Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell Physiol Biochem ; 45(2): 505-522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29402864

RESUMO

BACKGROUND/AIMS: Blood-retinal barrier (BRB) breakdown and vascular leakage is the leading cause of blindness of diabetic retinopathy (DR). Hyperglycemia-induced oxidative stress and inflammation are primary pathogenic factors of this severe DR complication. An effective interventional modality against the pathogenic factors during early DR is needed to curb BRB breakdown and vascular leakage. This study sought to examine the protective effects of α-Melanocyte-stimulating hormone (α-MSH) on early diabetic retina against vascular hyperpermeability, electrophysiological dysfunction, and morphological deterioration in a rat model of diabetes and probe the mechanisms underlying the α-MSH's anti-hyperpermeability in both rodent retinas and simian retinal vascular endothelial cells (RF6A). METHODS: Sprague Dawley rats were injected through tail vein with streptozotocin to induce diabetes. The rats were intravitreally injected with α-MSH or saline at Week 1 and 3 after hyperglycemia. In another 2 weeks, Evans blue assay, transmission electron microscopy, electroretinogram (ERG), and hematoxylin and eosin (H&E) staining were performed to examine the protective effects of α-MSH in diabetic retinas. The expression of pro-inflammatory factors and tight junction at mRNA and protein levels in retinas was analyzed. Finally, the α-MSH's anti-hyperpermeability was confirmed in a high glucose (HG)-treated RF6A cell monolayer transwell culture by transendothelial electrical resistance (TEER) measurement and a fluorescein isothiocyanate-Dextran assay. Universal or specific melanocortin receptor (MCR) blockers were also employed to elucidate the MCR subtype mediating α-MSH's protection. RESULTS: Evans blue assay showed that BRB breakdown and vascular leakage was detected, and rescued by α-MSH both qualitatively and quantitatively in early diabetic retinas; electron microscopy revealed substantially improved retinal and choroidal vessel ultrastructures in α-MSH-treated diabetic retinas; scotopic ERG suggested partial rescue of functional defects by α-MSH in diabetic retinas; and H&E staining revealed significantly increased thickness of all layers in α-MSH-treated diabetic retinas. Mechanistically, α-MSH corrected aberrant transcript and protein expression of pro-inflammatory factor and tight junction genes in the diseased retinas; moreover, it prevented abnormal changes in TEER and permeability in HG-stimulated RF6A cells, and this anti-hyperpermeability was abolished by a universal MCR blocker or an antagonist specific to MC4R. CONCLUSIONS: This study showed previously undescribed protective effects of α-MSH on inhibiting BRB breakdown and vascular leakage, improving electrophysiological functions and morphology in early diabetic retinas, which may be due to its down-regulating pro-inflammatory factors and augmenting tight junctions. α-MSH acts predominantly on MC4R to antagonize hyperpermeability in retinal microvessel endothelial cells.


Assuntos
Barreira Hematorretiniana/metabolismo , Retinopatia Diabética/patologia , alfa-MSH/farmacologia , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Linhagem Celular , Citratos/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/prevenção & controle , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Potenciais Evocados/efeitos dos fármacos , Glucose/farmacologia , Masculino , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Citrato de Sódio , Estreptozocina/toxicidade , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , alfa-MSH/uso terapêutico
2.
J Endocrinol ; 235(2): 111-122, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28851749

RESUMO

Nesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions. With the application of direct calorimetry, we found that intracerebroventricular nesfatin-1 (25 pmol) treatment increased dry heat loss and that this effect was fully blocked by simultaneous administration of an equimolar dose of the melanocortin 3/4 receptor antagonist, SHU9119. Interestingly, the nesfatin-1-induced increase in dry heat loss was positively correlated with body weight loss. In addition, as assessed with thermal imaging, intracerebroventricular nesfatin-1 (100 pmol) increased interscapular brown adipose tissue (iBAT) as well as tail temperature, suggesting increased heat production in the iBAT and heat dissipation over the tail surface. Finally, nesfatin-1 upregulated pro-opiomelanocortin and melanocortin 3 receptor mRNA expression in the hypothalamus, accompanied by a significant increase in iodothyronine deiodinase 2 and by a nonsignificant increase in uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA in the iBAT. Overall, we clearly demonstrate that nesfatin-1 requires the activation of the central melanocortin system to increase iBAT thermogenesis and, in turn, overall energy expenditure.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Melanocortinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Termogênese/fisiologia , Animais , Biomarcadores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Orelha , Hipotálamo/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Proteínas do Tecido Nervoso/genética , Nucleobindinas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Cauda , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Psychopharmacology (Berl) ; 233(17): 3269-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27376948

RESUMO

RATIONALE: Anxiety disorders are the most common mental disorders in the USA. Characterized by feelings of uncontrollable apprehension, they are accompanied by physical, affective, and behavioral symptoms. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1 (PAC1R) are highly expressed in the central nucleus of the amygdala (CeA), and they have gained growing attention for their proposed role in mediating the body's response to stress. OBJECTIVES: The aim of this study was to evaluate the anxiogenic effects of PACAP in the CeA and its effects on the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, the mechanism of action of PACAP in the CeA was investigated. METHODS: PACAP was microinfused into the CeA of rats, and its effects in the elevated plus maze (EPM), the defensive withdrawal tests, and plasma corticosterone levels were evaluated. The ability of the melanocortin receptor antagonist SHU9119 to block PACAP effect in the EPM was assessed. RESULTS: Intra-CeA PACAP exerted a dose-dependent anxiogenic effect and activated the HPA axis. In contrast, PACAP microinfused into the basolateral nucleus of the amygdala (BlA) had no effect. Finally, the anxiogenic effect of intra-CeA PACAP was prevented by SHU9119. CONCLUSIONS: These data prove an anxiogenic role for the PACAP system of the CeA and reveal that the melanocortin receptor 4 (MC4R) system of CeA mediates these effects. Our data provide insights into this neuropeptide system as a mechanism for modulating the behavioral and endocrine response to stress and suggest that dysregulations of this system may contribute to the pathophysiology of anxiety-related disorders.


Assuntos
Ansiedade , Comportamento Animal/efeitos dos fármacos , Núcleo Central da Amígdala/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Neurotransmissores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Animais , Transtornos de Ansiedade , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Núcleo Central da Amígdala/metabolismo , Corticosterona/sangue , Emoções/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
4.
J Med Chem ; 59(7): 3112-28, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26959173

RESUMO

Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.


Assuntos
Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Animais , Ligação Competitiva , Técnicas de Química Sintética , AMP Cíclico/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Humanos , Infusões Intraventriculares , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Multimerização Proteica , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade
5.
Neuroscience ; 310: 252-67, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26404873

RESUMO

Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Atividade Motora , Receptores de Melanocortina/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Feminino , Masculino , RNA Mensageiro , Ratos , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores
6.
PLoS One ; 10(4): e0123232, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860801

RESUMO

In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Melanocortinas/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 2 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Hormônio Adrenocorticotrópico/antagonistas & inibidores , Hormônio Adrenocorticotrópico/metabolismo , Anticorpos Neutralizantes , Diferenciação Celular/fisiologia , Células Cultivadas , Eritropoese/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Melanocortina/antagonistas & inibidores , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/antagonistas & inibidores , Receptor Tipo 2 de Melanocortina/genética , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
7.
Org Biomol Chem ; 13(6): 1778-91, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25502141

RESUMO

Melanocortin receptors can be used as biomarkers to detect and possibly treat melanoma. To these ends, molecules bearing one, two, or three copies of the weakly binding ligand MSH(4) were attached to scaffolds based on phloroglucinol, tripropargylamine, and 1,4,7-triazacyclononane by means of the copper-assisted azide-alkyne cyclization. This synthetic design allows rapid assembly of multivalent molecules. The bioactivities of these compounds were evaluated using a competitive binding assay that employed human embryonic kidney cells engineered to overexpress the melanocortin 4 receptor. The divalent molecules exhibited 10- to 30-fold higher levels of inhibition when compared to the corresponding monovalent molecules, consistent with divalent binding. The trivalent molecules were only statistically (∼2-fold) better than the divalent molecules, still consistent with divalent binding but inconsistent with trivalent binding. Possible reasons for these behaviors and planned refinements of the multivalent constructs targeting melanocortin receptors based on these scaffolds are discussed.


Assuntos
Compostos Heterocíclicos/farmacologia , Pargilina/análogos & derivados , Floroglucinol/farmacologia , Propilaminas/farmacologia , Receptores de Melanocortina/antagonistas & inibidores , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Pargilina/química , Pargilina/farmacologia , Floroglucinol/química , Propilaminas/química , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade
8.
Pharmacotherapy ; 33(4): 411-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23553810

RESUMO

Hypoactive sexual desire disorder (HSDD) affects nearly 1 in 10 women. Thus, it is essential for pharmacists and other health care providers to be comfortable when discussing a patient's sexual health to ensure appropriate triage so that the specific causes of HSDD can be identified and potential recommendations provided. HSDD is defined as the absence or deficiency of sexual interest and/or desire, leading to significant distress and interpersonal difficulties. As health care providers, pharmacists have a critical role in assessing the presence of HSDD and providing education on available treatment options. This article will review the potential causes of HSDD and low sexual desire, the screening tools available, and the significant role of health care professionals in communicating with patients about their sexual health. An overview of the importance of behavioral modifications, the current pharmacologic options being investigated, and the use of complementary and alternative therapies will also be explored. Currently, buproprion is the primary pharmacologic agent that has shown positive results in treating patients with HSDD. The use of testosterone therapy will not be addressed in this article, as this therapy is described in greater detail elsewhere.


Assuntos
Comunicação em Saúde , Saúde Reprodutiva , Disfunções Sexuais Psicogênicas/tratamento farmacológico , Disfunções Sexuais Psicogênicas/psicologia , Antidepressivos de Segunda Geração/uso terapêutico , Benzimidazóis/uso terapêutico , Bupropiona/uso terapêutico , Terapias Complementares/psicologia , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Peptídeos Cíclicos/uso terapêutico , Piperazinas/uso terapêutico , Purinas/uso terapêutico , Receptores de Melanocortina/antagonistas & inibidores , Antagonistas da Serotonina/uso terapêutico , Disfunções Sexuais Psicogênicas/diagnóstico , Citrato de Sildenafila , Sulfonas/uso terapêutico , Vasodilatadores/uso terapêutico , alfa-MSH/uso terapêutico
9.
J Med Chem ; 56(7): 2747-63, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23432160

RESUMO

The melanocortin-3 (MC3) and melanocortin-4 (MC4) receptors regulate energy homeostasis, food intake, and associated physiological conditions. The melanocortin-4 receptor (MC4R) has been studied extensively. Less is known about specific physiological roles of the melanocortin-3 receptor (MC3R). A major obstacle to this lack of knowledge is attributed to a limited number of identified MC3R selective ligands. We previously reported a spatial scanning approach of a 10-membered thioether-heterocycle ring incorporated into a chimeric peptide template that identified a lead nM MC4R ligand. Upon the basis of those results, 17 compounds were designed and synthesized that focused upon modification in the pharmacophore domain. Notable results include the identification of a 0.13 nM potent 5800-fold mMC3R selective antagonist/slight partial agonist versus a 760 nM mMC4R full agonist (ligand 11). Biophysical experiments (two-dimensional (1)H NMR and computer-assisted molecular modeling) of this ligand resulted in the identification of an inverse γ-turn secondary structure in the ligand pharmacophore domain.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Receptores de Melanocortina/química , Animais , Camundongos , Ressonância Magnética Nuclear Biomolecular , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
10.
Exp Physiol ; 98(2): 435-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22872662

RESUMO

Central melanocortin 3/4 receptors (MC3/4Rs) are known to regulate energy balance. Activation of MC3/4Rs causes a greater increase in the firing activity of the PVN neurons in obese Zucker rats than in lean Zucker rats. The present study was undertaken to determine the roles of MC3/4Rs in the hypothalamic paraventricular nucleus (PVN) in modulating the sympathetic activity and blood pressure and its downstream pathway. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats. Microinjection of the MC3/4R agonist melanotan II (MTII) into the PVN increased the RSNA and MAP. The MC3/4R antagonist agouti-related peptide (AgRP) or SHU9119 decreased the RSNA and MAP, but the MC4R antagonist HS024 had no significant effect on the RSNA and MAP. The effects of MTII were abolished by pretreatment of the PVN with AgRP, SHU9119, the adenylate cyclase inhibitor SQ22536 or the protein kinase A inhibitor Rp-cAMP, and substantially attenuated by HS024. Microinjection of SQ22536 alone into the PVN had no significant effect on the RSNA and MAP, but Rp-cAMP caused significant decreases in the RSNA and MAP. Furthermore, MTII increased the cAMP level in the PVN. These results indicate that activation of MC3/4Rs in the PVN increases the sympathetic outflow and blood pressure via the cAMP-protein kinase A pathway. Melanocortin 3 receptors in the PVN may exert a tonic excitatory effect on sympathetic activity.


Assuntos
Pressão Arterial , Rim/inervação , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Sistema Nervoso Simpático/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Proteína Relacionada com Agouti/administração & dosagem , Animais , Pressão Arterial/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Masculino , Hormônios Estimuladores de Melanócitos/administração & dosagem , Microinjeções , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Melanocortina , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Sistemas do Segundo Mensageiro , Sistema Nervoso Simpático/efeitos dos fármacos , Tionucleotídeos/farmacologia , Fatores de Tempo , alfa-MSH/administração & dosagem , alfa-MSH/análogos & derivados
11.
J Dermatol Sci ; 63(1): 23-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602033

RESUMO

BACKGROUND: The melanocortin receptor-5 (MC5R) is present in human sebaceous glands, where it is expressed in differentiated sebocytes only. The targeted disruption of MC5R in mice resulted in reduced sebaceous lipid production and a severe defect in water repulsion. OBJECTIVE: To investigate the physiological function of MC5R in human sebaceous glands. METHODS: A novel MC1R and MC5R antagonist (JNJ-10229570) was used to treat primary human sebaceous cells or human skins grafted onto severe combined immunodeficient (SCID) mice. Transcription profiling, lipid analyses, and histological and immunohistochemical staining were used to analyze the effect of MC5R inhibition on sebaceous gland differentiation and sebum production. RESULTS: JNJ-10229570 dose dependently inhibited the production of sebaceous lipids in cultured primary human sebocytes. Topical treatment with JNJ-10229570 of human skins transplanted onto SCID mice resulted in a marked decrease in sebum-specific lipid production, sebaceous gland's size and the expression of the sebaceous differentiation marker epithelial-membrane antigen (EMA). Treatment with flutamide, a known inhibitor of sebum production, gave similar results, validating the human skin/SCID mouse experimental system for sebaceous secretion studies. CONCLUSION: Our data suggest that antagonists of MC1R and MC5R could be effective sebum suppressive agents and might have a potential for the treatment of acne and other sebaceous gland pathologies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptor Tipo 1 de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/antagonistas & inibidores , Glândulas Sebáceas/efeitos dos fármacos , Sebo/metabolismo , Administração Cutânea , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Flutamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Antagonistas de Hormônios/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos SCID , Mucina-1/metabolismo , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Glândulas Sebáceas/metabolismo , Transplante de Pele , Transplante Heterólogo
12.
Neurosci Res ; 70(1): 55-61, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21291921

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a peptidergic neurotransmitter that is highly expressed in the nervous system. We have previously reported that a central injection of PACAP leads to changes in the autonomic nervous system tones including sympathetic excitation and parasympathetic inhibition. An anatomical study revealed that melanocortin and PACAP are colocalized in some hypothalamic nuclei. Here, we investigated the possible role of the melanocortin system in autonomic control by PACAP using SHU9119, an antagonist of the melanocortin receptors (MC3-R/MC4-R). Pretreatment with SHU-9119 did not affect the activating neural responses of adrenal, renal, and lumbar sympathetic nerves following a PACAP injection However, SHU9119 significantly eliminated the suppressing effect of a PACAP injection on gastric vagal nerve activity and excitation effects on liver and brown adipose tissue sympathetic nerve activities. These results suggest that the brain melanocortin system might play a key role in the control of thermogenic sympathetic outflows and digestive parasympathetic outflow by PACAP, but this system does not participate in the central effects of PACAP on cardiovascular function and neural activities of renal, adrenal, and lumbar sympathetic nerves.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Vias Autônomas/fisiologia , Hipotálamo/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Pró-Opiomelanocortina/fisiologia , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Vias Autônomas/efeitos dos fármacos , Sistema Digestório/inervação , Hipotálamo/efeitos dos fármacos , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Wistar , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/fisiologia , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos , Fibras Simpáticas Pós-Ganglionares/fisiologia , Termogênese/fisiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Vísceras/inervação , Vísceras/fisiologia
13.
Eur J Pharmacol ; 660(1): 202-6, 2011 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-21215742

RESUMO

The melanocortins (α-MSH, ß-MSH, γ-MSH, and ACTH) bind to the melanocortin receptors and signal through increases in cyclic adenosine monophosphate to induce biological effects. The melanocortin MC(5) and MC(1) receptors are expressed in human sebaceous glands, which produce sebum, a lipid mixture of squalene, wax esters, triglycerides, cholesterol esters, and free fatty acids that is secreted onto the skin. Excessive sebum production is one of the major factors in the pathogenesis of acne. The expression of melanocortin MC(5) receptor has been associated with sebocyte differentiation and sebum production. Sebaceous lipids are down-regulated in melanocortin MC(5) receptor-deficient mice, consistent with the observation that α-MSH acts as a sebotropic hormone in rodents. These findings, which suggest that melanocortins stimulate sebaceous lipid production through the MC(5) receptor, led to our search for MC(5) receptor antagonists as potential sebum-suppressive agents. As predicted, an antagonist was shown to inhibit sebocyte differentiation in vitro, and to reduce sebum production in human skin transplanted onto immunodeficient mice. The melanocortin MC(5) receptor antagonists may prove to be clinically useful for the treatment of sebaceous disorders with excessive sebum production, such as acne.


Assuntos
Diferenciação Celular , Receptores de Melanocortina/metabolismo , Glândulas Sebáceas/citologia , Glândulas Sebáceas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Lipídeos/biossíntese , Modelos Teóricos , Receptores de Melanocortina/antagonistas & inibidores , Glândulas Sebáceas/efeitos dos fármacos , Sebo/efeitos dos fármacos , Sebo/metabolismo
14.
Int J Obes (Lond) ; 35(5): 629-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20733584

RESUMO

OBJECTIVE: Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood. DESIGN: We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of the rat brain. Melanocortin signaling was inhibited by injection of a recombinant adeno-associated viral (rAAV) vector that overexpressed Agouti-related peptide (AgRP) into the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LH) or the accumbens shell (Acc). RESULTS: Overexpression of AgRP in the rat PVN, VMH or LH increased bodyweight, the percentage of white adipose tissue, plasma leptin and insulin concentrations and food intake. Food intake was mainly increased because of an increase in meal size in the light and dark phases, after overexpression of AgRP in the PVN, LH or VMH. Overexpression of AgRP in the PVN or VMH reduced average body core temperature in the dark on day 40 post injection, whereas AgRP overexpression in the LH did not affect temperature. In addition, overexpression of AgRP in the PVN, LH or VMH did not significantly alter mRNA expression of AgRP, neuropeptide Y (NPY), pro-opiomelanocortin (POMC) or suppressor of cytokine signaling 3 (SOCS3) in the arcuate. Overexpression of AgRP in the Acc did not have any effect on the measured parameters. CONCLUSIONS: Reduction of melanocortin signaling in several hypothalamic regions increased meal size. However, there were brain area-specific effects on other parameters such as core temperature and plasma leptin concentrations. In a previous study, where NPY was overexpressed with an rAAV vector in the PVN and LH, meal frequency and meal size were increased respectively, whereas locomotor activity was reduced by NPY overexpression at both nuclei. Taken together, AgRP and NPY have complementary roles in energy balance.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Obesidade/metabolismo , Receptores de Melanocortina/fisiologia , Animais , Linhagem Celular , Ingestão de Alimentos/fisiologia , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/metabolismo , Núcleo Accumbens/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Wistar , Receptores de Melanocortina/antagonistas & inibidores , Núcleo Hipotalâmico Ventromedial/metabolismo
15.
Trends Pharmacol Sci ; 32(2): 90-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21185610

RESUMO

The melanocortin receptors are a subfamily of G-protein-coupled, rhodopsin-like receptors that are rapidly being acknowledged as an extremely promising target for pharmacological intervention in a variety of different inflammatory pathologies, including stroke. Stroke continues to be a leading cause of death worldwide, with risk factors including smoking, diabetes, hypertension and obesity. The pathophysiology of stroke is highly complex: reintroduction of blood flow to the infarcted brain region is paramount in limiting ischaemic damage caused by stroke, yet a concomitant inflammatory response can compound tissue damage. The possibilities of pro-resolving treatments that target this inflammatory response have only recently begun to be explored. This review discusses the endogenous roles of the melanocortin system in reducing characterized aspects of inflammation, and how these, together with potent neuroprotective actions, suggest its potential as a therapeutic target in stroke.


Assuntos
Terapia de Alvo Molecular , Receptores de Melanocortina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Humanos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
16.
Endocr J ; 57(1): 61-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19851035

RESUMO

Monocytes/macrophages are key mediators of wound repair, tissue remodeling, and inflammation. However, the molecular mechanisms underlying macrophage recruitment to the site of inflammation is not fully understood. Leptin acts directly on the hypothalamus, thereby regulating food intake and energy expenditure. The leptin receptor, a single transmembrane protein that belongs to the gp130 family of cytokine receptor superfamily, is expressed not only in the hypothalamus but in a variety of peripheral tissues, suggesting the role of leptin as a pro-inflammatory adipocytokine in peripheral tissues. Here, we show that deficiency of leptin signaling reduces renal macrophage infiltration after unilateral ureteral obstruction (UUO). Bone marrow transplantation studies using leptin signaling-deficient db/db mice revealed that leptin signaling in bone marrow cells may not play a major role in the UUO-induced renal macrophage infiltration. Interestingly, central leptin administration reverses the otherwise reduced UUO-induced renal macrophage infiltration in leptin-deficient ob/ob mice. This is effectively abolished by central co-administration of SHU9119, a melanocortin-3 receptor/melanocortin-4 receptor antagonist. This study demonstrates that central leptin administration in ob/ ob mice accelerates renal macrophage infiltration through the melanocortin system, thereby suggesting that the central nervous system, which is inherent to integrate information from throughout the organism, is able to control peripheral inflammation.


Assuntos
Nefropatias/metabolismo , Leptina/metabolismo , Macrófagos/imunologia , Obstrução Ureteral/metabolismo , Animais , Glicemia/metabolismo , Imuno-Histoquímica , Insulina/sangue , Nefropatias/imunologia , Nefropatias/patologia , Leptina/antagonistas & inibidores , Leptina/sangue , Leptina/deficiência , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores de Melanocortina/antagonistas & inibidores , Transdução de Sinais , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
17.
J Ren Nutr ; 19(1): 2-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121762

RESUMO

Anorexia, defined as the loss of the desire to eat, is relatively common in hemodialysis patients, occurring in one third of such cases. The pathogenesis is essentially unknown. It has been proposed that uremic toxins such as middle molecules, inflammation, altered amino acid pattern, leptin, ghrelin, and neuropeptide Y are involved. Anorexia reduces oral energy and protein intakes, thus contributing to the development of malnutrition and cachexia. Unquestionably, it contributes to poor quality of life. The clinical relevance of anorexia as an independent prognostic factor in hemodialysis is debated. The treatment of this debilitating condition is based on a therapeutic strategy that may include daily dialysis sessions and nutritional counseling. Normalization of plasma branched chain amino acids through branched chain amino acid supplementation may decrease anorexia and improve energy and protein intake. The role of megestrol acetate as an appetite stimulant needs to be validated through adequate randomized trials. Subcutaneous ghrelin administration and melanocortin-receptor antagonists appear to be promising therapeutic interventions.


Assuntos
Aminoácidos de Cadeia Ramificada/fisiologia , Anorexia/epidemiologia , Anorexia/etiologia , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Aminoácidos de Cadeia Ramificada/uso terapêutico , Anorexia/tratamento farmacológico , Anorexia/prevenção & controle , Proteínas Alimentares/administração & dosagem , Ingestão de Energia/fisiologia , Grelina/uso terapêutico , Humanos , Falência Renal Crônica/mortalidade , Estado Nutricional , Prognóstico , Qualidade de Vida , Receptores de Melanocortina/antagonistas & inibidores , Diálise Renal/efeitos adversos , Diálise Renal/métodos
18.
Diabetes ; 58(1): 87-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18984739

RESUMO

OBJECTIVE: Xenin, a 25-amino acid peptide, was initially isolated from human gastric mucosa. Plasma levels of xenin rise after a meal in humans, and administration of xenin inhibits feeding in rats and chicks. However, little is known about the mechanism by which xenin regulates food intake. Signaling pathways including leptin and melanocortins play a pivotal role in the regulation of energy balance. Therefore, we addressed the hypothesis that xenin functions as a satiety factor by acting through the melanocortin system or by interacting with leptin. RESEARCH DESIGN AND METHODS: The effect of intracerebroventricular and intraperitoneal administration of xenin on food intake was examined in wild-type, agouti, and ob/ob mice. The effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on xenin-induced anorexia was also examined in wild-type mice. To determine whether the hypothalamus mediates the anorectic effect of xenin, we examined the effect of intraperitoneal xenin on hypothalamic Fos expression. RESULTS: Both intracerebroventricular and intraperitoneal administration of xenin inhibited fasting-induced hyperphagia in wild-type mice in a dose-dependent manner. The intraperitoneal injection of xenin also reduced nocturnal intake in ad libitum-fed wild-type mice. The intraperitoneal injection of xenin increased Fos immunoreactivity in hypothalamic nuclei, including the paraventricular nucleus and the arcuate nucleus. Xenin reduced food intake in agouti and ob/ob mice. SHU9119 did not block xenin-induced anorexia. CONCLUSIONS: Our data suggest that xenin reduces food intake partly by acting through the hypothalamus but via signaling pathways that are independent of those used by leptin or melanocortins.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Melanocortinas/metabolismo , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Jejum/fisiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Leptina/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurotensina , Proteínas Oncogênicas v-fos/metabolismo , Peptídeos/administração & dosagem , Receptores de Melanocortina/antagonistas & inibidores , Transdução de Sinais/fisiologia
19.
Neuropharmacology ; 54(3): 509-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18082228

RESUMO

Loss of appetite and cachexia is an obstacle in the treatment of chronic infection and cancer. Proinflammatory cytokines released from activated immune cells and acting in the central nervous system (CNS) are prime candidates for mediating these metabolic changes, potentially affecting both energy intake as well as energy expenditure. The effect of intravenous administration of two proinflammatory cytokines, interleukin (IL)-1beta (15 microg/kg) and tumor necrosis factor (TNF)-alpha (10 microg/kg), on food and water intake, locomotor activity, oxygen consumption (VO2), and respiratory exchange ratio (RER) was evaluated. The two cytokines elicited a comparable decrease in food intake and activated similar numbers of cells in the paraventricular nucleus of the hypothalamus (PVH), a region that plays a critical role in the regulation of appetite and metabolism (determined via expression of the immediate early gene, c-fos). However, only IL-1beta reduced locomotion and RER, and increased VO2, while TNF-alpha was without effect. To examine the role of the melanocortins in mediating IL-1beta- induced metabolic changes, animals were pretreated centrally with a melanocortin receptor antagonist, HS014. Pretreatment with HS014 blocked the effect of IL-1beta on food intake and RER at later time points (beyond 8 h post injection), as well as the hypoactivity and increased metabolic rate. Further, HS014 blocked the induction of Fos-ir in the PVH. These data highlight the importance of the melanocortin system, particularly within the PVH, in mediating a broad range of metabolic responses to IL-1beta.


Assuntos
Interleucina-1beta/administração & dosagem , Locomoção/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Receptores de Melanocortina/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Vias de Administração de Medicamentos , Interações Medicamentosas , Ingestão de Alimentos/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Proteínas Oncogênicas v-fos/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Melanocortina/antagonistas & inibidores , Fatores de Tempo , Fator de Necrose Tumoral alfa/administração & dosagem
20.
Curr Opin Clin Nutr Metab Care ; 10(4): 457-62, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17563464

RESUMO

PURPOSE OF REVIEW: Cachexia is a condition of anorexia and wasting that accompanies many diseases including cancer, heart failure, and renal failure. One key center that is probably involved in the propagation of symptoms of cachexia is the melanocortin system in the hypothalamus and brainstem. This review focuses on cachexia treatment interventions that act via melanocortin antagonism, by direct or indirect means. RECENT FINDINGS: Recent reports include a description of the physiology of the melanocortin system and its responsiveness to inflammatory cytokines. Regarding treatment potential, multiple reports describe the effectiveness of small molecule antagonists of the melanocortin-4 receptor in animal models of cachexia. These melanocortin antagonists, given by peripheral injection, improve food intake and lean body mass retention in the setting of cancer and renal failure. Additional reports provide evidence of melanocortin antagonism following treatment of cachexia using ghrelin and eicosonoic acid. SUMMARY: Cachexia is a serious condition that accompanies various disease states and currently does not have effective treatments. The melanocortin system may play a direct role in producing symptoms of cachexia, making antagonism of this system a logical objective for ameliorating these symptoms. Thus far, however, no data on human application have been published.


Assuntos
Caquexia/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Melanocortinas/antagonistas & inibidores , Melanocortinas/fisiologia , Receptores de Melanocortina/antagonistas & inibidores , Doença Crônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA