Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11402, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762561

RESUMO

Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.


Assuntos
Clozapina , Dependovirus , Ingestão de Alimentos , Região Hipotalâmica Lateral , Estudo de Prova de Conceito , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Ratos , Ingestão de Alimentos/efeitos dos fármacos , Região Hipotalâmica Lateral/efeitos dos fármacos , Dependovirus/genética , Masculino , Exenatida/farmacologia , Humanos
2.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546289

RESUMO

Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine's effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine's effects on energy balance.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Receptores Opioides kappa/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Dinorfinas/metabolismo , Metabolismo Energético , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
3.
Brain Res ; 1732: 146674, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981680

RESUMO

To date several circuities in supraspinal site of the central nervous system have been known to engage in pain modulation. Lateral hypothalamus (LH) is known as part of the circuit of pain modulation among supraspinal sites. Its role in several animal pain models has been well defined. In this study, we examined the role of spinal orexin receptors in antinociceptive response elicited by the LH stimulation in an animal model of neuropathic pain. Male Wistar rats were unilaterally implanted with a cannula into the LH and a catheter into the L4-L5 segments of the spinal cord followed by chronic constriction injury (CCI) surgery. Intra-LH microinjection of carbachol (500 nM; 0.5 µL) was done 5 min after intrathecal administration of the orexin receptor antagonists, SB-334867 or TCS OX2 29; control animals received DMSO. Mechanical allodynia and thermal hyperalgesia were evaluated using von Frey filaments and a thermal stimulus. The results showed that carbachol induces antiallodynic and anti-thermal hyperalgesic effects in a dose-dependent manner. The antiallodynic and anti-thermal hyperalgesic effects induced by intra-LH injection of carbachol were reversed by intrathecal administration of 10 µL-100 nM solutions of SB-334867 or TCS OX2 in neuropathic rats. However, solely intrathecal administration of both antagonists had no effect in neuropathic rats. There appears to be a neural pathway from the LH to the spinal cord, which potentially contributes to the modulation of neuropathic pain. The implications are that there may be novel therapeutic approaches for the treatment of people suffered from chronic neuropathic pain in clinic.


Assuntos
Hiperalgesia/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Neuralgia/metabolismo , Receptores de Orexina/metabolismo , Limiar da Dor/efeitos dos fármacos , Medula Espinal/metabolismo , Animais , Benzoxazóis/farmacologia , Carbacol/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Temperatura Alta , Hiperalgesia/fisiopatologia , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiopatologia , Isoquinolinas/farmacologia , Naftiridinas/farmacologia , Neuralgia/fisiopatologia , Antagonistas dos Receptores de Orexina/farmacologia , Manejo da Dor , Piridinas/farmacologia , Ratos , Ratos Wistar , Medula Espinal/fisiopatologia , Ureia/análogos & derivados , Ureia/farmacologia
4.
Acta Physiol (Oxf) ; 228(2): e13345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310704

RESUMO

AIM: Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS: Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS: Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION: Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.


Assuntos
Ingestão de Alimentos/fisiologia , Hiperfagia/prevenção & controle , Região Hipotalâmica Lateral/efeitos dos fármacos , Leptina/farmacologia , Neurônios/metabolismo , Receptor Tipo 2 de Galanina/agonistas , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Galanina/farmacologia , Grelina/metabolismo , Hiperfagia/metabolismo , Hiperfagia/patologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Orexinas/metabolismo , Receptor Tipo 2 de Galanina/metabolismo
5.
Folia Morphol (Warsz) ; 79(3): 429-437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31724150

RESUMO

BACKGROUND: Spinosin, a major component of Samen Ziziphi spinosae, has been shown to modulate sedation and hypnosis; however, the underlying neuronal mechanisms of its stimulatory effects remain unclear. MATERIALS AND METHODS: In the present study, we injected spinosin (15 mg/kg) or saline into mice, which were killed after 90 min. We isolated the brains, which were immunohistochemically stained for c-Fos as a biomarker for neuronal activation and assessed the expression profile of c-Fos in various sleep-arousal brain areas. RESULTS: Our findings revealed that there were no statistically significant differences in the expression of c-Fos in the nucleus accumbens and ventrolateral preoptic area, the vertical limb of the diagonal band nucleus, horizontal limb of the diagonal band nucleus, ventral tuberomammillary nucleus, ventral tegmental area, and dorsal raphe nucleus relative to saline between saline and spinosin-treated mice. Unlike saline, spinosin markedly decreased c-Fos expression in the lateral hypothalamic area (LHA) as well as the locus coeruleus (LC). Compared to the saline injection, the application of spinosin also resulted in a marked decrease in c-Fos expression in the LHA orexin neurons. CONCLUSIONS: These findings suggest that spinosin administration results in a restricted pattern of c-Fos expression within the LHA orexin neurons and the LC, suggesting that this particular neuronal inactivation contributes to sedation and hypnosis.


Assuntos
Flavonoides/administração & dosagem , Genes fos , Região Hipotalâmica Lateral , Locus Cerúleo , Neurônios/metabolismo , Animais , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Orexinas
6.
Biomed Res Int ; 2019: 2389485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346513

RESUMO

Acute alcohol exposure induces unconscious condition such as coma whose main physical manifestation is the loss of righting reflex (LORR). Xingnaojing Injection (XNJI), which came from Chinese classic formula An Gong Niu Huang Pill, is widely used for consciousness disorders in China, such as coma. Although XNJI efficiently shortened the duration of LORR induced by acute ethanol, it remains unknown how XNJI acts on ethanol-induced coma (EIC). We performed experiments to examine the effects of XNJI on orexin and adenosine (AD) signaling in the lateral hypothalamic area (LHA) in EIC rats. Results showed that XNJI reduced the duration of LORR, which implied that XNJI promotes recovery form coma. Microdialysis data indicated that acute ethanol significantly increased AD release in the LHA but had no effect on orexin A levels. The qPCR results displayed a significant reduction in the Orexin-1 receptors (OX1R) expression with a concomitant increase in the A1 receptor (A1R) and equilibrative nucleoside transporter type 1 (ENT1) expression in EIC rats. In contrast, XNJI reduced the extracellular AD levels but orexin A levels remained unaffected. XNJI also counteracted the downregulation of the OX1R expression and upregulation of A1R and ENT1 expression caused by EIC. As for ADK expression, XNJI but not ethanol, displayed an upregulation in the LHA in EIC rats. Based on these results, we suggest that XNJI promotes arousal by inhibiting adenosine neurotransmission via reducing AD level and the expression of A1R and ENT1.


Assuntos
Proteínas de Transporte/genética , Coma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Receptor A1 de Adenosina/genética , Adenosina/genética , Adenosina/metabolismo , Animais , Coma/induzido quimicamente , Coma/genética , Coma/patologia , Transportador Equilibrativo 1 de Nucleosídeo , Etanol/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Orexinas/metabolismo , Ratos , Reflexo de Endireitamento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Vigília/efeitos dos fármacos
7.
Life Sci ; 232: 116575, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211999

RESUMO

AIMS: Maternal smoking is considered a risk factor for childhood obesity. In a rat model of tobacco exposure during breastfeeding, we previously reported hyperphagia, overweight, increased visceral fat and hyperleptinemia in adult female offspring. Obesity and eating disorders are associated with impairment in the endocannabinoid (EC) and dopaminergic (DA) systems. Considering that women are prone to eating disorders, we hypothesize that adult female Wistar rats that were exposed to cigarette smoke (CS) during the suckling period would develop EC and DA systems deregulation, possibly explaining the eating disorder in this model. MATERIAL AND METHODS: To mimic maternal smoking, from postnatal day 3 to 21, dams and offspring were exposed to a smoking machine, 4×/day/1 h (CS group). Control animals were exposed to ambient air. Offspring were evaluated at 26 weeks of age. KEY FINDINGS: Concerning the EC system, the CS group had increased expression of diacylglycerol lipase (DAGL) in the lateral hypothalamus (LH) and decreased in the liver. In the visceral adipose tissue, the EC receptor (CB1r) was decreased. Regarding the DA system, the CS group showed higher dopamine transporter (DAT) protein expression in the prefrontal cortex (PFC) and lower DA receptor (D2r) in the arcuate nucleus (ARC). We also assessed the hypothalamic leptin signaling, which was shown to be unchanged. CS offspring showed decreased plasma 17ß-estradiol. SIGNIFICANCE: Neonatal CS exposure induces changes in some biomarkers of the EC and DA systems, which can partially explain the hyperphagia observed in female rats.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Endocanabinoides/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Animais Recém-Nascidos , Fumar Cigarros , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/fisiologia , Feminino , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Lactação/efeitos dos fármacos , Leptina/metabolismo , Lipase Lipoproteica/efeitos dos fármacos , Exposição Materna/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Ratos , Ratos Wistar , Receptores de Canabinoides/efeitos dos fármacos , Fumar , Nicotiana
8.
Gen Comp Endocrinol ; 279: 174-183, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30914266

RESUMO

OBJECTIVE: Cisplatin is an important antineoplastic drug and has side effects such as nausea, vomiting, and dyspepsia. The detailed mechanisms for its side effects are yet not well be illustrated. Our purpose was to investigate the discharges of gastric distention (GD) sensitive neurons regulated by ghrelin and electrical stimulation of the lateral hypothalamus area (LHA) via the dorsal vagal complex (DVC) in cisplatin-treated rats. MATERIALS AND METHODS: Extracellular discharge recording was performed to observe the effects of ghrelin and electrical stimulation of the LHA on discharges of GD neurons in the DVC. RESULTS: GD neurons were recorded in DVC in saline-treated and cisplatin-treated rats and identified as GD-excitatory (GD-E) neurons, which are excited by gastric distension, and GD-inhibitory (GE-I) neurons, which are inhibited by gastric distension. Microinjection of ghrelin into the DVC increased the firing frequency of most GD neurons, while the ratios of excited GD-E and GD-I neurons in cisplatin-treated rats were significantly lower than those in saline-treated rats. The excitatory effect of ghrelin was eliminated completely by DVC pretreatment with ghrelin receptor antagonist [D-Lys-3]-GHRP-6. After electrical stimulation of the LHA, the firing frequency of these neurons significantly increased. This excitatory effect was weaker in cisplatin-treated rats than in saline-treated rats and could be partly blocked by DVC pretreatment with [D-Lys-3]-GHRP-6. CONCLUSION: GD neurons in the DVC could be excited by microinjecting ghrelin into the DVC and electrical stimulation of the LHA, respectively. The excitatory effect was attenuated by cisplatin injected intraperitoneally.


Assuntos
Cisplatino/farmacologia , Grelina/farmacologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Estômago/inervação , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica , Grelina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptores de Grelina/metabolismo , Nervo Vago/efeitos dos fármacos
9.
Exp Physiol ; 103(12): 1679-1691, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242927

RESUMO

NEW FINDINGS: What is the central question of this study? ATP is known to modulate the chemosensitivity of some brain areas. However, whether the ATP contributes specifically to the mechanism of chemoreception in the lateral hypothalamus/perifornical area (LH/PFA) remains to be determined. What is the main finding and its importance? ATP, acting on the LH/PFA, enhances the hypercapnic ventilatory response in rats during wakefulness, in the dark period. Our results highlight the importance of ATP as a modulator of central chemoreception and provide new insight regarding the mechanisms involved in LH/PFA chemosensitivity and the sleep-wake differences in the CO2 /H+ -dependent drive to breathe. ABSTRACT: The lateral hypothalamus/perifornical area (LH/PFA) is a central chemoreceptor site, which acts in an arousal state-dependent manner. It has been shown that purinergic signalling through ATP influences the CO2 /H+ responsiveness of other chemosensitive regions, but it is unknown whether ATP is also involved in the mechanisms that underlie LH/PFA chemoreception. Here, we studied the effects of microdialysis of a P2X-receptor agonist [α,ß-methylene ATP (α,ß-meATP), 10 mm] and a non-selective P2-receptor antagonist [pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS), 1 mm] into the LH/PFA of conscious rats on ventilation in room air and in 7% CO2 . In the dark (active) phase, but not in the light, microdialysis of α,ß-meATP caused an augmented hypercapnic ventilatory response during wakefulness, but not during non-REM sleep (P < 0.001). PPADS caused no change in CO2 ventilatory responses in either the dark period or the light period. Our data suggest that ATP in LH/PFA contributes to the hypercapnic ventilatory response in conscious rats during wakefulness in the dark phase of the diurnal cycle.


Assuntos
Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/metabolismo , Região Hipotalâmica Lateral/metabolismo , Ventilação Pulmonar/fisiologia , Trifosfato de Adenosina/análogos & derivados , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Hipercapnia/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Ventilação Pulmonar/efeitos dos fármacos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Ratos Wistar , Respiração/efeitos dos fármacos , Sono/efeitos dos fármacos , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia
10.
Neuropharmacology ; 143: 327-338, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30219501

RESUMO

Histaminergic (HA) neurons located in the tuberomamillary nucleus (TMN) of the posterior hypothalamus fire exclusively during waking and support many physiological functions. We investigated the role of the endovanilloid N-oleoyldopamine (OLDA) in TMN, where dopamine synthesis and its conjugation with oleic acid likely occur. We show that several known targets of OLDA including TRPV1 and cannabinoid receptors are expressed in HA neurons. In contrast to capsaicin, which failed to increase firing of HA neurons in TRPV1 knockout mice (TRPVI KO), OLDA was still able to induce excitation. This excitation was not sensitive to the blockade of cannabinoid receptors 1 and 2 and could result from OLDA interaction with GPR119, as the ligand of GPR119, oleoylethanolamide (OEA), also increased the firing of HA neurons. However, we ruled out this possibility as OEA- (but not OLDA-) excitation was abolished by the PPAR (peroxisome proliferator activated receptor) alpha antagonist MK886. The dopamine uptake blocker nomifensine blanked OLDA-excitation and dopamine receptor antagonists abolished the OLDA action in TRPV1 KO mice. Therefore OLDA excites HA neurons through multiple targets suggesting a central role of the histaminergic system in the behavioral stimulation seen after systemic OLDA application.


Assuntos
Dopamina/análogos & derivados , Histamina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Animais , Dopamina/farmacologia , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/crescimento & desenvolvimento , Região Hipotalâmica Lateral/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Técnicas de Cultura de Tecidos
11.
Behav Pharmacol ; 29(5): 437-444, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29521667

RESUMO

The present study investigated the effects of estradiol (E2) on ingestive behavior after activation of 5-HT1A receptors in the lateral hypothalamus (LH) of female rats habituated to eat a wet mash diet. Ovariectomized rats treated with corn oil (OVX) or estradiol cypionate (OVX+E) received local injections into the LH of vehicle or an agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; at a dose of 6 nmol). To determine the involvement of these receptors in food intake, some animals were pretreated with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY-100635, a 5-HT1A receptor full antagonist, at a dose of 0.37 nmol), followed by the injection of the agonist 8-OH-DPAT or its vehicle. The results showed that the injection of 8-OH-DPAT into the LH of OVX rats significantly increased food intake, and the duration and frequency of this behavior. The pretreatment with E2 suppressed the hyperphagic response induced by 8-OH-DPAT in OVX animals. The inhibition of 5-HT1A receptors after pretreatment with WAY-100635 blocked the hyperphagic effects evoked by 8-OH-DPAT in OVX. These results indicate that the activity of LH 5-HT1A receptors could be affected by blood E2 levels.


Assuntos
Estradiol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/metabolismo , Feminino , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/efeitos dos fármacos , Ovariectomia , Piperazinas , Piridinas , Ratos , Ratos Wistar , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
12.
Neuropharmacology ; 130: 62-70, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191753

RESUMO

Melanin-Concentrating Hormone (MCH) is one of the most relevant orexigenic factors specifically located in the lateral hypothalamic area (LHA), with its physiological relevance demonstrated in studies using several genetically manipulated mice models. However, the central mechanisms controlling MCH-induced hyperphagia remain largely uncharacterized. Here, we show that central injection of MCH in mice deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To determine the hypothalamic area responsible for this MCH/k-OR interaction, we performed virogenetic studies and found that downregulation of k-OR by adeno-associated viruses (shOprk1-AAV) in LHA, but not in other hypothalamic nuclei, was sufficient to block MCH-induced food intake. Next, we sought to investigate the molecular signaling pathway within the LHA that mediates acute central MCH stimulation of food intake. We found that MCH activates k-OR and that increased levels of phosphorylated extracellular signal regulated kinase (ERK) are associated with downregulation of phospho-S6 Ribosomal Protein. This effect was prevented when a pharmacological inhibitor of k-OR was co-administered with MCH. Finally, the specific activation of the direct upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated food consumption. Our results reveal that lateral hypothalamic k-OR system modulates the orexigenic action of MCH via the p70S6K/S6 pathway.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Hormônios Hipotalâmicos/administração & dosagem , Melaninas/administração & dosagem , Hormônios Hipofisários/administração & dosagem , Receptores Opioides kappa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/metabolismo , Dependovirus , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hormônios Hipotalâmicos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Hipofisários/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Proteínas Quinases S6 Ribossômicas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas/metabolismo
13.
J Physiol Sci ; 68(2): 129-136, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28054308

RESUMO

Orexin-A and -B, and ghrelin are potent orexigenic peptides. The effects of ACT462206, a novel dual orexin receptor antagonist (DORA), on ghrelin-induced feeding were examined in adult male Wistar rats. Hyperphagia induced by the intracerebroventricular (icv) administration of ghrelin was significantly suppressed for at least 2 h by pretreatment with icv administration of DORA. A marked increase was observed in the number of neurons showing Fos immunoreactivity in the paraventricular nucleus, arcuate nucleus and lateral hypothalamic area (LHA), 90 min after icv administration of ghrelin. Pretreatment with DORA significantly decreased the number of Fos-immunoreactive (IR) neurons; however, Fos immunoreactivity remained significantly increased. Double-immunostaining for Fos and orexin-A showed that many orexin-A-IR neurons in the LHA coexisted with Fos immunoreactivity after icv administration of ghrelin, but their number was reduced significantly by DORA pretreatment. These results suggest that centrally administered ghrelin may activate the orexinergic and non-orexinergic pathways responsible for the regulation of feeding.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/farmacologia , Orexinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
14.
J Sleep Res ; 26(3): 386-393, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318068

RESUMO

Natural helicid (4-formylphenyl-O-ß-d-allopyranoside), a main active constituent from seeds of the Chinese herb Helicia nilagirica, has been reported to exert a sedative, analgesic and hypnotic effect, and is used clinically to treat neurasthenic syndrome, vascular headaches and trigeminal neuralgia. In the current study, mechanical allodynia tests, electroencephalograms, electromyogram recordings and c-Fos expression in neuropathic pain-like model mice of partial sciatic nerve ligation were used to investigate the effect of helicid on neuropathic pain and co-morbid insomnia. Our results showed that helicid at a dose of 100, 200 or 400 mg kg-1 could increase the mechanical threshold by 2.5-, 2.8- and 3.1-fold for 3 h after administration, respectively. Helicid at 200 and 400 mg kg-1 given at 07:00 hours increased the amount of non-rapid eye movement sleep in a 3-h period by 1.27- and 1.35-fold in partial sciatic nerve ligated mice. However, helicid (400 mg kg-1 ) given at 21:00 hours did not change the sleep pattern in normal mice. Immunohistochemical study showed that helicid (400 mg kg-1 ) administration could reverse the increase of c-Fos expression in the neurons of the rostral anterior cingulate cortex and tuberomammillary nucleus, and the decrease of c-Fos expression in the ventrolateral preoptic area caused by partial sciatic nerve ligation. These results indicate that helicid is an effective agent for both neuropathic pain and sleep disturbances in partial sciatic nerve ligated mice.


Assuntos
Benzaldeídos/uso terapêutico , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/etiologia , Distúrbios do Início e da Manutenção do Sono/prevenção & controle , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Benzaldeídos/administração & dosagem , Benzaldeídos/farmacologia , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Genes fos/genética , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Hiperalgesia/diagnóstico , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Ligadura , Masculino , Camundongos , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Nervo Isquiático , Sono/efeitos dos fármacos , Sono/fisiologia
15.
Brain Res ; 1659: 29-40, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28093190

RESUMO

Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Motilidade Gastrointestinal/efeitos dos fármacos , Grelina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Animais , Anticorpos/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Motilidade Gastrointestinal/fisiologia , Grelina/antagonistas & inibidores , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/patologia , Caulim , Masculino , N-Metilaspartato/administração & dosagem , N-Metilaspartato/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurotransmissores/administração & dosagem , Neurotransmissores/metabolismo , Distribuição Aleatória , Ratos Wistar , Receptores de Grelina/metabolismo , Núcleo Solitário/metabolismo , Núcleo Solitário/patologia
16.
Behav Brain Res ; 313: 226-232, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27444242

RESUMO

Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory.


Assuntos
Asfixia/tratamento farmacológico , Histamina/metabolismo , Região Hipotalâmica Lateral/metabolismo , Memória , Animais , Asfixia/metabolismo , Asfixia/patologia , Dopamina/metabolismo , Feminino , Antagonistas dos Receptores Histamínicos/farmacologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/patologia , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Receptores Histamínicos/efeitos dos fármacos
17.
Neuropharmacology ; 106: 102-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26297536

RESUMO

Using a reporter mouse model with expression of the tomato fluorescent protein under the dopamine transporter promoter (Tmt-DAT) we discovered a new group of neurons in the histaminergic tuberomamillary nucleus (TMN), which, in contrast to tuberoinfundibular dopaminergic neurons of the dorsomedial arcuate nucleus, do not express tyrosine hydroxylase but can synthesize and store dopamine. Tmt-DAT neurons located within TMN share electrophysiological properties with histaminergic neurons: spontaneous firing at a membrane potential around -50 mV and presence of hyperpolarization-activated cyclic nucleotide-gated ion channels. Histamine (30 µM) depolarizes and excites Tmt-DAT neurons through H1R activation but inhibits histaminergic neurons through H3R activation thus allowing a pharmacological identification of the different neurons. Single-cell RT-PCR revealed that all histaminergic neurons expressing histidine decarboxylase (HDC) also express H3R. This includes neurons retrogradely traced from the striatum whose inhibition by a selective H3R agonist was indistinguishable from the whole population. Prolonged depolarization reduces the autoinhibition. The potency of histamine at H3R depends on membrane potential and on extracellular and intracellular calcium. Autoinhibition can be impaired by preincubation with capsaicin, a ligand of the calcium-permeable TRPV1 channel or by blockade of Ca(2+)-ATPase with thapsigargin. The pharmacology of autoinhibition is revisited and physiological conditions for its functionality are determined. Usage of reporter mouse models for the safe identification of aminergic neurons under pathophysiological conditions is recommended. This article is part of the Special Issue entitled 'Histamine Receptors'.


Assuntos
Histamina/metabolismo , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptores Histamínicos H3/metabolismo , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Histidina Descarboxilase/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Canais de Cátion TRPV/metabolismo , Técnicas de Cultura de Tecidos
18.
Behav Brain Res ; 298(Pt A): 27-31, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26005129

RESUMO

Mesocortical dopamine connectivity continues to mature during adolescence. This protracted development confers increased vulnerability for environmental and genetic factors to disrupt mesocortical wiring and subsequently influence responses to drugs of abuse in adulthood. The netrin-1 receptor, DCC, orchestrates medial prefrontal cortex dopamine input during adolescence and dictates the functional organization of local circuitry. Haploinsufficiency of dcc results in increased dopamine innervation to the medial prefrontal cortex, which in turn leads to resilience against the behavioral activating effects of stimulant drugs. However, whether sensitivity to the rewarding effects of drugs of abuse is also altered in dcc haploinsufficiency remains to be resolved. Here, we used the curve-shift method to measure cocaine-induced facilitation of intracranial self-stimulation (ICSS) in adult dcc haploinsufficient mice and wild-type littermates. We found that dcc haploinsufficient mice acquire ICSS behavior at comparable stimulation parameters to wild-type controls. However, cocaine-induced potentiation of ICSS is significantly blunted in dcc haploinsufficient mice. These results are consistent with decreased sensitivity to the rewarding effects of cocaine and/or decreased proclivity to invest effort in the pursuit of reward in dcc haploinsufficient mice. Moreover, these findings suggest that DCC signaling determines adult susceptibility to drug abuse most likely by controlling prefrontal cortex development in adolescence.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Haploinsuficiência , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Recompensa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Animais , Receptor DCC , Relação Dose-Resposta a Droga , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiologia , Neuroestimuladores Implantáveis , Masculino , Camundongos Transgênicos , Autoestimulação/efeitos dos fármacos , Autoestimulação/fisiologia
19.
J Neurochem ; 135(5): 1038-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26223348

RESUMO

Neurochemical differences in the hypothalamic-pituitary axis between individuals and between ages may contribute to differential susceptibility to cocaine abuse. This study measured peptide levels in the pituitary gland (Pit) and lateral hypothalamus (LH) in adolescent (age 30 days) and adult (age 65 days) mice from four standard inbred strains, FVB/NJ, DBA/2J, C57BL/6J, and BALB/cByJ, which have previously been characterized for acute locomotor responses to cocaine. Individual peptide profiles were analyzed using mass spectrometric profiling and principal component analysis. Sequences of assigned peptides were verified by tandem mass spectrometry. Principal component analysis classified all strains according to their distinct peptide profiles in Pit samples from adolescent mice, but not adults. Select pro-opiomelanocortin-derived peptides were significantly higher in adolescent BALB/cByJ and DBA/2J mice than in FVB/NJ or C57BL/6J mice. A subset of peptides in the LH, but not in the Pit, was altered by cocaine in adolescents. A 15 mg/kg dose of cocaine induced greater peptide alterations than a 30 mg/kg dose, particularly in FVB/NJ animals, with larger differences in adolescents than adults. Neuropeptides in the LH affected by acute cocaine administration included pro-opiomelanocortin-, myelin basic protein-, and glutamate transporter-derived peptides. The observed peptide differences could contribute to differential behavioral sensitivity to cocaine among strains and ages. Peptides were measured using mass spectrometry (MALDI-TOF) in individual lateral hypothalamus and pituitary samples from four strains and two ages of inbred mice in response to acute cocaine administration. Principal component analyses (PCA) classified the strains according to their peptide profiles from adolescent mice, and a subset of peptides in the lateral hypothalamus was altered by cocaine in adolescents.


Assuntos
Envelhecimento , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Região Hipotalâmica Lateral , Peptídeos/metabolismo , Hipófise , Animais , Animais Recém-Nascidos , Cromatografia Líquida , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/crescimento & desenvolvimento , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos/metabolismo , Peptídeos/análise , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Pharmacol Biochem Behav ; 133: 164-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25895691

RESUMO

Caffeine, a popular psychoactive compound, promotes wakefulness via blocking adenosine A2A receptors in the shell of the nucleus accumbens, which projects to the arousal histaminergic tuberomammillary nucleus (TMN). The TMN controls several behaviors such as wakefulness and feeding. Fasting has been reported to activate the TMN histaminergic neurons to increase arousal. Therefore, we propose that caffeine may promote greater arousal under fasting rather than normal feeding conditions. In the current study, locomotor activity recording, electroencephalogram (EEG) and electromyogram recording and c-Fos expression were used in wild type (WT) and histamine H1 receptor (H1R) knockout (KO) mice to investigate the arousal effects of caffeine under fasting conditions. Caffeine (15mg/kg) enhanced locomotor activity in fasted mice for 5h, but only did so for 3h in normally fed animals. Pretreatment with the H1R antagonist pyrilamine abolished caffeine-induced stimulation on locomotor activity in fasted mice. EEG recordings confirmed that caffeine-induced wakefulness for 3h in fed WT mice, and for 5h in fasted ones. A stimulatory effect of caffeine was not observed in fasted H1R KO mice. Furthermore, c-Fos expression was increased in the TMN under fasting conditions. These results indicate that caffeine had greater wakefulness-promoting effects in fasted mice through the mediation of H1R.


Assuntos
Nível de Alerta/efeitos dos fármacos , Cafeína/farmacologia , Jejum/fisiologia , Neurônios/metabolismo , Receptores Histamínicos H1/metabolismo , Animais , Cafeína/antagonistas & inibidores , Antagonistas dos Receptores Histamínicos H1/farmacologia , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirilamina/farmacologia , Receptores Histamínicos H1/deficiência , Receptores Histamínicos H1/genética , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA