Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Elife ; 132024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207910

RESUMO

Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.


Assuntos
Temperatura Corporal , Neurônios , Neurotensina , Área Pré-Óptica , Ácido gama-Aminobutírico , Animais , Área Pré-Óptica/metabolismo , Área Pré-Óptica/fisiologia , Área Pré-Óptica/efeitos dos fármacos , Neurotensina/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Masculino , Optogenética , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Camundongos Knockout , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Regulação da Temperatura Corporal/fisiologia
2.
Obesity (Silver Spring) ; 32(8): 1448-1452, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38979671

RESUMO

OBJECTIVE: This study aimed to determine a dopaminergic circuit required for diet-induced obesity in mice. METHODS: We created conditional deletion mutants for tyrosine hydroxylase (TH) using neurotensin receptor 1 (Ntsr1) Cre and other Cre drivers and measured feeding and body weight on standard and high-fat diets. We then used an adeno-associated virus to selectively restore TH to the ventral tegmental area (VTA) Ntsr1 neurons in conditional knockout (cKO) mice. RESULTS: Mice with cKO of Th using Vglut2-Cre, Cck-Cre, Calb1-Cre, and Bdnf-Cre were susceptible to obesity on a high-fat diet; however, Ntsr1-Cre Th cKO mice resisted weight gain on a high-fat diet and did not experience an increase in day eating unlike their wild-type littermate controls. Restoration of TH to the VTA Ntsr1 neurons of the Ntsr1-Cre Th cKO mice using an adeno-associated virus resulted in an increase in weight gain and day eating on a high-fat diet. CONCLUSIONS: Ntsr1-Cre Th cKO mice failed to increase day eating on a high-fat diet, offering a possible explanation for their resistance to diet-induced obesity. These results implicate VTA Ntsr1 dopamine neurons as promoting out-of-phase feeding behavior on a high-fat diet that could be an important contributor to diet-induced obesity in humans.


Assuntos
Dieta Hiperlipídica , Dopamina , Camundongos Knockout , Obesidade , Receptores de Neurotensina , Tirosina 3-Mono-Oxigenase , Área Tegmentar Ventral , Aumento de Peso , Animais , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Obesidade/metabolismo , Obesidade/etiologia , Camundongos , Área Tegmentar Ventral/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Masculino , Neurônios/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Dependovirus/genética , Peso Corporal
3.
Protein Sci ; 33(6): e4976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757374

RESUMO

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.


Assuntos
Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Humanos , Micelas , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Dicroísmo Circular , Conformação Proteica em alfa-Hélice , Detergentes/química , Modelos Moleculares
4.
Nat Commun ; 14(1): 3328, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286565

RESUMO

The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. ß-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A ß-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Neurotensina , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Arrestina/metabolismo
5.
Peptides ; 156: 170858, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932909

RESUMO

Neurotensin (NTS) receptor 1 regulates the growth non-small cell lung cancer (NSCLC) cells. NTS binds with high affinity to NTSR1, leading to increased tyrosine phosphorylation of the EGFR and HER2. Using Calu3, NCI-H358, or NCI-H441 cells, the effects of NTS on HER3 transactivation were investigated. HER3 tyrosine phosphorylation was increased by NTS or neuregulin (NRG1) addition to NSCLC cells. NCI-H358, NCI-H441, and Calu-3 cells have HER3, NTSR1 and neuregulin (NRG)1 protein. NTSR1 regulation of HER3 transactivation was impaired by SR48692 (NTSR1 antagonist) or monoclonal antibody (mAb)3481 (HER3 blocker). Immunoprecipitation experiments indicated that NTS addition to NCI-H441cells resulted in the formation of EGFR/HER3 and HER2/HER3 heterodimers. The ability of NTS to increase HER3 tyrosine phosphorylation was impaired by GM6001 (MMP inhibitor), PP2 (Src inhibitor), Tiron (superoxide scavenger), or N-acetylcysteine (antioxidant). Adding NTS to NSCLC cells increased phosphorylation of ERK, HER3, and AKT. NTS or NRG1 increased colony formation of NSCLC cells which was strongly inhibited by SR48692 and mAb3481. The results indicate that NTSR1 regulates HER3 transactivation in NSCLC cells leading to increased proliferation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Anticorpos Monoclonais/farmacologia , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Neurregulinas/metabolismo , Neurotensina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3 , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Superóxidos , Tirosina
6.
Breast Cancer Res Treat ; 190(3): 403-413, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34596798

RESUMO

PURPOSE: Neurotensin receptor-1 (NTS1) is increasingly recognized as a potential target in diverse tumors including breast cancer, but factors associated with NTS1 expression have not been fully clarified. METHODS: We studied NTS1 expression using the Tissue MicroArray (TMA) of primary breast tumors from Institut Bergonié. We also studied association between NTS1 expression and clinical, pathological, and biological parameters, as well as patient outcomes. RESULTS: Out of 1419 primary breast tumors, moderate to strong positivity for NTS1 (≥ 10% of tumoral cells stained) was seen in 459 samples (32.4%). NTS1 staining was cytoplasmic in 304 tumors and nuclear in 155 tumors, a distribution which appeared mutually exclusive. Cytoplasmic overexpression of NTS1 was present in 21.5% of all breast tumors. In multivariate analysis, factors associated with cytoplasmic overexpression of NTS1 in breast cancer samples were higher tumor grade, Ki67 ≥ 20%, and higher pT stage. Cytoplasmic NTS1 was more frequent in tumors other than luminal A (30% versus 17.3%; p < 0.0001). Contrastingly, the main "correlates" of a nuclear location of NTS1 were estrogen receptor (ER) positivity, low E&E (Elston and Ellis) grade, Ki67 < 20%, and lower pT stage. In NTS1-positive samples, cytoplasmic expression of NTS1 was associated with shorter 10-year metastasis-free interval (p = 0.033) compared to NTS1 nuclear staining. Ancillary analysis showed NTS1 expression in 73% of invaded lymph nodes from NTS1-positive primaries. CONCLUSION: NTS1 overexpression was found in about one-third of breast tumors from patients undergoing primary surgery with two distinct patterns of distribution, cytoplasmic distribution being more frequent in aggressive subtypes. These findings encourage the development of NTS1-targeting strategy, including radiopharmaceuticals for imaging and therapy.


Assuntos
Neoplasias da Mama , Receptores de Neurotensina , Fatores Biológicos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Compostos Radiofarmacêuticos , Receptores de Neurotensina/genética
7.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34190328

RESUMO

Neurotensin (NT) is an anorexic gut hormone and neuropeptide that increases in circulation following bariatric surgery in humans and rodents. We sought to determine the contribution of NT to the metabolic efficacy of vertical sleeve gastrectomy (VSG). To explore a potential mechanistic role of NT in VSG, we performed sham or VSG surgeries in diet-induced obese NT receptor 1 (NTSR1) wild-type and knockout (ko) mice and compared their weight and fat mass loss, glucose tolerance, food intake, and food preference after surgery. NTSR1 ko mice had reduced initial anorexia and body fat loss. Additionally, NTSR1 ko mice had an attenuated reduction in fat preference following VSG. Results from this study suggest that NTSR1 signaling contributes to the potent effect of VSG to initially reduce food intake following VSG surgeries and potentially also on the effects on macronutrient selection induced by VSG. However, maintenance of long-term weight loss after VSG requires signals in addition to NT.


Assuntos
Anorexia/etiologia , Transtorno Alimentar Restritivo Evitativo , Gastrectomia/efeitos adversos , Complicações Pós-Operatórias/genética , Receptores de Neurotensina/genética , Animais , Anorexia/genética , Gorduras na Dieta , Gastrectomia/métodos , Masculino , Camundongos , Camundongos Knockout , Transtornos Fóbicos/etiologia , Transtornos Fóbicos/genética , Complicações Pós-Operatórias/psicologia
8.
Biomolecules ; 10(8)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764278

RESUMO

Introduction: Colorectal Cancer (CRC) accounts for 9% of cancer deaths globally. Hormonal pathways play important roles in some cancers. This study investigated the association of CRC expression of neurotensin (NTS), NTS receptors 1 and 3 (NTSR1 and NTSR3) and clinical outcomes. Methods: A prospective cohort study which quantifies the protein expression of NTS, NTSR1 and NTSR3 in human CRCs using immunohistochemistry. Expression levels were then compared with clinico-pathological outcome including histological grade, overall survival (OS) and disease-free survival (DFS). Results: Sixty-four patients were enrolled with median follow-up of 44.0 months. There was significantly higher expression of NTS in cancer tissue in CRC with higher T stages (p < 0.01), N stages (p = 0.03), and AJCC clinical stages (p = 0.04). There was significantly higher expression of NTS, NTSR1 and NTSR3 in cancer tissue compared to surrounding normal epithelium (median H-score 163.5 vs 97.3, p < 0.01). There was significantly shorter DFS in individuals with CRC with high levels of NTS compared to lower levels of NTS (35.8 months 95% CI 28.7-42.8 months vs 46.4 months 95% CI 42.2-50.5 months, respectively, p = 0.02). Above median NTS expression in cancer tissue was a significant risk factor for disease recurrence (HR 4.10, 95% CI 1.14-14.7, p = 0.03). Discussion: The expression of NTS and its receptors has the potential to be utilised as a predictive and prognostic marker in colorectal cancer for postoperative selection for adjuvant therapy and identify individuals for novel therapies targeting the neurotensinergic pathways. Conclusions: High NTS expression appears to be associated with more advanced CRC and worse DFS.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Colorretais/metabolismo , Neurotensina/genética , Receptores de Neurotensina/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurotensina/metabolismo , Receptores de Neurotensina/metabolismo
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158765, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663609

RESUMO

BACKGROUND & AIMS: Neurotensin (NTS), a 13-aminoacid peptide localized in central nervous system and gastrointestinal tract, is involved in lipid metabolism and promotes various cancers onset mainly by binding to neurotensin receptor 1 (NTSR1). Increased plasma levels of pro-NTS, the stable NTS precursor, have been associated with type 2 diabetes (T2D), cardiovascular diseases and metabolic associated fatty liver disease (MAFLD). We aimed to evaluate 1) the impact of NTS rs1800832 and NTSR1 rs6090453 genetic variants on liver damage in 1166 MAFLD European individuals, 2) the relation between NTS variant and circulating pro-NTS and 3) the hepatic NTS expression by RNAseq transcriptomic analysis in 125 bariatric patients. RESULTS: The NTS rs1800832 G allele was associated with hepatic fibrosis (OR 1.27, 95% confidence interval (CI). 1.02-1.58; p = 0.03), even more in carriers of both NTS and NTSR1 G risk alleles (OR 1.17, 95% CI. 1.03-1.34; p = 0.01), with cirrhosis (OR 1.58, 95% CI. 1.07-2.34; p = 0.02) and HCC (OR 1.98, 95% CI. 1.24-3.2; p = 0.004). Pro-NTS circulating levels were correlated with T2D (p = 0.005), BMI, (p = 0.04), age (p = 0.0016), lobular inflammation (p = 0.0025), fibrosis>2 (p < 0.0001), cirrhosis (p = 0.0009) and HCC (p < 0.0001) and more so after stratification for the NTS G allele. Transcriptomic data showed that hepatic NTS expression correlated with that of fibrogenic genes (p < 0.05). CONCLUSIONS: NTS rs1800832 variant is associated with advanced fibrosis and HCC in MAFLD patients likely affecting NTS protein activity. The rs6090453 NTSR1 gene variant synergizes with NTS rs1800832 mutation to promote liver damage. Prospective studies are necessary to confirm NTS role in liver disease progression.


Assuntos
Carcinoma Hepatocelular/genética , Fígado Gorduroso/genética , Neoplasias Hepáticas/genética , Neurotensina/genética , Idoso , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Receptores de Neurotensina/genética
10.
Sci Rep ; 10(1): 12572, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724091

RESUMO

Evading apoptosis and sustained survival signaling pathways are two central hallmarks of B-cell chronic lymphocytic leukemia (B-CLL) cells. In this regard, nurse-like cells (NLC), the monocyte-derived type 2 macrophages, deliver stimulatory signals via B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL), and the C-X-C Motif Chemokine Ligand 12 (CXCL12). Previously, we demonstrated that brain-derived neurotrophic factor (BDNF) protects B-CLL cells from spontaneous apoptosis by activating the oncogenic complex NTSR2-TrkB (neurotensin receptor 2-tropomyosin-related kinase receptor B), only overexpressed in B-CLL cells, inducing anti-apoptotic protein Bcl-2 (B-cell lymphoma 2) expression and Src kinase survival signaling pathways. Herein, we demonstrate that BDNF belongs to the NLC secretome and promotes B-CLL survival. This was demonstrated in primary B-CLL co-cultured with their autologous NLC, compared to B-CLL cells cultured alone. Inhibition of BDNF in co-cultures, enhances B-CLL apoptosis, whereas its exogenous recombinant activates pro-survival pathways in B-CLL cultured alone (i.e. Src activation and Bcl-2 expression), at a higher level than those obtained by the exogenous recombinant cytokines BAFF, APRIL and CXCL12, the known pro-survival cytokines secreted by NLC. Together, these results showed that BDNF release from NLC trigger B-CLL survival. Blocking BDNF would support research strategies against pro-survival cytokines to limit sustained B-CLL cell survival.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Macrófagos/metabolismo , Apoptose , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Transporte Biológico , Fator Neurotrófico Derivado do Encéfalo/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Transdução de Sinais
11.
FEBS Lett ; 594(17): 2840-2866, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506501

RESUMO

Bioactive peptide drugs hold promise for therapeutic application due to their high potency and selectivity but display short plasma half-life. Examination of selected naturally occurring peptide hormones derived from proteolytic cleavage of the proopiomelanocortin (POMC) precursor lead to the identification of significant plasma-stabilizing properties of a 12-amino acid serine-rich orphan sequence NSSSSGSSGAGQ in human γ3-melanocyte-stimulating hormone (MSH) that is homologous to previously discovered NSn GGH (n = 4-24) sequences in owls. Notably, transfer of this sequence to des-acetyl-α-MSH and the therapeutically relevant peptide hormones neurotensin and glucagon-like peptide-1 likewise enhance their plasma stability without affecting receptor signaling. The stabilizing effect of the sequence module is independent of plasma components, suggesting a direct effect in cis. This natural sequence module may provide a possible strategy to enhance plasma stability, complementing existing methods of chemical modification.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/química , Hormônios Estimuladores de Melanócitos/química , Proteínas de Membrana/química , Pró-Opiomelanocortina/química , Receptor Tipo 1 de Melanocortina/química , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Hormônios Estimuladores de Melanócitos/sangue , Hormônios Estimuladores de Melanócitos/genética , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Peptídeos/sangue , Peptídeos/síntese química , Pró-Opiomelanocortina/sangue , Pró-Opiomelanocortina/genética , Isoformas de Proteínas/sangue , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estabilidade Proteica , Receptor Tipo 1 de Melanocortina/sangue , Receptor Tipo 1 de Melanocortina/genética , Receptores de Neurotensina/sangue , Receptores de Neurotensina/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
12.
Mol Carcinog ; 58(12): 2230-2240, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31478563

RESUMO

Undifferentiated pleomorphic sarcoma (UPS) is the second most common soft tissue sarcoma. For patients with unresectable or metastatic disease, chemotherapies are considered, but in many cases they are not curative. There is a need to identify specific molecular dysregulations that can be therapeutic targets. We focused on neurotensin receptor 1 (NTSR1), which belongs to the G-protein-coupled receptor. NTSR1 expression was upregulated in specimens from patients with UPS. Real-time polymerase chain reaction showed that expression of NTSR1 messenger RNA was 5- to 7-fold increased in UPS cells compared with myoblasts. Western blot showed a high expression of NTSR1 protein in UPS cell lines. Knockdown of NTSR1 prevented UPS cell proliferation and invasion. We confirmed that SR48692, an inhibitor of NTSR1, exhibited antitumor activities in UPS cells. The combination index showed that SR48692 and standard chemotherapeutic drugs prevented UPS cell proliferation synergistically. Mouse xenograft models showed that SR48692 inhibited extracellular signal-regulated kinase phosphorylation and enhanced the response to standard chemotherapeutic drugs. Inhibition of NTSR1 improved the effect of standard chemotherapeutic drugs for UPS. SR48692 may be a new drug for targeted UPS therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Receptores de Neurotensina/genética , Sarcoma/genética , Regulação para Cima/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Panobinostat/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Eur J Nucl Med Mol Imaging ; 46(10): 2199-2207, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31264168

RESUMO

INTRODUCTION: Despite recent developments in the diagnosis and treatment of prostate cancer, the advanced stages still have poor survival rates. This warrants further exploration of related molecular targets for patient screening, detection of metastatic disease, and treatment/treatment monitoring. Recent studies have indicated that neurotensin receptors (NTSRs) and their ligand neurotensin (NTS) critically affect the progression of prostate cancers. In this study, we evaluated the expression of neurotensin receptor1 (NTSR1) in patient tissues and performed NTSR1 PET imaging in a prostate cancer animal model. METHODS: The NTSR1 expression was evaluated in 97 cases of prostate cancer and 100 cases of benign prostatic hyperplasia (BPH) of clinical patients by immunohistochemistry staining. The expression profile of PSMA and GRPR was also performed for comparison. The mRNA expression of NTSR1 in LnCap and PC-3 cells was measured by PCR. NTSR1 PET, and biodistribution studies were performed in PC-3 xenografts using 18F-DEG-VS-NT. RESULTS: NTSR1 showed high or moderate expression in 91.8% of prostate cancer tissue, compared with PSMA (86.7%) and GRPR (65.3%). All examined PSMA-negative tissues showed positive NTSR1 expression, suggesting the potential complementary role of NTSR1 targeted imaging or therapy. Only 8% of BPH shows strong or moderate expression of NTSR1, which is significantly lower than that in prostate cancer (91.8%). PCR results indicated LNCap (an androgen-dependent prostate cancer cell) showed negative NTSR1 expression while PC-3 demonstrated positive expression (an androgen-independent prostate cancer cell), which correlated well with previously reported western blot results. In a preclinical animal model, NTSR1 targeted PET probe 18F-DEG-VS-NT demonstrated prominent tumor accumulation and low background. CONCLUSION: We have demonstrated that NTSR1 is a promising molecular marker for prostate cancer based on patient tissue staining. The NTSR targeted probe 18F-DEG-VS-NT demonstrated high tumor to background contrast in animal models, which could be valuable in selecting patients for therapies targeting NTSR1 as well as monitoring therapeutic efficacy during treatment accordingly.


Assuntos
Carcinoma/diagnóstico por imagem , Neurotensina/análogos & derivados , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Neurotensina/genética , Idoso , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurotensina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Neurotensina/metabolismo , Nanomedicina Teranóstica/métodos
14.
Cell Physiol Biochem ; 49(6): 2382-2395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261490

RESUMO

BACKGROUND/AIMS: Glioblastoma is the most common and aggressive brain tumor and carries a poor prognosis. Previously, we found that neurotensin receptor 1 (NTSR1) contributes to glioma progression, but the underlying mechanisms of NTSR1 in glioblastoma invasion remain to be clarified. The aim of this study was to investigate the molecular mechanisms of NTSR1 in glioblastoma invasion. METHODS: Cell migration and invasion were evaluated using wound-healing and transwell assays. Cell proliferation was detected using CCK-8. The expression of NTSR1, Jun, and suppressor of cytokine signaling 6 (SOCS6) was detected using western blotting. The expression of miR-494 was detected by Quantitative real-time PCR. Chromatin immunoprecipitation assay was performed to examine the interaction between Jun and miR-494 promoter. Dual-luciferase reporter assay and western blotting were performed to identify the direct regulation of SOCS6 by miR-494. An orthotopic xenograft mouse model was conducted to assess tumor growth and invasion. RESULTS: NTSR1 knockdown attenuated the invasion of glioblastoma cells. Jun was positively regulated by NTSR1, which promoted miR-494 expression through binding to miR-494 promoter. SOCS6 was confirmed as a direct target of miR-494, thus, NTSR1-induced miR-494 upregulation resulted in SOCS6 downregulation. Both miR-494 and SOCS6 were involved in the NTSR1-induced invasion of glioblastoma cells. In vivo, tumor invasion and growth were inhibited by NTSR1 knockdown, but were restored with miR-494 overexpression. CONCLUSION: NTSR1 knockdown inhibited glioblastoma invasion via the Jun/miR-494/SOCS6 axis.


Assuntos
MAP Quinase Quinase 4/metabolismo , MicroRNAs/metabolismo , Receptores de Neurotensina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , MAP Quinase Quinase 4/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/genética , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/genética
15.
Nature ; 559(7714): 423-427, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995853

RESUMO

G-protein-coupled receptors (GPCRs) are involved in many physiological processes and are therefore key drug targets1. Although detailed structural information is available for GPCRs, the effects of lipids on the receptors, and on downstream coupling of GPCRs to G proteins are largely unknown. Here we use native mass spectrometry to identify endogenous lipids bound to three class A GPCRs. We observed preferential binding of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) over related lipids and confirm that the intracellular surface of the receptors contain hotspots for PtdIns(4,5)P2 binding. Endogenous lipids were also observed bound directly to the trimeric Gαsßγ protein complex of the adenosine A2A receptor (A2AR) in the gas phase. Using engineered Gα subunits (mini-Gαs, mini-Gαi and mini-Gα12)2, we demonstrate that the complex of mini-Gαs with the ß1 adrenergic receptor (ß1AR) is stabilized by the binding of two PtdIns(4,5)P2 molecules. By contrast, PtdIns(4,5)P2 does not stabilize coupling between ß1AR and other Gα subunits (mini-Gαi or mini-Gα12) or a high-affinity nanobody. Other endogenous lipids that bind to these receptors have no effect on coupling, highlighting the specificity of PtdIns(4,5)P2. Calculations of potential of mean force and increased GTP turnover by the activated neurotensin receptor when coupled to trimeric Gαißγ complex in the presence of PtdIns(4,5)P2 provide further evidence for a specific effect of PtdIns(4,5)P2 on coupling. We identify key residues on cognate Gα subunits through which PtdIns(4,5)P2 forms bridging interactions with basic residues on class A GPCRs. These modulating effects of lipids on receptors suggest consequences for understanding function, G-protein selectivity and drug targeting of class A GPCRs.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Estabilidade Proteica , Ratos , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotensina/química , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Especificidade por Substrato , Perus
16.
Mol Cells ; 41(6): 591-602, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29794962

RESUMO

Gastric cancer is the fifth most common type of malignancy worldwide, and the survival rate of patients with advanced-stage gastric cancer is low, even after receiving chemotherapy. Here, we validated neurotensin receptor 1 (NTSR1) as a potential therapeutic target in gastric cancer. We compared NTSR1 expression levels in sixty different gastric cancer-tissue samples and cells, as well as in other cancer cells (lung, breast, pancreatic, and colon), by assessing NTSR1 expression via semi-quantitative real-time reverse transcription polymerase chain reaction, immunocytochemistry and western blot. Following neurotensin (NT) treatment, we analyzed the expression and activity of matrix metalloproteinase-9 (MMP-9) and further determined the effects on cell migration and invasion via wound-healing and transwell assays. Our results revealed that NTSR1 mRNA levels were higher in gastric cancer tissues than non-cancerous tissues. Both of NTSR1 mRNA levels and expression were higher in gastric cancer cell lines relative to levels observed in other cancer-cell lines. Moreover, NT treatment induced MMP-9 expression and activity in all cancer cell lines, which was significantly decreased following treatment with the NTSR1 antagonist SR48692 or small-interfering RNA targeting NTSR1. Furthermore, NT-mediated metastases was confirmed by observing epithelial-mesenchymal transition markers SNAIL and E-cadherin in gastric cancer cells. NT-mediated invasion and migration of gastric cancer cells were reduced by NTSR1 depletion through the Erk signaling. These findings strongly suggested that NTR1 constitutes a potential therapeutic target for the inhibition of gastric cancer invasion and metastasis.


Assuntos
Receptores de Neurotensina/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Receptores de Neurotensina/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Taxa de Sobrevida
17.
Oncogene ; 37(6): 756-767, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29059151

RESUMO

B-cell chronic lymphocytic leukemia (B-CLL) cells are resistant to apoptosis, and consequently accumulate to the detriment of normal B cells and patient immunity. Because current therapies fail to eradicate these apoptosis-resistant cells, it is essential to identify alternative survival pathways as novel targets for anticancer therapies. Overexpression of cell-surface G protein-coupled receptors drives cell transformation, and thus plays a critical role in malignancies. In this study, we identified neurotensin receptor 2 (NTSR2) as an essential driver of apoptosis resistance in B-CLL. NTSR2 was highly expressed in B-CLL cells, whereas expression of its natural ligand, neurotensin (NTS), was minimal in both B-CLL cells and patient plasma. Surprisingly, NTSR2 remained in a constitutively active phosphorylated state, caused not by a mutation-induced gain-of-function but rather by an interaction with the oncogenic tyrosine kinase receptor TrkB. Functional and biochemical characterization revealed that the NTSR2-TrkB interaction acts as a conditional oncogenic driver requiring the TrkB ligand brain-derived neurotrophic factor (BDNF), which unlike NTS is highly expressed in B-CLL cells. Together, NTSR2, TrkB and BDNF induce autocrine and/or paracrine survival pathways that are independent of mutation status and indolent or progressive disease course. The NTSR2-TrkB interaction activates survival signaling pathways, including the Src and AKT kinase pathways, as well as expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. When NTSR2 was downregulated, TrkB failed to protect B-CLL cells from a drastic decrease in viability via typical apoptotic cell death, reflected by DNA fragmentation and Annexin V presentation. Together, our findings demonstrate that the NTSR2-TrkB interaction plays a crucial role in B-CLL cell survival, suggesting that inhibition of NTSR2 represents a promising targeted strategy for treating B-CLL malignancy.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Receptores de Neurotensina/metabolismo , Biomarcadores Tumorais/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Proliferação de Células , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Glicoproteínas de Membrana/genética , Receptor trkB/genética , Receptores de Neurotensina/genética , Células Tumorais Cultivadas
18.
Cell Physiol Biochem ; 43(5): 2133-2142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065410

RESUMO

BACKGROUND/AIMS: Neurotensin (NTS), an intestinal hormone, is profoundly implicated in cancer progression through binding its primary receptor NTSR1. The conserved Wnt/ß-Catenin pathway regulates cell proliferation and differentiation via activation of the ß-catenin/T-cell factor (TCF) complex and subsequent modulation of a set of target genes. In this study, we aimed to uncover the potential connection between NTS/NTSR1 signaling and Wnt/ß-Catenin pathway. METHODS: Genetic silencing, pharmacological inhibition and gain-of-function studies as well as bioinformatic analysis were performed to uncover the link between NTS/ NTSR1 signaling and Wnt/ß-Catenin pathway. Two inhibitors were used in vivo to evaluate the efficiency of targeting NTS/NTSR1 signaling or Wnt/ß-Catenin pathway. RESULTS: We found that NTS/NTSR1 induced the activation of mitogen-activated protein kinase (MAPK) and the NF-κB pathway, which further promoted the expression of Wnt proteins, including Wnt1, Wnt3a and Wnt5a. Meanwhile, the mRNA and protein expression levels of NTSR1 were increased by the Wnt pathway activator Wnt3a and decreased by the Wnt inhibitor iCRT3 in glioblastoma cells. Furthermore, pharmacological inhibition of NTS/NTSR1 or Wnt/ß-Catenin signaling suppressed tumor growth in vitro and in vivo. CONCLUSION: These results reveal a positive feedback loop between NTS/NTSR1 and Wnt/ß-Catenin signaling in glioblastoma cells that might be important for tumor development and provide potential therapeutic targets for glioblastoma.


Assuntos
Glioblastoma/metabolismo , Receptores de Neurotensina/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Proliferação de Células/genética , Proliferação de Células/fisiologia , Glioblastoma/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Neurotensina/genética , Proteínas Wnt/genética , beta Catenina/genética
19.
Clin Cancer Res ; 23(21): 6516-6528, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790113

RESUMO

Purpose: The high affinity receptor 1 (NTSR1) and its agonist, neurotensin (NTS), are correlated with tumor cell aggressiveness in most solid tumors. As chemoresistance and tumor aggressiveness are often related, we decided to study the role of the NTSR1 complex within platinum-based chemotherapy responses. In an ovarian model, we studied carboplatin because it is the main standard of care for ovarian cancer.Experimental Design: Experimental tumors and in vitro studies were performed using SKOV3 and A2780 cells treated with carboplatin, with or without a very specific NTSR1 antagonist, SR48692. We measured the effects of these treatments on cell apoptosis and apoptosis-related proteins, platinum accumulation in the cell and nucleus, and the expression and localization of platinum transporters. NTS and NTSR1 labeling was measured in patients with ovarian cancer.Results: SR48692 enhanced the response to carboplatin in ovarian cancer cells and experimental tumors. When SR48692 is combined with carboplatin, we noted a major improvement of platinum-induced DNA damage and cell death, as well as a decrease in tumor growth. The relationship of these results to clinical studies was made by the detection of NTS and NTSR1 in 72% and 74% of ovarian cancer, respectively. Furthermore, in a large series of high-grade ovarian cancer, NTSR1 mRNA was shown to correlate with higher stages and platinum resistance.Conclusions: This study strongly suggests that the addition of NTSR1 inhibitor in combination with platinum salt-based therapy will improve the response to the drug. Clin Cancer Res; 23(21); 6516-28. ©2017 AACR.


Assuntos
Carboplatina/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Pirazóis/administração & dosagem , Quinolinas/administração & dosagem , Receptores de Neurotensina/genética , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Pirazóis/efeitos adversos , Quinolinas/efeitos adversos , Receptores de Neurotensina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Br J Cancer ; 116(12): 1572-1584, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28494471

RESUMO

Backgroud:Glioblastoma is a kind of highly malignant and aggressive tumours in the central nervous system. Previously, we found that neurotensin (NTS) and its high-affinity receptor 1 (NTSR1) had essential roles in cell proliferation and invasiveness of glioblastoma. Unexpectedly, cell death also appeared by inhibition of NTSR1 except for cell cycle arrest. However, the mechanisms were remained to be further explored. METHODS: Cells treated with SR48692, a selective antagonist of NTSR1, or NTSR1 shRNA were stained with Annexin V-FITC/PI and the apoptosis was assessed by flow cytometry. Cytochrome c release was detected by using immunofluorescence. Mitochondrial membrane potential (MMP, ΔΨm) loss was stained by JC-1 and detected by immunofluorescence or flow cytometry. Apoptosis antibody array and microRNA microarray were performed to seek the potential regulators of NTSR1 inhibition-induced apoptosis. Interaction between let-7a-3p and Bcl-w 3'UTR was evaluated by using luciferase assay. RESULTS: SR48692 induced massive apoptosis, which was related to mitochondrial cytochrome c release and MMP loss. Knockdown of NTSR1 induced slight apoptosis and significant MMP loss. In addition, NTSR1 inhibition sensitised glioblastoma cells to actinomycin D or doxorubicin-induced apoptosis. Consistently, NTSR1 inhibition-induced mitochondrial apoptosis was accompanied by downregulation of Bcl-w and Bcl-2. Restoration of Bcl-w partly rescued NTSR1 deficiency-induced apoptosis. In addition, NTSR1 deficiency promoted higher let-7a-3p expression and inhibition let-7a-3p partly rescued NTSR1 inhibition-induced apoptosis. In addition, let-7a-3p inhibition promoted 3'UTR activities of Bcl-w and the expression of c-Myc and LIN28, which were the upstream of let-7a-3p, decreased after NTSR1 inhibition. CONCLUSIONS: NTSR1 had an important role in protecting glioblastoma from intrinsic apoptosis via c-Myc/LIN28/let-7a-3p/Bcl-w axis.


Assuntos
Apoptose/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , MicroRNAs/metabolismo , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/genética , Regiões 3' não Traduzidas , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Dactinomicina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Mitocôndrias/metabolismo , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazóis/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , Receptores de Neurotensina/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA