Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 148(1): 45-54, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181603

RESUMO

BACKGROUND: Patients desire face-lifting procedures primarily to appear younger, more refreshed, and attractive. Because there are few objective studies assessing the success of face-lift surgery, the authors used artificial intelligence, in the form of convolutional neural network algorithms alongside FACE-Q patient-reported outcomes, to evaluate perceived age reduction and patient satisfaction following face-lift surgery. METHODS: Standardized preoperative and postoperative (1 year) images of 50 consecutive patients who underwent face-lift procedures (platysmaplasty, superficial musculoaponeurotic system-ectomy, cheek minimal access cranial suspension malar lift, or fat grafting) were used by four neural networks (trained to identify age based on facial features) to estimate age reduction after surgery. In addition, FACE-Q surveys were used to measure patient-reported facial aesthetic outcome. Patient satisfaction was compared to age reduction. RESULTS: The neural network preoperative age accuracy score demonstrated that all four neural networks were accurate in identifying ages (mean score, 100.8). Patient self-appraisal age reduction reported a greater age reduction than neural network age reduction after a face lift (-6.7 years versus -4.3 years). FACE-Q scores demonstrated a high level of patient satisfaction for facial appearance (75.1 ± 8.1), quality of life (82.4 ± 8.3), and satisfaction with outcome (79.0 ± 6.3). Finally, there was a positive correlation between neural network age reduction and patient satisfaction. CONCLUSION: Artificial intelligence algorithms can reliably estimate the reduction in apparent age after face-lift surgery; this estimated age reduction correlates with patient satisfaction. CLINICAL QUESTION/LEVEL OF EVIDENCE: Diagnostic, IV.


Assuntos
Reconhecimento Facial Automatizado/estatística & dados numéricos , Aprendizado Profundo/estatística & dados numéricos , Satisfação do Paciente/estatística & dados numéricos , Rejuvenescimento , Ritidoplastia/estatística & dados numéricos , Idoso , Reconhecimento Facial Automatizado/métodos , Face/diagnóstico por imagem , Face/cirurgia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Período Pós-Operatório , Período Pré-Operatório , Qualidade de Vida , Reprodutibilidade dos Testes , Resultado do Tratamento
2.
Plast Reconstr Surg ; 148(1): 162-169, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181613

RESUMO

BACKGROUND: Despite the wide range of cleft lip morphology, consistent scales to categorize preoperative severity do not exist. Machine learning has been used to increase accuracy and efficiency in detection and rating of multiple conditions, yet it has not been applied to cleft disease. The authors tested a machine learning approach to automatically detect and measure facial landmarks and assign severity grades using preoperative photographs. METHODS: Preoperative images were collected from 800 unilateral cleft lip patients, manually annotated for cleft-specific landmarks, and rated using a previously validated severity scale by eight expert reviewers. Five convolutional neural network models were trained for landmark detection and severity grade assignment. Mean squared error loss and Pearson correlation coefficient for cleft width ratio, nostril width ratio, and severity grade assignment were calculated. RESULTS: All five models performed well in landmark detection and severity grade assignment, with the largest and most complex model, Residual Network, performing best (mean squared error, 24.41; cleft width ratio correlation, 0.943; nostril width ratio correlation, 0.879; severity correlation, 0.892). The mobile device-compatible network, MobileNet, also showed a high degree of accuracy (mean squared error, 36.66; cleft width ratio correlation, 0.901; nostril width ratio correlation, 0.705; severity correlation, 0.860). CONCLUSIONS: Machine learning models demonstrate the ability to accurately measure facial features and assign severity grades according to validated scales. Such models hold promise for the creation of a simple, automated approach to classifying cleft lip morphology. Further potential exists for a mobile telephone-based application to provide real-time feedback to improve clinical decision making and patient counseling.


Assuntos
Fenda Labial/diagnóstico , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Nariz/anormalidades , Índice de Gravidade de Doença , Pontos de Referência Anatômicos , Reconhecimento Facial Automatizado/métodos , Fenda Labial/complicações , Fenda Labial/cirurgia , Tomada de Decisão Clínica , Aconselhamento , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Humanos , Aplicativos Móveis , Nariz/diagnóstico por imagem , Nariz/cirurgia , Fotografação , Período Pré-Operatório , Consulta Remota , Rinoplastia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA