. Interleukin-35 (IL-35), the ligand of IL-35R, suppressed ThGM cell function and proliferation in an IL-35R-dependent manner. In summary, ThGM cells in the PF and ELs might exacerbate endometriotic inflammation. IL-35 might suppress the function of ThGM cells via IL-35R.


Assuntos
Endometriose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Receptores de Interleucina , Animais , Feminino , Humanos , Camundongos , Endometriose/metabolismo , Endometriose/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Granulócitos/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
6.
Cell Rep ; 42(5): 112483, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37148242

RESUMO

Metaphocytes are tissue-resident macrophage (TRM)/dendritic cell (DC)-like cells of non-hematopoietic origin in zebrafish barrier tissues. One remarkable property of metaphocytes is their ability to capture soluble antigens from the external environment via transepithelial protrusions, a unique function manifested by specialized subpopulations of the TRMs/DCs in mammal barrier tissues. Yet, how metaphocytes acquire myeloid-like cell properties from non-hematopoietic precursors and how they regulate barrier immunity remains unknown. Here, we show that metaphocytes are in situ generated from local progenitors guided by the ETS transcription factor Spic, the deficiency of which results in the absence of metaphocytes. We further document that metaphocytes are the major IL-22BP-producing cells, and the depletion of metaphocytes causes dysregulated barrier immunity that resembles the phenotype of IL-22BP-deficient mice. These findings reveal the ontogeny, development, and function of metaphocytes in zebrafish, which facilitates our understanding of the nature and function of the mammalian TRM/DC counterparts.


Assuntos
Células Dendríticas , Peixe-Zebra , Animais , Camundongos , Diferenciação Celular , Proteínas de Ligação a DNA , Mamíferos , Receptores de Interleucina/metabolismo
7.
Physiol Rep ; 11(2): e15581, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708509

RESUMO

Macrophages play crucial roles in abdominal aortic aneurysm (AAA) formation through the inflammatory response and extracellular matrix degradation; therefore, regulating macrophages may suppress AAA formation. Interleukin-38 (IL-38) is a member of the IL-1 family, which binds to IL-36 receptor (IL1RL2) and has an anti-inflammation effect. Because macrophages express IL1RL2, we hypothesized that IL-38 suppresses AAA formation by controlling macrophages. We assessed a C57BL6/J mouse angiotensin II-induced AAA model with or without IL-38 treatment. RAW 264.7 cells were cultured with tumor necrosis factor-α and treated with or without IL-38. Because p38 has important roles in inflammation, we assessed p38 phosphorylation in vitro and in vivo. To clarify whether the IL-38 effect depends on the p38 pathway, we used SB203580 to inhibit p38 phosphorylation. IL1RL2+ macrophage accumulation along with matrix metalloproteinase (MMP)-2 and -9 expression was observed in mouse AAA. IL-38 reduced the incidence of AAA formation along with reduced M1 macrophage accumulation and MMP-2 and -9 expression in the AAA wall. Macrophage activities including inducible nitric oxide, MMP-2, and MMP-9 production and spindle-shaped changes were significantly suppressed by IL-38. Furthermore, we revealed that inhibition of p38 phosphorylation diminished the effects of IL-38 on regulating macrophages to reduce AAA incidence, indicating the protective effects of IL-38 depend on the p38 pathway. IL-38 plays protective roles against AAA formation through regulation of macrophage accumulation in the aortic wall and modulating the inflammatory phenotype. Using IL-38 may be a novel therapy for AAA patients.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 2 da Matriz , Animais , Camundongos , Angiotensina II/farmacologia , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Interleucinas/metabolismo , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Front Immunol ; 14: 1297329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162637

RESUMO

Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.


Assuntos
Antígeno B7-2 , Exaustão do Sistema Imunitário , Monócitos , Receptores de Interleucina , Sepse , Animais , Humanos , Camundongos , Proteínas do Domínio Armadillo/metabolismo , Antígeno B7-2/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais , Camundongos Knockout , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo
9.
Front Immunol ; 13: 915246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874683

RESUMO

Cytokines and cytokine receptors are important mediators in immunity and cancer development. Interleukin 22 (IL22) is one of the most important cytokines which has protumor effect. Given that common and specific roles of cytokines/receptors in multiple cancers, we conducted a pan-cancer study to investigate the role of IL22RA1 in cancer using The Cancer Genome Atlas (TCGA) database. Notably, we found IL22RA1 transcript was upregulated in 11 cancer types compared with their corresponding control. The mRNA expression level of IL22RA1 was highest in the pancreas among tumor tissues. The higher expression of IL22RA1 was associated with worse overall survival rate in patients. A total of 30 IL22RA1-correlated genes (e.g. IL17D, IL22RA2, IL20RB, IL10RA, IL10RB, TSLP and TYK2) are involved in the JAK/STAT pathway which promotes tumor progression. The upregulation of IL22RA1 in tumors was correlated with immune cell infiltration level. Higher expression of IL22RA2, IL20RB, IL10RA, IL10RB, TSLP, TYK2, STAT1 and STAT3 was associated with decreased overall survival rate in patients. IL22RA1 mutation was observed more in uterine cancer and melanoma compared with the other cancer types. Deactivation of IL22RA1 induced a lot of changes in gene expression. IL22RA1 mutants had upregulated DNA damage/repair genes in uterine cancer, whereas downregulated genes in the FoxO signaling pathway. In melanoma, mutation of IL22RA1 can upregulate the HIF signaling pathway but downregulate metabolic pathways. Our study suggests that IL22RA1/JAK/STAT signaling can be an important target for cancer treatment.


Assuntos
Melanoma , Neoplasias Uterinas , Citocinas/metabolismo , Feminino , Humanos , Janus Quinases/metabolismo , Receptores de Interleucina/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054942

RESUMO

Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rß subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.


Assuntos
Encéfalo/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Animais , Encéfalo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalite/patologia , Expressão Gênica , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Interleucinas/genética , Camundongos , Camundongos Knockout , Microglia/metabolismo , Ligação Proteica , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de Interleucina/genética , Transdução de Sinais , Interleucina 22
11.
J Immunol ; 208(3): 642-650, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34996840

RESUMO

TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptor gp130 de Citocina/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Proliferação de Células , Hipersensibilidade Tardia/imunologia , Interleucina-10/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas com Domínio T/metabolismo , Fator 5 Associado a Receptor de TNF/genética
12.
Cell ; 184(26): 6281-6298.e23, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875227

RESUMO

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.


Assuntos
Autoimunidade , Intestinos/imunologia , Células-Tronco/metabolismo , Células Th17/imunologia , Animais , Movimento Celular , Células Clonais , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Homeostase , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , RNA/metabolismo , RNA-Seq , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR6/metabolismo , Receptores de Interleucina/metabolismo , Reprodutibilidade dos Testes , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Análise de Célula Única , Baço/metabolismo
13.
Nature ; 600(7888): 314-318, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819664

RESUMO

Thermogenesis in brown and beige adipose tissue has important roles in maintaining body temperature and countering the development of metabolic disorders such as obesity and type 2 diabetes1,2. Although much is known about commitment and activation of brown and beige adipose tissue, its multiple and abundant immunological factors have not been well characterized3-6. Here we define a critical role of IL-27-IL-27Rα signalling in improving thermogenesis, protecting against diet-induced obesity and ameliorating insulin resistance. Mechanistic studies demonstrate that IL-27 directly targets adipocytes, activating p38 MAPK-PGC-1α signalling and stimulating the production of UCP1. Notably, therapeutic administration of IL-27 ameliorated metabolic morbidities in well-established mouse models of obesity. Consistently, individuals with obesity show significantly decreased levels of serum IL-27, which can be restored after bariatric surgery. Collectively, these findings show that IL-27 has an important role in orchestrating metabolic programs, and is a highly promising target for anti-obesity immunotherapy.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Interleucina-27/metabolismo , Termogênese , Animais , Cirurgia Bariátrica , Modelos Animais de Doenças , Feminino , Humanos , Resistência à Insulina , Interleucina-27/sangue , Interleucina-27/uso terapêutico , Masculino , Camundongos , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/prevenção & controle , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Interleucina/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Front Immunol ; 12: 778830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777396

RESUMO

Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6Chi population, and deplete the homeostatic non-classical Ly6Clo population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6Chi monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD+; elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.


Assuntos
Memória Imunológica , Inflamação/imunologia , Monócitos/imunologia , Sepse/imunologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Células Cultivadas , Memória Imunológica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fenótipo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT1/metabolismo , Sepse/genética , Sepse/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
15.
PLoS One ; 16(10): e0254985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597299

RESUMO

BACKGROUND: The goal of this study was to determine if IL-22:Fc would Acute Respiratory Distress Syndrome (ARDS). SUMMARY BACKGROUND DATA: No therapies exist for ARDS and treatment is purely supportive. Interleukin-22 (IL-22) plays an integral component in recovery of the lung from infection. IL-22:Fc is a recombinant protein with a human FC immunoglobulin that increases the half-life of IL-22. STUDY DESIGN: ARDS was induced in C57BL/6 mice with intra-tracheal lipopolysaccharide (LPS) at a dose of 33.3 or 100 ug. In the low-dose LPS group (LDG), IL-22:FC was administered via tail vein injection at 30 minutes (n = 9) and compared to sham (n = 9). In the high-dose LPS group (HDG), IL-22:FC was administered (n = 11) then compared to sham (n = 8). Euthanasia occurred after bronchioalveolar lavage (BAL) on post-injury day 4. RESULTS: In the LDG, IL-22:FC resulted in decreased protein leak (0.15 vs. 0.25 ug/uL, p = 0.02). BAL protein in animals receiving IL-22:Fc in the HDG was not different. For the HDG, animals receiving IL-22:Fc had lower BAL cell counts (539,636 vs 3,147,556 cells/uL, p = 0.02). For the HDG, IL-6 (110.6 vs. 527.1 pg/mL, p = 0.04), TNF-α (5.87 vs. 25.41 pg/mL, p = 0.04), and G-CSF (95.14 vs. 659.6, p = 0.01) levels were lower in the BAL fluid of IL-22:Fc treated animals compared to sham. CONCLUSIONS: IL-22:Fc decreases lung inflammation and lung capillary leak in ARDS. IL-22:Fc may be a novel therapy for ARDS.


Assuntos
Fragmentos Fc das Imunoglobulinas/farmacologia , Interleucinas/farmacologia , Lesão Pulmonar/tratamento farmacológico , Pneumonia/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/patologia , Contagem de Linfócitos , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Pneumonia/patologia , Receptores de Interleucina/metabolismo , Proteínas Recombinantes/farmacologia , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia , Interleucina 22
17.
Inflamm Res ; 70(8): 903-914, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34283251

RESUMO

OBJECTIVE: MicroRNAs are a class of small, non-coding RNAs that play a key role in several biological and molecular processes, including tumorigenesis. We previously identified that MIR452 is upregulated in both colorectal cancer (CRC) and colitis. However, the functional mechanisms of MIR452 and its target genes in CRC and colitis are not well understood. So, we hypothesize that MIR452 can influence CRC and DSS-induced colitis model through the regulation of IL20RA and its downstream JAK-STATs signaling pathway. METHODS: We used a luciferase reporter assay to confirm the effect of MIR452 on IL20RA expression. The protein and mRNA expression of a target gene and its associated molecules were measured by western blot, quantitative RT-PCR, and immunohistochemistry. RESULTS: We found that the IL20RA was a direct target gene of MIR452. Overexpression of MIR452 in CRC cell lines significantly decreased IL20RA and its downstream Janus kinase 1 (JAK1), Signal transducer and activator of transcription 1 (STAT1) and STAT3. Knockdown of IL20RA in CRC cell lines by IL20RA gene silencing also decreased the expression of IL20RA, JAK1, and STAT3, but not of STAT1. CONCLUSION: Our results suggest that MIR452 regulates STAT3 through the IL20RA-mediated JAK1 pathway, but not STAT1. Overall, MIR452 acts as tumor suppressor in human CRC and in a mouse colitis model. These findings suggest that MIR452 is a promising therapeutic target in the treatment of cancer and colitis.


Assuntos
Colite/metabolismo , Neoplasias Colorretais/metabolismo , Regulação da Expressão Gênica , Janus Quinase 1/metabolismo , MicroRNAs/metabolismo , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
18.
Urol Oncol ; 39(8): 499.e1-499.e8, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34134925

RESUMO

BACKGROUND: The cell surface interleukin 22 (IL-22) receptor complex is mainly expressed in epithelial and tissue cells like pancreatitis cells. Recent studies described that IL-22R was overexpressed in malignant diseases and was associated with a poor overall survival (OS). The role of IL-22RA1 gene expression in muscle invasive bladder cancer (MIBC) has not been investigated, yet. OBJECTIVES: The aim of this study was to analyze the role of IL-22RA1 gene expression in patients with MIBC. METHODS: In a cohort of 114 patients with MIBC who underwent radical cystectomy, IL-22RA1 gene expression was analyzed with qRT-PCR and correlated with clinical parameters. Furthermore, Kaplan-Meier and Cox regression analysis were performed. For validation, an in silico dataset (TCGA 2017, n=407) was reanalyzed. RESULTS: IL-22RA1 gene expression was independent of clinicopathological parameters like age (P=0.2681), T stage (P=0.2130), nodal status (P=0.3238) and lymph vascular invasion (LVI, P=0.5860) in patients with MIBC. A high expression of IL-22RA1 was associated with a shorter OS (P=0.0040) and disease-specific survival (P=0.0385). Furthermore, a shorter disease-free survival (DFS) was also associated with a high expression of IL-22RA1 (P=0.0102). In the multivariable analysis, IL-22RA1 expression was an independent prognostic predictors regarding OS (P=0.0096, HR=0.48). In the TCGA cohort, IL-22RA1 expression was independent regarding to OS and DFS. CONCLUSION: A high IL-22RA1 gene expression was associated with worse outcome. Furthermore, IL-22RA1 represented an independent predictor regarding OS in our cohort and therefore might be used for risk stratification in patients with MIBC.


Assuntos
Biomarcadores Tumorais/metabolismo , Cistectomia/mortalidade , Neoplasias Musculares/mortalidade , Receptores de Interleucina/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , Neoplasias Musculares/cirurgia , Invasividade Neoplásica , Prognóstico , Receptores de Interleucina/genética , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
19.
Elife ; 102021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114949

RESUMO

Transcoelomic spread of cancer cells across the peritoneal cavity occurs in most initially diagnosed ovarian cancer (OC) patients and accounts for most cancer-related death. However, how OC cells interact with peritoneal stromal cells to evade the immune surveillance remains largely unexplored. Here, through an in vivo genome-wide CRISPR/Cas9 screen, we identified IL20RA, which decreased dramatically in OC patients during peritoneal metastasis, as a key factor preventing the transcoelomic metastasis of OC. Reconstitution of IL20RA in highly metastatic OC cells greatly suppresses the transcoelomic metastasis. OC cells, when disseminate into the peritoneal cavity, greatly induce peritoneum mesothelial cells to express IL-20 and IL-24, which in turn activate the IL20RA downstream signaling in OC cells to produce mature IL-18, eventually resulting in the polarization of macrophages into the M1-like subtype to clear the cancer cells. Thus, we show an IL-20/IL20RA-mediated crosstalk between OC and mesothelial cells that supports a metastasis-repressing immune microenvironment.


Assuntos
Sistemas CRISPR-Cas , Interleucinas/genética , Metástase Neoplásica/genética , Neoplasias Ovarianas/genética , Receptores de Interleucina/genética , Animais , Linhagem Celular Tumoral , Epitélio/imunologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interleucinas/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Cavidade Peritoneal/patologia , Receptores de Interleucina/metabolismo , Transdução de Sinais , Microambiente Tumoral
20.
Nat Commun ; 12(1): 3500, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108491

RESUMO

WSX1, a receptor subunit for IL-27, is widely expressed in immune cells and closely involved in immune response, but its function in nonimmune cells remains unknown. Here we report that WSX1 is highly expressed in human hepatocytes but downregulated in hepatocellular carcinoma (HCC) cells. Using NRAS/AKT-derived spontaneous HCC mouse models, we reveal an IL-27-independent tumor-suppressive effect of WSX1 that largely relies on CD8+ T-cell immune surveillance via reducing neoplastic PD-L1 expression and the associated CD8+ T-cell exhaustion. Mechanistically, WSX1 transcriptionally downregulates an isoform of PI3K-PI3Kδ and thereby inactivates AKT, reducing AKT-induced GSK3ß inhibition. Activated GSK3ß then boosts PD-L1 degradation, resulting in PD-L1 reduction. Overall, we demonstrate that WSX1 is a tumor suppressor that reinforces hepatic immune surveillance by blocking the PI3Kδ/AKT/GSK3ß/PD-L1 pathway. Our results may yield insights into the host homeostatic control of immune response and benefit the development of cancer immunotherapies.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Receptores de Interleucina/imunologia , Proteínas Supressoras de Tumor/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Vigilância Imunológica , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina/metabolismo , Transdução de Sinais/imunologia , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA