Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
J Headache Pain ; 25(1): 176, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390360

RESUMO

BACKGROUND: Different responses in human coronary arteries (HCA) and human middle meningeal arteries (HMMA) were observed for some of the novel CGRP receptor antagonists, the gepants, for inhibiting CGRP-induced relaxation. These differences could be explained by the presence of different receptor populations in the two vascular beds. Here, we aim to elucidate which receptors are involved in the relaxation to calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2) in HCA and HMMA. METHODS: RNA was isolated from homogenized human arteries (23 HCAs; 12 F, 11 M, age 50 ± 3 years and 26 HMMAs; 14 F, 12 M, age 51 ± 3 years) and qPCR was performed for different receptor subunits. Additionally, relaxation responses to CGRP, AM or AM2 of the human arteries were quantified using a Mulvany myograph system, in the presence or absence of the adrenomedullin 1 receptor antagonist AM22-52 and/or olcegepant. RESULTS: Calcitonin-like receptor (CLR) mRNA was expressed equally in both vascular beds, while calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3) expression was low and could not be detected in all samples. RAMP1 expression was similar in HCA and HMMA, while RAMP2 expression was higher in HMMA. Moreover, receptor component protein (RCP) expression was higher in HMMA than in HCA. Functional experiments showed that olcegepant inhibits relaxation to all three agonists in both vascular beds. In HCA, antagonist AM22-52 did not inhibit relaxation to any of the agonists, while a trend for blocking relaxation to AM and AM2 could be observed in HMMA. CONCLUSION: Based on the combined results from receptor subunit mRNA expression and the functional responses in both vascular tissues, relaxation of HCA is mainly mediated via the canonical CGRP receptor (CLR-RAMP1), while relaxation of HMMA can be mediated via both the canonical CGRP receptor and the adrenomedullin 1 receptor (CLR-RAMP2). Future research should investigate whether RAMP2 predominance over RAMP1 in the meningeal vasculature results in altered migraine susceptibility or in a different response to anti-migraine medication in these patients. Moreover, the exact role of RCP in CGRP receptor signalling should be elucidated in future research.


Assuntos
Adrenomedulina , Proteína Semelhante a Receptor de Calcitonina , Vasos Coronários , Artérias Meníngeas , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Humanos , Artérias Meníngeas/efeitos dos fármacos , Artérias Meníngeas/metabolismo , Pessoa de Meia-Idade , Masculino , Feminino , Adrenomedulina/metabolismo , Adrenomedulina/farmacologia , Adrenomedulina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Hormônios Peptídicos
2.
Nat Commun ; 15(1): 7265, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179539

RESUMO

Rosacea patients show facial hypersensitivity to stimulus factors (such as heat and capsaicin); however, the underlying mechanism of this hyperresponsiveness remains poorly defined. Here, we show capsaicin stimulation in mice induces exacerbated rosacea-like dermatitis but has no apparent effect on normal skin. Nociceptor ablation substantially reduces the hyperresponsiveness of rosacea-like dermatitis. Subsequently, we find that γδ T cells express Ramp1, the receptor of the neuropeptide CGRP, and are in close contact with these nociceptors in the skin. γδ T cells are significantly increased in rosacea skin lesions and can be further recruited and activated by neuron-secreted CGRP. Rosacea-like dermatitis is reduced in T cell receptor δ-deficient (Tcrd-/-) mice, and the nociceptor-mediated aggravation of rosacea-like dermatitis is also reduced in these mice. In vitro experiments show that CGRP induces IL17A secretion from γδ T cells by regulating inflammation-related and metabolism-related pathways. Finally, rimegepant, a CGRP receptor antagonist, shows efficacy in the treatment of rosacea-like dermatitis. In conclusion, our findings demonstrate a neuron-CGRP-γδT cell axis that contributes to the hyperresponsiveness of rosacea, thereby showing that targeting CGRP is a potentially effective therapeutic strategy for rosacea.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Capsaicina , Receptores de Antígenos de Linfócitos T gama-delta , Rosácea , Células Receptoras Sensoriais , Animais , Rosácea/imunologia , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Receptoras Sensoriais/metabolismo , Capsaicina/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Pele/patologia , Pele/imunologia , Pele/metabolismo , Interleucina-17/metabolismo , Interleucina-17/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Dermatite/imunologia , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Masculino , Nociceptores/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Humanos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
3.
Nat Commun ; 15(1): 5555, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030177

RESUMO

Neurotransmitters are key modulators in neuro-immune circuits and have been linked to tumor progression. Medullary thyroid cancer (MTC), an aggressive neuroendocrine tumor, expresses neurotransmitter calcitonin gene-related peptide (CGRP), is insensitive to chemo- and radiotherapies, and the effectiveness of immunotherapies remains unknown. Thus, a comprehensive analysis of the tumor microenvironment would facilitate effective therapies and provide evidence on CGRP's function outside the nervous system. Here, we compare the single-cell landscape of MTC and papillary thyroid cancer (PTC) and find that expression of CGRP in MTC is associated with dendritic cell (DC) abnormal development characterized by activation of cAMP related pathways and high levels of Kruppel Like Factor 2 (KLF2), correlated with an impaired activity of tumor infiltrating T cells. A CGRP receptor antagonist could offset CGRP detrimental impact on DC development in vitro. Our study provides insights of the MTC immunosuppressive microenvironment, and proposes CGRP receptor as a potential therapeutic target.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Carcinoma Neuroendócrino , Células Dendríticas , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/imunologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neurotransmissores/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Análise de Célula Única
4.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695251

RESUMO

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Assuntos
Células Epiteliais Alveolares , Peptídeo Relacionado com Gene de Calcitonina , Hiperóxia , Lesão Pulmonar , Humanos , Células A549 , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Apoptose/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hiperóxia/metabolismo , Hiperóxia/patologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia
5.
Biochemistry ; 63(9): 1089-1096, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603770

RESUMO

Inhibition of calcitonin gene-related peptide (CGRP) or its cognate CGRP receptor (CGRPR) has arisen as a major breakthrough in the treatment of migraine. However, a second CGRP-responsive receptor exists, the amylin (Amy) 1 receptor (AMY1R), yet its involvement in the pathology of migraine is poorly understood. AMY1R and CGRPR are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with the calcitonin receptor (CTR) and the calcitonin receptor-like receptor (CLR), respectively. Here, we present the structure of AMY1R in complex with CGRP and Gs protein and compare it with the reported structures of the AMY1R complex with rat amylin (rAmy) and the CGRPR in complex with CGRP. Despite similar protein backbones observed within the receptors and the N- and C-termini of the two peptides bound to the AMY1R complexes, they have distinct organization in the peptide midregions (the bypass motif) that is correlated with differences in the dynamics of the respective receptor extracellular domains. Moreover, divergent conformations of extracellular loop (ECL) 3, intracellular loop (ICL) 2, and ICL3 within the CTR and CLR protomers are evident when comparing the CGRP bound to the CGRPR and AMY1R, which influences the binding mode of CGRP. However, the conserved interactions made by the C-terminus of CGRP to the CGRPR and AMY1R are likely to account for cross-reactivity of nonpeptide CGRPR antagonists observed at AMY1R, which also extends to other clinically used CGRPR blockers, including antibodies.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Microscopia Crioeletrônica , Proteína 1 Modificadora da Atividade de Receptores , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/química , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/química , Animais , Ratos , Modelos Moleculares , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Conformação Proteica
7.
Cephalalgia ; 44(1): 3331024231222916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181724

RESUMO

BACKGROUND: The present study aimed to investigate whether levcromakalim, a KATP channel opener, induces migraine attacks in people with migraine pre-treated with erenumab, a monoclonal CGRP receptor antibody. METHODS: In this double-blind, placebo-controlled, two-way cross-over study, adults with migraine without aura received a subcutaneous injection of 140 mg of erenumab on day 1. Subsequently, they were randomized to receive a 20-minute infusion of 0.05 mg/ml levcromakalim or placebo on two experimental days separated by at least one week (between days 8 and 21). The primary endpoint was the difference in the incidence of migraine attacks between levcromakalim and placebo during the 12-hour post-infusion period. RESULTS: In total, 16 participants completed the study. During the 12-hour observation period, 14 (88%) of 16 participants experienced migraine attacks after levcromakalim, compared to two (12%) after placebo (p < 0.001). The area under the curve for median headache intensity was greater after levcromakalim than placebo (p < 0.001). Levcromakalim elicited dilation of the superficial temporal artery during the first hour after infusion, a response absent following placebo (p < 0.001). CONCLUSIONS: The induction of migraine attacks via opening of KATP channels appears independent of CGRP receptor activation.Trial Registration: ClinicalTrials.gov, Identifier NCT05889442.


Assuntos
Canais KATP , Transtornos de Enxaqueca , Adulto , Humanos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Cromakalim , Estudos Cross-Over , Transtornos de Enxaqueca/induzido quimicamente , Anticorpos Monoclonais , Trifosfato de Adenosina
8.
Cephalalgia ; 44(1): 3331024231226186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215228

RESUMO

BACKGROUND: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS: In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS: Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS: Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Piperidinas , Piridinas , Pirróis , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Compostos de Espiro , Humanos , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Hiperalgesia/tratamento farmacológico
10.
Am J Physiol Renal Physiol ; 325(6): F779-F791, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823199

RESUMO

Patients with urinary tract infections (UTIs) suffer from urinary frequency, urgency, dysuria, and suprapubic pain, but the mechanisms by which bladder afferents sense the presence of uropathogens and encode this information is not well understood. Calcitonin gene-related peptide (CGRP) is a 37-mer neuropeptide found in a subset of bladder afferents that terminate primarily in the lamina propria. Here, we report that the CGRP receptor antagonist BIBN4096BS lessens lower urinary tract symptoms and prevents the development of pelvic allodynia in mice inoculated with uropathogenic Escherichia coli (UPEC) without altering urine bacterial loads or the host immune response to the infection. These findings indicate that CGRP facilitates the processing of noxious/inflammatory stimuli during UPEC infection. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria, a region where afferent fibers containing CGRP terminate, that expresses the canonical CGRP receptor components Calcrl and Ramp1. We propose that these fibroblasts, in conjunction with CGRP+ afferents, form a circuit that senses substances released during the infection and transmit this noxious information to the central nervous system.NEW & NOTEWORTHY Afferent C fibers release neuropeptides including calcitonin gene-related peptide (CGRP). Here, we show that the specific CGRP receptor antagonist, BIBN409BS, ameliorates lower urinary tract symptoms and pelvic allodynia in mice inoculated with uropathogenic E. coli. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria that expresses the canonical CGRP receptor. Our findings indicate that CGRP contributes to the transmission of nociceptive information arising from the bladder.


Assuntos
Cistite , Sintomas do Trato Urinário Inferior , Camundongos , Humanos , Animais , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/fisiologia , Peptídeo Relacionado com Gene de Calcitonina , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Hiperalgesia , Escherichia coli , Hibridização in Situ Fluorescente
11.
Brain ; 146(12): 5224-5234, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540009

RESUMO

There are several endogenous molecules that can trigger migraine attacks when administered to humans. Notably, calcitonin gene-related peptide (CGRP) has been identified as a key player in a signalling cascade involved in migraine attacks, acting through the second messenger cyclic adenosine monophosphate (cAMP) in various cells, including intracranial vascular smooth muscle cells. However, it remains unclear whether intracellular cAMP signalling requires CGRP receptor activation during a migraine attack in humans. To address this question, we conducted a randomized, double-blind, placebo-controlled, parallel trial using a human provocation model involving the administration of CGRP and cilostazol in individuals with migraine pretreated with erenumab or placebo. Our study revealed that migraine attacks can be provoked in patients by cAMP-mediated mechanisms using cilostazol, even when the CGRP receptor is blocked by erenumab. Furthermore, the dilation of cranial arteries induced by cilostazol was not influenced by the CGRP receptor blockade. These findings provide clinical evidence that cAMP-evoked migraine attacks do not require CGRP receptor activation. This discovery opens up new possibilities for the development of mechanism-based drugs for the treatment of migraine.


Assuntos
Transtornos de Enxaqueca , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Humanos , Peptídeo Relacionado com Gene de Calcitonina , Cilostazol/efeitos adversos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Sistemas do Segundo Mensageiro , AMP Cíclico
12.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443709

RESUMO

Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.


Assuntos
Dor do Câncer , Neoplasias Bucais , Hormônios Peptídicos , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Calcitonina , Pró-Calcitonina , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Dor do Câncer/tratamento farmacológico , Células Endoteliais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Microambiente Tumoral
13.
J Headache Pain ; 24(1): 76, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37370051

RESUMO

BACKGROUND: Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS: We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION: While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.


Assuntos
Transtornos da Cefaleia , Transtornos de Enxaqueca , Humanos , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina
14.
Physiol Rev ; 103(2): 1565-1644, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454715

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and ß) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Sistema Nervoso Central/metabolismo , Neurônios Motores
15.
Biomolecules ; 12(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551174

RESUMO

An inflammatory response following dental pulp injury and/or infection often leads to neurogenic inflammation via the axon reflex. However, the detailed mechanism underlying the occurrence of the axon reflex in the dental pulp remains unclear. We sought to examine the intracellular cyclic adenosine monophosphate (cAMP) signaling pathway in odontoblasts via the activation of Gs protein-coupled receptors and intercellular trigeminal ganglion (TG) neuron-odontoblast communication following direct mechanical stimulation of TG neurons. Odontoblasts express heterotrimeric G-protein α-subunit Gαs and calcitonin receptor-like receptors. The application of an adenylyl cyclase (AC) activator and a calcitonin gene-related peptide (CGRP) receptor agonist increased the intracellular cAMP levels ([cAMP]i) in odontoblasts, which were significantly inhibited by the selective CGRP receptor antagonist and AC inhibitor. Mechanical stimulation of the small-sized CGRP-positive but neurofilament heavy chain-negative TG neurons increased [cAMP]i in odontoblasts localized near the stimulated neuron. This increase was inhibited by the CGRP receptor antagonist. In the mineralization assay, CGRP impaired the mineralization ability of the odontoblasts, which was reversed by treatment with a CGRP receptor antagonist and AC inhibitor. CGRP establishes an axon reflex in the dental pulp via intercellular communication between TG neurons and odontoblasts. Overall, CGRP and cAMP signaling negatively regulate dentinogenesis as defensive mechanisms.


Assuntos
Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Gânglio Trigeminal , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Odontoblastos , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Neurônios/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Dentina
16.
Headache ; 62(9): 1093-1104, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36226379

RESUMO

OBJECTIVE: To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND: Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS: This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS: Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION: Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Feminino , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Adrenomedulina/uso terapêutico , Calcitonina/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo
17.
Adv Sci (Weinh) ; 9(30): e2202620, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047655

RESUMO

Sensory nerves are long being recognized as collecting units of various outer stimuli; recent advances indicate that the sensory nerve also plays pivotal roles in maintaining organ homeostasis. Here, this study shows that sensory nerve orchestrates intervertebral disc (IVD) homeostasis by regulating its extracellular matrix (ECM) metabolism. Specifically, genetical sensory denervation of IVD results in loss of IVD water preserve molecule chondroitin sulfate (CS), the reduction of CS bio-synthesis gene chondroitin sulfate synthase 1 (CHSY1) expression, and dysregulated ECM homeostasis of IVD. Particularly, knockdown of sensory neuros calcitonin gene-related peptide (CGRP) expression induces similar ECM metabolic disorder compared to sensory nerve denervation model, and this effect is abolished in CHSY1 knockout mice. Furthermore, in vitro evidence shows that CGRP regulates nucleus pulposus cell CHSY1 expression and CS synthesis via CGRP receptor component receptor activity-modifying protein 1 (RAMP1) and cyclic AMP response element-binding protein (CREB) signaling. Therapeutically, local injection of forskolin significantly attenuates IVD degeneration progression in mouse annulus fibrosus puncture model. Overall, these results indicate that sensory nerve maintains IVD ECM homeostasis via CGRP/CHSY1 axis and promotes IVD repair, and this expands the understanding concerning how IVD links to sensory nerve system, thus shedding light on future development of novel therapeutical strategy to IVD degeneration.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colforsina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Matriz Extracelular/metabolismo , Homeostase , Disco Intervertebral/inervação , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Glucuronosiltransferase/metabolismo
18.
J Headache Pain ; 23(1): 128, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180824

RESUMO

BACKGROUND: Chronic migraine is a common and highly disabling disorder. Functional MRI has indicated that abnormal brain region activation is linked with chronic migraine. Drugs targeting the calcitonin gene-related peptide (CGRP) or its receptor have been reported to be efficient for treating chronic migraine. The CGRP signaling was also shared in two types of chronic migraine models (CMMs). However, it remains unclear whether the activation of specific brain regions could contribute to persistent behavioral sensitization, and CGRP receptor antagonists relieve migraine-like pain in CMMs by altering specific brain region activation. Therefore, it's of great interest to investigate brain activation pattern and the effect of olcegepant (a CGRP receptor-specific antagonist) treatment on alleviating hyperalgesia by altering brain activation in two CMMs, and provide a reference for future research on neural circuits. METHODS: Repeated administration of nitroglycerin (NTG) or levcromakalim (LEV) was conducted to stimulate human migraine-like pain and establish two types of CMMs in mice. Mechanical hypersensitivity was evaluated by using the von Frey filament test. Then, we evaluated the activation of different brain regions with c-Fos and NeuN staining. Olcegepant was administered to explore its effect on mechanical hyperalgesia and brain region activation. RESULTS: In two CMMs, acute and basal mechanical hyperalgesia was observed, and olcegepant alleviated mechanical hyperalgesia. In the NTG-induced CMM, the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and the caudal part of the spinal trigeminal nucleus (Sp5c) showed a significant increase of c-Fos expression in the NTG group (p < 0.05), while pre-treatment with olcegepant reduced c-Fos expression compared with NTG group (p < 0.05). No significant difference of c-Fos expression was found in the paraventricular thalamic nucleus (PVT) and ventrolateral periaqueductal gray (vlPAG) between the vehicle control and NTG group (p > 0.05). In the LEV-induced CMM, mPFC, PVT, and Sp5c showed a significant increase of c-Fos expression between vehicle control and LEV group, and olcegepant reduced c-Fos expression (p < 0.05). No significant difference in c-Fos expression was found in vlPAG and ACC (p > 0.05). CONCLUSIONS: Our study demonstrated the activation of mPFC and Sp5c in two CMMs. Olcegepant may alleviate hyperalgesia of the hind paw and periorbital area by attenuating brain activation in CMMs.


Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Cromakalim/uso terapêutico , Modelos Animais de Doenças , Humanos , Hiperalgesia/metabolismo , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/tratamento farmacológico , Nitroglicerina/efeitos adversos , Dor/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina
19.
J Headache Pain ; 23(1): 104, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35978286

RESUMO

BACKGROUND: Erenumab, a fully human monoclonal antibody that targets the calcitonin gene-related peptide receptor, has demonstrated efficacy and safety in the prevention of episodic and chronic migraine. There exists an unmet need to establish the safety of erenumab in older individuals, in view of existing multiple comorbidities, polypharmacy, and age-related physiological changes. This pooled analysis of five large migraine-prevention studies examined the safety of erenumab stratified across age groups, particularly in older populations. METHODS: Pooled and age-stratified analysis of safety data from the 12-week double-blind treatment phase (DBTP) of five randomized, placebo-controlled Phase 2 and 3 studies of erenumab in participants with episodic or chronic migraine across the age groups < 40 years, 40-49 years, 50-59 years, and ≥ 60 years was completed. The safety of erenumab across age groups was determined by assessing safety endpoints including treatment-emergent adverse events (AEs), serious AEs, and events leading to study drug discontinuation. RESULTS: Overall, 3345 participants across five studies were randomized to receive either placebo (n = 1359), erenumab 70 mg (n = 1132) or erenumab 140 mg (n = 854); 3176 (94.9%) completed the DBTP, and 169 (5.1%) discontinued, mainly due to participant decision (110; 3.3%). Overall, 1349 (40.6%), 1122 (33.8%), and 850 (25.6%) participants received at least one dose of placebo, erenumab 70 mg, and erenumab 140 mg, respectively. Incidence of treatment-emergent AEs was similar across all age groups for both doses of erenumab (70 mg or 140 mg) and placebo (< 40 years, 44.0% vs 44.4%; 40-49 years, 42.5% vs 49.2%; 50-59 years, 46.5% vs 41.6%; ≥ 60 years, 43.8% vs 59.4%). Incidence of treatment-emergent serious AEs overall, and stratified by age groups for both doses and placebo was low (< 40 years, 0.9% vs 1.2%; 40-49 years, 1.7% vs 1.9%; and 50-59 years, 1.6% vs 1.1%), with no serious AEs reported in participants aged ≥ 60 years. No deaths were reported. CONCLUSIONS: Erenumab (70 mg or 140 mg) exhibited a similar safety profile compared with placebo across age groups in individuals with episodic or chronic migraine, with no increased emergence of events due to age. Erenumab was well tolerated in older participants with multiple comorbidities, polypharmacy, and age-related physiological changes. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifiers: NCT02066415, NCT02456740, NCT02483585, NCT03096834, NCT03333109.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Transtornos de Enxaqueca , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/efeitos adversos , Método Duplo-Cego , Humanos , Transtornos de Enxaqueca/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Resultado do Tratamento
20.
J Headache Pain ; 23(1): 59, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614383

RESUMO

BACKGROUND: The clinical use of calcitonin gene-related peptide receptor (CGRP-R) antagonists and monoclonal antibodies against CGRP and CGRP-R has offered new treatment possibilities for migraine patients. CGRP activates both the CGRP-R and structurally related amylin 1 receptor (AMY1-R). The relative effect of erenumab and the small-molecule CGRP-R antagonist, rimegepant, towards the CGRP-R and AMY-R needs to be further characterized. METHODS: The effect of CGRP and two CGRP-R antagonists were examined in Xenopus laevis oocytes expressing human CGRP-R, human AMY1-R and their subunits. RESULTS: CGRP administered to receptor expressing oocytes induced a concentration-dependent increase in current with the order of potency CGRP-R> > AMY1-R > calcitonin receptor (CTR). There was no effect on single components of the CGRP-R; calcitonin receptor-like receptor and receptor activity-modifying protein 1. Amylin was only effective on AMY1-R and CTR. Inhibition potencies (pIC50 values) for erenumab on CGRP induced currents were 10.86 and 9.35 for CGRP-R and AMY1-R, respectively. Rimegepant inhibited CGRP induced currents with pIC50 values of 11.30 and 9.91 for CGRP-R and AMY1-R, respectively. CONCLUSION: Our results demonstrate that erenumab and rimegepant are potent antagonists of CGRP-R and AMY1-R with 32- and 25-times preference for the CGRP-R over the AMY1-R, respectively. It is discussed if this difference in affinity between the two receptors is the likely reason why constipation is a common and serious adverse effect during CGRP-R antagonism but less so with CGRP binding antibodies.


Assuntos
Anticorpos Monoclonais Humanizados , Peptídeo Relacionado com Gene de Calcitonina , Piperidinas , Piridinas , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Oócitos/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores da Calcitonina/química , Receptores da Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA