Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 189: 71-88, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29684466

RESUMO

Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.


Assuntos
Receptores de Lisofosfolipídeos/fisiologia , Animais , Evolução Molecular , Genômica , História do Século XX , História do Século XXI , Humanos , Fenótipo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/história
2.
Oncogene ; 35(31): 4021-35, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-26640151

RESUMO

Over the past decade the importance of lipids for cancer cell metabolism and cancer-related processes such as proliferation, metastasis and chemotherapy resistance has become more apparent. The mechanisms by which lipid signals are transduced are poorly understood, but frequently involve G-protein Coupled Receptors (GPCRs), which can be explored as druggable targets. Here, we discuss how GPCRs recognize four classes of cancer-relevant lipids (lysophospholipids, phospholipids, fatty acids and eicosanoids). We compare the ligand-binding properties of >50 lipid receptors, we examine how their dysregulation contributes to tumorigenesis and how they may be therapeutically exploited.


Assuntos
Lipídeos/fisiologia , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Eicosanoides/metabolismo , Endocanabinoides/fisiologia , Ácidos Graxos/metabolismo , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/fisiologia , Neoplasias/etiologia , Receptores de Leucotrienos/fisiologia , Receptores de Lisofosfolipídeos/fisiologia , Receptores de Tromboxanos/fisiologia , Transdução de Sinais
3.
Life Sci ; 92(8-9): 453-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22820167

RESUMO

This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.


Assuntos
Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Lisofosfolipídeos/fisiologia , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Expressão Gênica , Humanos , Ligantes , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores de Lisofosfolipídeos/efeitos dos fármacos , Receptores de Lisofosfolipídeos/genética
4.
Prostaglandins Other Lipid Mediat ; 89(3-4): 53-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19442546

RESUMO

Intercellular lipid mediators such as prostaglandins and lysophosphatidic acid (LPA) interact with their G-protein-coupled receptors (GPCR) in the plasma membrane to modulate functions of target cells or tissues. Discovery of new members of intercellular lipid mediators and their GPCRs have been milestones in lipid biology and the foundation for drug development. Recent advances in intercellular lipid mediators are very interesting. New lipid molecules have been recognized as intercellular signaling mediators acting on GPCRs including resolvin E1, eoxin, acylethanolamides (arachidnonylethanolamide and oleoylethanolamide), fatty acids, bile acids, lipoamino aicd (N-palmitoyl glycine and N-arachidonyl glycine), estrogen, 5-oxo-ETE and 9-hydroxyoctadecadienoic acid, among others. Also new GPCRs for LPA have been identified. New intercellular lipid mediators and their GPCRs are reviewed.


Assuntos
Lipídeos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Animais , Ácidos Araquidônicos/metabolismo , Ácidos e Sais Biliares/metabolismo , Descoberta de Drogas , Humanos , Lisofosfolipídeos/metabolismo , Receptores Eicosanoides/fisiologia , Receptores de Estrogênio/fisiologia , Receptores de Lisofosfolipídeos/fisiologia
5.
Hum Reprod Update ; 14(5): 519-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18562325

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lysophospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review covers current knowledge of the LP signaling in the function and pathology of the reproductive system. METHODS: PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combination with each part of the reproductive system, such as testis/ovary/uterus. RESULTS: LPA and SIP are found in significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including LPA(1-5) and S1P(1-5). In vitro and in vivo studies from the past three decades have demonstrated or suggested the physiological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function, fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS: Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in reproduction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use as a therapeutic target.


Assuntos
Lisofosfolipídeos/fisiologia , Reprodução/fisiologia , Transdução de Sinais , Desenvolvimento Embrionário/fisiologia , Feminino , Genitália/metabolismo , Humanos , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo , Masculino , Neoplasias/metabolismo , Gravidez , Receptores de Lisofosfolipídeos/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-18481029

RESUMO

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent biologically active lipid mediators that exert a wide range of cellular effects through specific G protein-coupled receptors. To date, four LPA receptors and five S1P receptors have been identified. These receptors are expressed in a large number of tissues and cell types, allowing for a wide variety of cellular responses to lysophospholipid signaling, including cell adhesion, cell motility, cytoskeletal changes, proliferation, angiogenesis, process retraction, and cell survival. In addition, recent studies in mice show that specific lysophospholipid receptors are required for proper cardiovascular, immune, respiratory, and reproductive system development and function. Lysophospholipid receptors may also have specific roles in cancer and other diseases. This review will cover identification and expression of the lysophospholipid receptors, as well as receptor signaling properties and function. Additionally, phenotypes of mice deficient for specific lysophospholipid receptors will be discussed to demonstrate how these animals have furthered our understanding of the role lysophospholipids play in normal biology and disease.


Assuntos
Lisofosfolipídeos , Receptores de Lisofosfolipídeos , Esfingosina/análogos & derivados , Animais , Membrana Celular/metabolismo , Humanos , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/fisiologia , Receptores de Lisofosfolipídeos/biossíntese , Receptores de Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/fisiologia , Transdução de Sinais , Esfingosina/biossíntese , Esfingosina/metabolismo , Esfingosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA