Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.710
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1435698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324125

RESUMO

Introduction: Chronic low-grade inflammation might contribute to hyperandrogenemia and metabolic complications in polycystic ovary syndrome (PCOS). The proinflammatory cytokine interleukin (IL)-1 stimulates androgen production from ovarian cells, whereas blockade of the IL-1 pathway improves cardiometabolic health. We aimed to investigate whether blocking the IL-1 pathway ameliorates hyperandrogenemia in patients with PCOS. Methods: This is a prospective, interventional, single-arm, proof-of-concept trial performed at a tertiary hospital in Switzerland (August 2018 to July 2020) in 18 premenopausal women with a diagnosis of PCOS according to the Rotterdam criteria, total testosterone levels ≥ 1.7 nmol/L, and C-reactive protein (CRP) ≥ 1.0 mg/L. Patients received 100 mg/day of the IL-1-receptor antagonist anakinra for 28 days and underwent weekly blood sampling until 1 week after the end of treatment. The primary endpoint was the change in serum androstenedione levels on day 7 of treatment, assessed with liquid chromatography-tandem mass spectrometry. Seven of these women participated in a subsequent observational sub-study (May 2021 to December 2021). Results: Median [interquartile range (IQR)] androstenedione increased by 0.5 [-0.1, 1.6] nmol/L (p = 0.048) with anakinra and by 1.3 [0.08, 2.4] nmol/L [p = 0.38] without anakinra between baseline and day 7. Anakinra reduced CRP levels on days 7, 21, and 28 (p < 0.001) but did not lead to an absolute reduction in androgens. However, four of six patients (67%) had smaller areas under the curves for androstenedione and/or testosterone during the 28-day intervention with anakinra as compared to 28 days without treatment. Discussion: Our findings suggest that anakinra suppresses IL-1-mediated chronic low-grade inflammation in PCOS and might attenuate biochemical hyperandrogenemia.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/sangue , Proteína Antagonista do Receptor de Interleucina 1/sangue , Adulto , Estudos Prospectivos , Hiperandrogenismo/tratamento farmacológico , Hiperandrogenismo/metabolismo , Hiperandrogenismo/sangue , Adulto Jovem , Testosterona/sangue , Androstenodiona/sangue , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo , Estudo de Prova de Conceito
2.
Proc Natl Acad Sci U S A ; 121(33): e2405644121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39121163

RESUMO

Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Leucemia Linfocítica Crônica de Células B , NF-kappa B , Transdução de Sinais , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interferons/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/antagonistas & inibidores
3.
Gene ; 928: 148768, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39013482

RESUMO

Although antiviral drugs can effectively inhibit hepatitis B virus (HBV) replication, the maintenance of chronic inflammation in the liver is still considered to be an important cause for the progression of HBV-related liver disease to liver fibrosis and advanced liver disease. As an endogenous inhibitory receptor of IL-1R and TLR signaling pathways, single immunoglobulin interleukin-1-related receptor (SIGIRR) has been proven to reduce inflammation in tissues to maintain system homeostasis. However, the relationship between SIGIRR expression and HBV replication and inflammatory pathway activation in hepatocytes remains unclear. In this study, hepatitis B virus X protein (HBx) upregulated MyD88 in liver cells, promoting NF-κB signaling and inflammatory factor production with LPS treatment, and the cell supernatant accelerated the activation and collagen secretion of hepatic stellate cells. However, SIGIRR overexpression suppressed HBx-mediated MyD88/NF-κB inflammatory signaling activation and inflammatory cytokine production induced by LPS in hepatocytes and HBV replication hepatocytes. Although we did not find any effect of SIGIRR on HBV replication in vitro, this study investigated the role of SIGIRR in blocking the proinflammatory function of HBx, which may provide a new idea for the treatment of chronic hepatitis B.


Assuntos
Vírus da Hepatite B , Hepatócitos , Inflamação , Fator 88 de Diferenciação Mieloide , NF-kappa B , Receptores de Interleucina-1 , Transdução de Sinais , Transativadores , Proteínas Virais Reguladoras e Acessórias , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Vírus da Hepatite B/fisiologia , Transativadores/genética , Transativadores/metabolismo , Inflamação/metabolismo , Inflamação/genética , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Replicação Viral , Lipopolissacarídeos , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/virologia
4.
Nat Commun ; 15(1): 6079, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030280

RESUMO

Enteric glia have been recently recognized as key components of the colonic tumor microenvironment indicating their potential role in colorectal cancer pathogenesis. Although enteric glia modulate immune responses in other intestinal diseases, their interaction with the colorectal cancer immune cell compartment remains unclear. Through a combination of single-cell and bulk RNA-sequencing, both in murine models and patients, here we find that enteric glia acquire an immunomodulatory phenotype by bi-directional communication with tumor-infiltrating monocytes. The latter direct a reactive enteric glial cell phenotypic and functional switch via glial IL-1R signaling. In turn, tumor glia promote monocyte differentiation towards pro-tumorigenic SPP1+ tumor-associated macrophages by IL-6 release. Enteric glia cell abundancy correlates with worse disease outcomes in preclinical models and colorectal cancer patients. Thereby, our study reveals a neuroimmune interaction between enteric glia and tumor-associated macrophages in the colorectal tumor microenvironment, providing insights into colorectal cancer pathogenesis.


Assuntos
Neoplasias Colorretais , Neuroglia , Transdução de Sinais , Microambiente Tumoral , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Microambiente Tumoral/imunologia , Neuroglia/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Interleucina-6/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Camundongos Endogâmicos C57BL , Comunicação Celular , Diferenciação Celular , Linhagem Celular Tumoral , Feminino
5.
Nat Commun ; 15(1): 6067, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025856

RESUMO

After recognizing its ligand lipopolysaccharide, Toll-like receptor 4 (TLR4) recruits adaptor proteins to the cell membrane, thereby initiating downstream signaling and triggering inflammation. Whether this recruitment of adaptor proteins is dependent solely on protein-protein interactions is unknown. Here, we report that the sphingolipid sphinganine physically interacts with the adaptor proteins MyD88 and TIRAP and promotes MyD88 recruitment in macrophages. Myeloid cell-specific deficiency in serine palmitoyltransferase long chain base subunit 2, which encodes the key enzyme catalyzing sphingolipid biosynthesis, decreases the membrane recruitment of MyD88 and inhibits inflammatory responses in in vitro bone marrow-derived macrophage and in vivo sepsis models. In a melanoma mouse model, serine palmitoyltransferase long chain base subunit 2 deficiency decreases anti-tumor myeloid cell responses and increases tumor growth. Therefore, sphinganine biosynthesis is required for the initiation of TLR4 signal transduction and serves as a checkpoint for macrophage pattern recognition in sepsis and melanoma mouse models.


Assuntos
Macrófagos , Melanoma , Fator 88 de Diferenciação Mieloide , Sepse , Serina C-Palmitoiltransferase , Esfingosina , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Sepse/metabolismo , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Humanos , Transdução de Sinais , Modelos Animais de Doenças , Inflamação/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células HEK293 , Lipopolissacarídeos
6.
Diabetes ; 73(9): 1462-1472, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869447

RESUMO

Macrophage (Mφ) plasticity is critical for normal wound repair; however, in type 2 diabetic wounds, Mφs persist in a low-grade inflammatory state that prevents the resolution of wound inflammation. Increased NLRP3 inflammasome activity has been shown in diabetic wound Mφs; however, the molecular mechanisms regulating NLRP3 expression and activity are unclear. Here, we identified that diabetic wound keratinocytes induce Nlrp3 gene expression in wound Mφs through IL-1 receptor-mediated signaling, resulting in enhanced inflammasome activation in the presence of pathogen-associated molecular patterns and damage-associated molecular patterns. We found that IL-1α is increased in human and murine wound diabetic keratinocytes compared with nondiabetic controls and directly induces Mφ Nlrp3 expression through IL-1 receptor signaling. Mechanistically, we report that the histone demethylase, JMJD3, is increased in wound Mφs late post-injury and is induced by IL-1α from diabetic wound keratinocytes, resulting in Nlrp3 transcriptional activation through an H3K27me3-mediated mechanism. Using genetically engineered mice deficient in JMJD3 in myeloid cells (Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls Mφ-mediated Nlrp3 expression during diabetic wound healing. Thus, our data suggest a role for keratinocyte-mediated IL-1α/IL-1R signaling in driving enhanced NLRP3 inflammasome activity in wound Mφs. These data also highlight the importance of cell cross-talk in wound tissues and identify JMJD3 and the IL-1R signaling cascade as important upstream therapeutic targets for Mφ NLRP3 inflammasome hyperactivity in nonhealing diabetic wounds.


Assuntos
Inflamassomos , Histona Desmetilases com o Domínio Jumonji , Queratinócitos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Interleucina-1 , Transdução de Sinais , Cicatrização , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Queratinócitos/metabolismo , Animais , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Humanos , Cicatrização/fisiologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Camundongos Endogâmicos C57BL
7.
Cells ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38727323

RESUMO

IL-36 cytokines are emerging as beneficial in immunity against pathogens and cancers but can also be detrimental when dysregulated in autoimmune and autoinflammatory conditions. Interest in targeting IL-36 activity for therapeutic purposes is rapidly growing, yet many unknowns about the functions of these cytokines remain. Thus, the availability of robust research tools is essential for both fundamental basic science and pre-clinical studies to fully access outcomes of any manipulation of the system. For this purpose, a floxed Il1rl2, the gene encoding the IL-36 receptor, mouse strain was developed to facilitate the generation of conditional knockout mice. The targeted locus was engineered to contain an inverted mCherry reporter sequence that upon Cre-mediated recombination will be flipped and expressed under the control of the endogenous Il1rl2 promoter. This feature can be used to confirm knockout in individual cells but also as a reporter to determine which cells express the IL-36 receptor IL-1RL2. The locus was confirmed to function as intended and further used to demonstrate the expression of IL-1RL2 in barrier tissues. Il1rl2 expression was detected in leukocytes in all barrier tissues. Interestingly, strong expression was observed in epithelial cells at locations in direct contact with the environment such as the skin, oral mucosa, the esophagus, and the upper airways, but almost absent from epithelial cells at more inward facing sites, including lung alveoli, the small intestine, and the colon. These findings suggest specialized functions of IL-1RL2 in outward facing epithelial tissues and cells. The generated mouse model should prove valuable in defining such functions and may also facilitate basic and translational research.


Assuntos
Receptores de Interleucina-1 , Animais , Camundongos , Regulação da Expressão Gênica , Genes Reporter , Loci Gênicos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Proteína Vermelha Fluorescente/genética
8.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 152-157, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678612

RESUMO

The purpose of this study was to explore the effects of regulatory B-cells (Breg) on intracranial aneurysms by mediating IL-1ß/IL-1R pathways.  The study involved 60 patients undergoing angiography in a hospital from January to June 2022, divided into two groups: 30 with intracranial aneurysms (observation group) and 30 without (control group). Researchers extracted peripheral blood mononuclear cells (PBMC) to analyze the proportion of CD19+CD24hiCD38hiB cells using flow cytometry. These cells, along with T-cells and regulatory T-cells (Treg), were isolated through magnetic bead cell sorting. Following co-culture, the proliferation of T-cells and their related secretory factors were assessed. Additionally, Breg cells, treated with an IL-1R receptor blocker or IL-1R expression adenovirus, were studied to evaluate the levels of IL-10 and TGF-ß. In the study, the observation group showed lower levels of CD19+CD24hiCD38hiB cells, IL-10, and TGF-ß in PBMC than the control group (P<0.05). T-cell proportions were similar in both groups pre and post co-culture (P>0.05). Post co-culture, IFN-γ decreased while IL-4 increased in both groups. The observation group had higher IFN-γ and lower IL-4 than the control group (P<0.05). TNF-α in CD8+T cells, and granzyme B and perforin mRNA levels decreased post co-culture but were higher in the observation group (P<0.05). IL-10 and TGF-ß in Treg cells increased in both groups post co-culture but were lower in the observation group (P<0.05). The observation group also had fewer CD19+IL-1R+IL-10+B cells (P<0.05). After IL-1R blocker addition, IL-10 and TGF-ß in the supernatant decreased in the observation group (P<0.05). Following transfection, IL-1 and TGF-ß levels increased compared to the blank group (P<0.05). The function of peripheral blood CD19+CD24hiCD38hiB cells is impaired in patients with intracranial aneurysms, which may be related to IL-1ß/IL-1R pathways disorder.


Assuntos
Linfócitos B Reguladores , Interleucina-1beta , Aneurisma Intracraniano , Receptores de Interleucina-1 , Feminino , Humanos , Masculino , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Proliferação de Células , Técnicas de Cocultura , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Aneurisma Intracraniano/imunologia , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
J Interferon Cytokine Res ; 44(4): 170-177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527174

RESUMO

The interleukin 1 (IL-1) family plays a significant role in the innate immune response. IL-1 receptor 2 (IL-1R2) is the decoy receptor of IL-1. It is a negative regulator that can be subdivided into membrane-bound and soluble types. IL-1R2 plays a role in the IL-1 family mainly through the following mechanisms: formation of inactive signaling complexes upon binding to the receptor auxiliary protein and inhibition of ligand IL-1 maturation. This review covers the roles of IL-1R2 in kidney disorders. Chronic kidney disease, acute kidney injury, lupus nephritis, IgA nephropathy, renal clear cell carcinoma, rhabdoid tumor of kidney, kidney transplantation, and kidney infection were all shown to have abnormal IL-1R2 expression. IL-1R2 may be a potential marker and a promising therapeutic target for kidney disease.


Assuntos
Nefropatias , Receptores de Interleucina-1 , Humanos , Receptores Tipo II de Interleucina-1/metabolismo , Interleucina-1 , Rim
10.
BMC Med ; 22(1): 122, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486246

RESUMO

BACKGROUND: Patients with fibro-calcific aortic valve disease (FCAVD) have lipid depositions in their aortic valve that engender a proinflammatory impetus toward fibrosis and calcification and ultimately valve leaflet stenosis. Although the lipoprotein(a)-autotaxin (ATX)-lysophosphatidic acid axis has been suggested as a potential therapeutic target to prevent the development of FCAVD, supportive evidence using ATX inhibitors is lacking. We here evaluated the therapeutic potency of an ATX inhibitor to attenuate valvular calcification in the FCAVD animal models. METHODS: ATX level and activity in healthy participants and patients with FCAVD were analyzed using a bioinformatics approach using the Gene Expression Omnibus datasets, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and western blotting. To evaluate the efficacy of ATX inhibitor, interleukin-1 receptor antagonist-deficient (Il1rn-/-) mice and cholesterol-enriched diet-induced rabbits were used as the FCAVD models, and primary human valvular interstitial cells (VICs) from patients with calcification were employed. RESULTS: The global gene expression profiles of the aortic valve tissue of patients with severe FCAVD demonstrated that ATX gene expression was significantly upregulated and correlated with lipid retention (r = 0.96) or fibro-calcific remodeling-related genes (r = 0.77) in comparison to age-matched non-FCAVD controls. Orally available ATX inhibitor, BBT-877, markedly ameliorated the osteogenic differentiation and further mineralization of primary human VICs in vitro. Additionally, ATX inhibition significantly attenuated fibrosis-related factors' production, with a detectable reduction of osteogenesis-related factors, in human VICs. Mechanistically, ATX inhibitor prohibited fibrotic changes in human VICs via both canonical and non-canonical TGF-ß signaling, and subsequent induction of CTGF, a key factor in tissue fibrosis. In the in vivo FCAVD model system, ATX inhibitor exposure markedly reduced calcific lesion formation in interleukin-1 receptor antagonist-deficient mice (Il1rn-/-, P = 0.0210). This inhibition ameliorated the rate of change in the aortic valve area (P = 0.0287) and mean pressure gradient (P = 0.0249) in the FCAVD rabbit model. Moreover, transaortic maximal velocity (Vmax) was diminished with ATX inhibitor administration (mean Vmax = 1.082) compared to vehicle control (mean Vmax = 1.508, P = 0.0221). Importantly, ATX inhibitor administration suppressed the effects of a high-cholesterol diet and vitamin D2-driven fibrosis, in association with a reduction in macrophage infiltration and calcific deposition, in the aortic valves of this rabbit model. CONCLUSIONS: ATX inhibition attenuates the development of FCAVD while protecting against fibrosis and calcification in VICs, suggesting the potential of using ATX inhibitors to treat FCAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Humanos , Animais , Camundongos , Coelhos , Estenose da Valva Aórtica/tratamento farmacológico , Osteogênese , Calcinose/tratamento farmacológico , Células Cultivadas , Fibrose , Colesterol , Receptores de Interleucina-1 , Lipídeos
11.
Nature ; 627(8005): 847-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480885

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Assuntos
Trifosfato de Adenosina , Arabidopsis , NAD , Nicotiana , Separação de Fases , Proteínas de Plantas , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Morte Celular , Mutação , NAD/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Receptores Toll-Like/química , Receptores de Interleucina-1/química
12.
Cell Signal ; 117: 111096, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38346528

RESUMO

IL-36 is known to mediate inflammation and fibrosis. Nevertheless, IL-36 signalling axis has also been implicated in cancer, although understanding of exact contribution of IL-36 to cancer progression is very limited, partly due to existence of multiple IL-36 ligands with agonistic and antagonistic function. Here we explored the role of IL-36 in oral squamous cell carcinoma (OSCC). Firstly, we analyzed expression of IL-36 ligands and receptor and found that the expression of IL-36γ was significantly higher in head and neck cancer (HNSCC) than that of normal tissues, and that the high expression of IL-36γ predicted poor clinical outcomes. Secondly, we investigated the direct effect of IL-36γ on OSCC cells and found that IL-36γ stimulated proliferation of OSCC cells with high expression of IL-36R expression. Interestingly, IL-36γ also promoted migration of OSCC cells with low to high IL-36R expression. Critically, both proliferation and migration of OSCC cells induced by IL-36γ were abrogated by anti-IL-36R mAb. Fittingly, RNA sequence analysis revealed that IL-36γ regulated genes involved in cell cycle and cell division. In summary, our results showed that IL-36γ can be a tumor-promoting factor, and targeting of IL-36R signalling may be a beneficial targeted therapy for patients with abnormal IL-36 signalling.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proliferação de Células , Linhagem Celular Tumoral
13.
J Cardiovasc Transl Res ; 17(3): 540-553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229002

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) has been demonstrated to be aberrantly activated in viral myocarditis (VMC), but the role of its subtype CaMKIIδ in VMC remains unclear.VMC mice and cardiomyocytes models were induced by Coxsackievirus B3 (CVB3) treatment. Mice that underwent sham surgery and saline-treated cardiomyocytes served as controls. Body weight, survival, left ventricular ejection fraction (LVEF), and fractional shortening (LVFS) were measured, and HE staining was performed to evaluate heart function in VMC mice model and sham control. Inflammation factors in serum or cell supernatant were detected by ELISA. Expressions of CaMKIIδ, Toll/interleukin-1 receptor domain containing adaptor protein (TIRAP), insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), nuclear factor NF-kappaB (NF-κB) signals, and inflammation factors were examined by quantitative real time polymerase chain reaction (qRT-PCR) or western blot. CCK-8, EdU, and flow cytometry were used to evaluate cell behaviors. Co-immunoprecipitation (Co-IP), RNA immunoprecipitation (RIP), and RNA pull-down were utilized to validate molecule interaction. Methylated RNA immunoprecipitation (MeRIP) was performed to measure N6-methyladenosine (m6A) level of specific molecule.CaMKIIδ was upregulated in VMC mice and CVB3-treated primary cardiomyocytes, of which knockdown improved cell viability, proliferation, and suppressed cell apoptosis in vitro, thereby alleviating myocarditis in vivo. The stability of CaMKIIδ was attributed to the presence of IGF2BP2 through m6A modification. Loss of CaMKIIδ repressed NF-κB pathway via negatively and directly regulating TIRAP to be involved in inflammatory damage.CaMKIIδ, stabilized by m6A reader IGF2BP2, modulated NF-κB pathway via interacting with TIRAP to alter cell viability, proliferation, and apoptosis, thereby affecting VMC outcome.


Assuntos
Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Infecções por Coxsackievirus , Modelos Animais de Doenças , Miocardite , Miócitos Cardíacos , NF-kappa B , Proteínas de Ligação a RNA , Receptores de Interleucina-1 , Transdução de Sinais , Animais , Masculino , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proliferação de Células , Células Cultivadas , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/enzimologia , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/patologia , Enterovirus Humano B/patogenicidade , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Miocardite/metabolismo , Miocardite/genética , Miocardite/patologia , Miocardite/virologia , Miocardite/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , NF-kappa B/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Função Ventricular Esquerda
14.
Artigo em Inglês | MEDLINE | ID: mdl-37702180

RESUMO

Insulin resistance, i.e., decreased biological response to insulin, is a risk factor for many diseases, such as obesity, type 2 diabetes (T2DM), cardiovascular disease, polycystic ovary syndrome, some forms of cancer and neurodegenerative diseases. One of its main causes is chronic low-grade inflammation, mediated by the proinflammatory pathways, such as the c-Jun N-terminal kinase (JNK) pathway and the nuclear factor kappa B (NFκB) pathway. Interleukin (IL)-38 (IL-38) is a newly discovered cytokine that belongs to the IL-1 family. There are three hypothetical pathways through which IL-38 may bind to the specific receptors and inhibit their proinflammatory activity. Those pathways are associated with IL-36 receptor (IL-36R), IL-1 receptor accessory protein-like 1 (IL1RAPL1) and IL-1 receptor 1 (IL1R1). There are studies linking IL-38 to improve insulin sensitivity through the difference in serum IL-38 in patients with insulin resistance or the correlation of IL-38 concentrations with insulin resistance indexes. However, many questions still remain regarding the biological activity of IL-38 itself and its role in the pathogenesis of insulin resistance. The goal of this study is to showcase IL-38, its biological activity, hypothesized signaling pathways, connection with insulin resistance and future perspectives of research on IL-38. We present that IL-38 associated signaling can be a potential target for the treatment of insulin resistance and associated diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina , Inflamação , Receptores de Interleucina-1 , Interleucinas
15.
Crit Rev Oncol Hematol ; 193: 104200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981104

RESUMO

IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.


Assuntos
Neoplasias Gastrointestinais , Proteína Acessória do Receptor de Interleucina-1 , Humanos , Receptores de Interleucina-1 , Interleucina-1/uso terapêutico , Imunoterapia , Microambiente Tumoral
16.
J Thorac Cardiovasc Surg ; 167(5): e146-e158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37951532

RESUMO

OBJECTIVE: Endothelial to mesenchymal transition may represent a key link between inflammatory stress and endothelial dysfunction seen in aortic aneurysm disease. Endothelial to mesenchymal transition is regulated by interleukin-1ß, and previous work has demonstrated an essential role of interleukin-1 signaling in experimental aortic aneurysm models. We hypothesize that endothelial to mesenchymal transition is present in murine aortic aneurysms, and loss of interleukin-1 signaling attenuates this process. METHODS: Murine aortic aneurysms were created in novel CDH5-Cre lineage tracking mice by treating the intact aorta with peri-adventitial elastase. Endothelial to mesenchymal transition transcription factors as well as endothelial and mesenchymal cell markers were analyzed via immunohistochemistry and immunofluorescence (n = 10/group). To determine the role of interleukin-1 signaling, endothelial-specific interleukin-1 receptor 1 knockout and wild-type mice (n = 10/group) were treated with elastase. Additionally, C57/BL6 mice were treated with the interleukin-1 receptor 1 antagonist Anakinra (n = 7) or vehicle (n = 8). RESULTS: Elastase treatment yielded greater aortic dilation compared with controls (elastase 97.0% ± 34.0%; control 5.3% ± 4.8%; P < .001). Genetic deletion of interleukin-1 receptor 1 attenuated aortic dilation (control 126.7% ± 38.7%; interleukin-1 receptor 1 knockout 35.2% ± 14.7%; P < .001), as did pharmacologic inhibition of interleukin-1 receptor 1 with Anakinra (vehicle 146.3% ± 30.1%; Anakinra 63.5% ± 23.3%; P < .001). Elastase treatment resulted in upregulation of endothelial to mesenchymal transition transcription factors (Snail, Slug, Twist, ZNF) and mesenchymal cell markers (S100, alpha smooth muscle actin) and loss of endothelial cell markers (vascular endothelial cadherin, endothelial nitric oxide synthase, von Willebrand factor). These changes were attenuated by interleukin-1 receptor 1 knockout and Anakinra treatment. CONCLUSIONS: Endothelial to mesenchymal transition occurs in aortic aneurysm disease and is attenuated by loss of interleukin-1 signaling. Endothelial dysfunction through endothelial to mesenchymal transition represents a new and novel pathway in understanding aortic aneurysm disease and may be a potential target for future treatment.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Doenças da Aorta , Camundongos , Animais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Camundongos Knockout , Receptores de Interleucina-1/genética , Interleucina-1beta , Elastase Pancreática , Fatores de Transcrição , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
17.
Sci Signal ; 16(816): eadh3449, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113335

RESUMO

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Receptores de Interleucina-1 , Animais , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Peixe-Zebra/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Dano ao DNA , Apoptose
18.
Life Sci ; 335: 122276, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977354

RESUMO

The interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine and a naturally occurring antagonist of the IL-1 receptor. It effectively counteracts the IL-1 signaling pathway mediated by IL-1α/ß. Over the past few decades, accumulating evidence has suggested that IL-1 signaling plays an essential role in tumor formation, growth, and metastasis. Significantly, anakinra, the first United States Food and Drug Administration (FDA)-approved IL-1Ra drug, has demonstrated promising antitumor effects in animal studies. Numerous clinical trials have subsequently incorporated anakinra into their cancer treatment protocols. In this review, we comprehensively discuss the research progress on the role of IL-1 in tumors and summarize the significant contribution of IL-1Ra (anakinra) to tumor immunity. Additionally, we analyze the potential value of IL-1Ra as a biomarker from a clinical perspective. This review is aimed to highlight the important link between inflammation and cancer and provide potential drug targets for future cancer therapy.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Neoplasias , Animais , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Receptores de Interleucina-1 , Inflamação/patologia , Neoplasias/tratamento farmacológico , Biomarcadores
19.
Front Immunol ; 14: 1240754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781392

RESUMO

Background: The interleukin-1 pathway has been linked to pancreatic diseases. We applied the Mendelian randomization approach to explore whether higher interleukin-1 receptor antagonist (IL-1RA) levels reduce the risk of acute and chronic pancreatitis and pancreatic cancer. Methods: Genetic variants associated with blood IL-1RA levels at the genome-wide significance level and located 5MB downstream or upstream of the IL1RN gene were extracted from a genome-wide meta-analysis of 21,758 participants. After pruning, genetic variants without linkage disequilibrium were used as genetic instrument for IL-1RA. Summary-level data on acute and chronic pancreatitis and pancreatic cancer were obtained from the UK Biobank and FinnGen studies. The associations were meta-analyzed for one outcome from two sources. Results: Genetically predicted higher levels of IL-1RA were associated with a lower risk of acute and chronic pancreatitis and pancreatic cancer. In the meta-analysis of UK Biobank and FinnGen, the combined odds ratio was 0.87 (95% confidence interval [CI] 0.77-0.97, P=0.003) for acute pancreatitis, 0.73 (95% CI 0.65-0.82, P=2.93×10-8) for chronic pancreatitis, and 0.86 (95% CI 0.77-0.96, P=0.009) for pancreatic cancer per one standard deviation increment in genetically predicted levels of IL-1RA. Conclusion: This study suggests a protective role of IL-1RA in three major pancreatic diseases, which hints the therapeutic potentials of IL-1RA in pancreatic diseases.


Assuntos
Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Doença Aguda , Análise da Randomização Mendeliana , Receptores de Interleucina-1 , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
20.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733448

RESUMO

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Assuntos
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animais , Humanos , Camundongos , Genótipo , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicação Parácrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA