Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Neuropeptides ; 101: 102336, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37290176

RESUMO

Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.


Assuntos
Região Hipotalâmica Lateral , Privação do Sono , Ratos , Masculino , Animais , Orexinas/metabolismo , Região Hipotalâmica Lateral/metabolismo , Privação do Sono/metabolismo , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Ratos Wistar , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Ingestão de Alimentos/fisiologia , RNA Mensageiro/metabolismo , Receptores de Orexina/metabolismo
2.
Nat Commun ; 13(1): 7913, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585411

RESUMO

Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.


Assuntos
Núcleos Parabraquiais , Camundongos , Masculino , Animais , Núcleos Parabraquiais/metabolismo , Medo , Dor , Região Hipotalâmica Lateral/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
3.
Neuroscience ; 481: 30-46, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843892

RESUMO

Orexin-producing cells in the lateral hypothalamic area have been shown to be involved in a wide variety of behavioral and cognitive functions, including the recall of appetitive associations and a variety of social behaviors. Here, we investigated the role of orexin in the acquisition and recall of socially transmitted food preferences in the rat. Rats were euthanized following either acquisition, short-term recall, or long-term recall of a socially transmitted food preference and their brains were processed for orexin-A and c-Fos expression. We found that while there were no significant differences in c-Fos expression between control and experimental subjects at any of the tested timepoints, females displayed significantly more activity in both orexinergic and non-orexinergic cells in the lateral hypothalamus. In the infralimbic cortex, we found that social behavior was significantly predictive of c-Fos expression, with social behaviors related to olfactory exploration appearing to be particularly influential. We additionally found that appetitive behavior was significantly predictive of orexin-A activity in a sex-dependent matter, with the total amount eaten correlating negatively with orexin-A/c-Fos colocalization in male rats but not female rats. These findings suggest a potential sex-specific role for the orexin system in balancing the stimulation of feeding behavior with the sleep/wake cycle.


Assuntos
Preferências Alimentares , Região Hipotalâmica Lateral , Animais , Comportamento Apetitivo , Feminino , Preferências Alimentares/fisiologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Neurônios/metabolismo , Orexinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
4.
Cell ; 184(26): 6361-6377.e24, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875226

RESUMO

Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Hibridização in Situ Fluorescente , Animais , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Região Hipotalâmica Lateral/citologia , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA/metabolismo , RNA-Seq , Análise de Célula Única , Transcrição Gênica
5.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546289

RESUMO

Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine's effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine's effects on energy balance.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Receptores Opioides kappa/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Dinorfinas/metabolismo , Metabolismo Energético , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
6.
Neuroendocrinology ; 111(12): 1201-1218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33333517

RESUMO

INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.


Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , RNA Mensageiro/metabolismo , Ratos
7.
Peptides ; 134: 170401, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891686

RESUMO

Pain is a complex experience consisting of sensory, affective-motivational, and cognitive dimensions. Hence, identifying the multiple neural pathways subserving these functional aspects is a valuable task. The role of dentate gyrus (DG) as a relay station of neocortical afferents in the hippocampal formation (HF) in persistent pain is still controversial. The lateral hypothalamus (LH)-HF neural circuits are involved in numerous situations such as anxiety-like behavior, reward processing, feeding, orofacial as well as acute pain. Nonetheless, to our knowledge, the involvement of the LH-DG neural circuit in persistent pain has already remained unexplored. Adult male Wistar rats weighing 220-250 g were undergone stereotaxic surgery for unilateral implantation of two separate cannulae into the LH and DG. Intra-DG administration of the orexin-1 (OX1) and orexin-2 (OX2) receptor antagonists, SB334867 and TCS OX2 29, respectively, was performed 5 min before intra-LH microinjection of carbachol. Animals were then undergone the formalin test using 50 µl formalin injection (2.5%) into the plantar surface of the hind paw. Microinjection of SB334867 or TCS OX2 29 into the DG region attenuated the antinociceptive effect produced by carbachol microinjection into the LH. The preventive effect of SB334867 and TCS OX2 29 on intra-LH carbachol-induced antinociception was approximately equal in both early and late phases of formalin nociception. The results suggest a neural pathway from the LH to the DG, which contributes to the modulation of formalin-induced inflammatory pain through the recruitment of OX1 and OX2 receptors within the DG.


Assuntos
Dor Aguda/patologia , Giro Denteado/metabolismo , Região Hipotalâmica Lateral/metabolismo , Inflamação/patologia , Nociceptividade/efeitos dos fármacos , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Dor Aguda/etiologia , Dor Aguda/metabolismo , Analgésicos não Narcóticos/farmacologia , Animais , Carbacol/farmacologia , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/metabolismo , Masculino , Receptores de Orexina/química , Ratos , Ratos Wistar , Estimulação Química
8.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245184

RESUMO

BACKGROUND: Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. METHODS: For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. RESULTS: We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. CONCLUSION: Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Área Tegmentar Ventral/fisiologia , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Escala de Avaliação Comportamental , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiologia , Dependovirus/genética , Núcleo Dorsal da Rafe/metabolismo , Elementos Facilitadores Genéticos , Vetores Genéticos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Optogenética , Regiões Promotoras Genéticas , Recompensa , Serotonina/fisiologia , Triptofano Hidroxilase/genética , Área Tegmentar Ventral/metabolismo
9.
Neuropeptides ; 80: 102028, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32067750

RESUMO

OBJECTIVE: To explore the orexinergic pathway from the lateral hypothalamus (LHA) to the nucleus accumbens (NAc) and its regulation on the palatable food intake. METHODS: Fluorescent gold retrograde tracing combined with fluoro-immunohistochemical staining were used to observe the projection of orexinergic neurons from LHA to NAc. The orexin-A expression in LHA and c-Fos in NAc were studied after electrical stimulation of LHA. The firing rates of neurons were monitored by single-unit extracellular electric discharge recording and the palatable food intake were measured after orexin microinjection in NAc or electrical stimulation of LHA. RESULTS: (1) Fluorescent gold retrograde tracing combined with fluoro-immunohistochemical staining showed some orexinergic neural projection from the LHA to the NAc shell. (2) Electrical stimulation of LHA significantly enhanced the expression of orexin-A in LHA and the expression of c-Fos in NAc (P < .05). (3) The results of single-unit extracellular discharge recording showed that the microinjection of orexin in NAc or electrical stimulation of LHA significantly increased the discharge activity of gastric distension responsive neurons in NAc, and the effect could be partly blocked by pretreatment of orexin-A receptor inhibitor SB334867 in NAc (P < .05). (4) Microinjection orexin-A in NAc or electrical stimulation of LHA significantly increased the palatable food intake in rats, and the effect also was partly inhibited by pretreatment of SB334867 in NAc (P < .05). CONCLUSION: There is an orexinergic pathway from LHA to NAc, which may have potential regulatory effects on food reward and obesity.


Assuntos
Ingestão de Alimentos/fisiologia , Região Hipotalâmica Lateral/metabolismo , Vias Neurais/metabolismo , Orexinas/metabolismo , Animais , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptores de Orexina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar
10.
Brain Res ; 1732: 146674, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981680

RESUMO

To date several circuities in supraspinal site of the central nervous system have been known to engage in pain modulation. Lateral hypothalamus (LH) is known as part of the circuit of pain modulation among supraspinal sites. Its role in several animal pain models has been well defined. In this study, we examined the role of spinal orexin receptors in antinociceptive response elicited by the LH stimulation in an animal model of neuropathic pain. Male Wistar rats were unilaterally implanted with a cannula into the LH and a catheter into the L4-L5 segments of the spinal cord followed by chronic constriction injury (CCI) surgery. Intra-LH microinjection of carbachol (500 nM; 0.5 µL) was done 5 min after intrathecal administration of the orexin receptor antagonists, SB-334867 or TCS OX2 29; control animals received DMSO. Mechanical allodynia and thermal hyperalgesia were evaluated using von Frey filaments and a thermal stimulus. The results showed that carbachol induces antiallodynic and anti-thermal hyperalgesic effects in a dose-dependent manner. The antiallodynic and anti-thermal hyperalgesic effects induced by intra-LH injection of carbachol were reversed by intrathecal administration of 10 µL-100 nM solutions of SB-334867 or TCS OX2 in neuropathic rats. However, solely intrathecal administration of both antagonists had no effect in neuropathic rats. There appears to be a neural pathway from the LH to the spinal cord, which potentially contributes to the modulation of neuropathic pain. The implications are that there may be novel therapeutic approaches for the treatment of people suffered from chronic neuropathic pain in clinic.


Assuntos
Hiperalgesia/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Neuralgia/metabolismo , Receptores de Orexina/metabolismo , Limiar da Dor/efeitos dos fármacos , Medula Espinal/metabolismo , Animais , Benzoxazóis/farmacologia , Carbacol/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Temperatura Alta , Hiperalgesia/fisiopatologia , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiopatologia , Isoquinolinas/farmacologia , Naftiridinas/farmacologia , Neuralgia/fisiopatologia , Antagonistas dos Receptores de Orexina/farmacologia , Manejo da Dor , Piridinas/farmacologia , Ratos , Ratos Wistar , Medula Espinal/fisiopatologia , Ureia/análogos & derivados , Ureia/farmacologia
11.
Neuroscience ; 443: 188-205, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982472

RESUMO

Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.


Assuntos
Hormônios Hipotalâmicos , Terceiro Ventrículo , Animais , Quimiocina CCL2/metabolismo , Células Ependimogliais/metabolismo , Feminino , Região Hipotalâmica Lateral/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Peptídeos , Hormônios Hipofisários , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores CCR2/metabolismo , Células-Tronco/metabolismo , Terceiro Ventrículo/metabolismo
12.
J Psychopharmacol ; 34(4): 478-489, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909693

RESUMO

BACKGROUND: Identifying neural substrates that are differentially affected by drugs of abuse and natural rewards is key to finding a target for an efficacious treatment for substance abuse. Melanin-concentrating hormone is a polypeptide with an inhibitory effect on the mesolimbic dopamine system. Here we test the hypothesis that melanin-concentrating hormone in the lateral hypothalamus and nucleus accumbens shell is differentially involved in the regulation of morphine and food-rewarded behaviors. METHODS: Male Sprague-Dawley rats were trained with morphine (5.0 mg/kg, subcutaneously) or food pellets (standard chow, 10-14 g) to induce a conditioned place preference, immediately followed by extinction training. Melanin-concentrating hormone (1.0 µg/side) or saline was infused into the nucleus accumbens shell or lateral hypothalamus before the reinstatement primed by morphine or food, and locomotor activity was simultaneously monitored. As the comparison, melanin-concentrating hormone was also microinjected into the nucleus accumbens shell or lateral hypothalamus before the expression of food or morphine-induced conditioned place preference. RESULTS: Microinfusion of melanin-concentrating hormone into the nucleus accumbens shell (but not into the lateral hypothalamus) prevented the reinstatement of morphine conditioned place preference but had no effect on the reinstatement of food conditioned place preference. In contrast, microinfusion of melanin-concentrating hormone into the lateral hypothalamus (but not in the nucleus accumbens shell) inhibited the reinstatement of food conditioned place preference but had no effect on the reinstatement of morphine conditioned place preference. CONCLUSIONS: These results suggest a clear double dissociation of melanin-concentrating hormone in morphine/food rewarding behaviors and melanin-concentrating hormone in the nucleus accumbens shell. Melanin-concentrating hormone could be a potential target for therapeutic intervention for morphine abuse without affecting natural rewards.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hormônios Hipotalâmicos/farmacologia , Melaninas/farmacologia , Morfina/farmacologia , Núcleo Accumbens/metabolismo , Hormônios Hipofisários/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Hormônios Hipotalâmicos/administração & dosagem , Masculino , Melaninas/administração & dosagem , Microinjeções , Hormônios Hipofisários/administração & dosagem , Ratos , Ratos Sprague-Dawley , Recompensa
13.
Acta Physiol (Oxf) ; 228(2): e13345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310704

RESUMO

AIM: Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS: Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS: Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION: Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.


Assuntos
Ingestão de Alimentos/fisiologia , Hiperfagia/prevenção & controle , Região Hipotalâmica Lateral/efeitos dos fármacos , Leptina/farmacologia , Neurônios/metabolismo , Receptor Tipo 2 de Galanina/agonistas , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Galanina/farmacologia , Grelina/metabolismo , Hiperfagia/metabolismo , Hiperfagia/patologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Orexinas/metabolismo , Receptor Tipo 2 de Galanina/metabolismo
14.
Neurosci Lett ; 714: 134550, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634502

RESUMO

BACKGROUND: Cannabinoid receptor 1 (CB1R) is a GPCR expressed widely in the brain as well as in peripheral metabolic organs. Although pharmacological blockade of CB1R has been effective for the treatment of obesity and tobacco addiction, precise distribution of CB1R within the brain and potential changes by obesity or nicotine exposure have not been thoroughly addressed. METHODS: To examine CB1R distribution within the central energy center, we performed immunostaining and qPCR analysis of micro-dissected hypothalamic nuclei from male C57BL/6 mice. To address the effect of nicotine on food intake and body weight, and on potential changes of CB1R levels in the hypothalamus, mice kept on a high fat diet (HFD) for four weeks were challenged with nicotine intraperitoneally. RESULTS: Validity of the micro-dissected samples was confirmed by the expression of established nucleus-enriched genes. The expression levels of CB1R in the arcuate and lateral nuclei of the hypothalamus were higher than paraventricular and ventral-dorsal medial nuclei. Nicotine administration led to a significant suppression of food intake and body weight either under standard or high fat diet. Neither HFD nor nicotine alone altered CB1R levels in any nucleus tested. By contrast, treatment of HFD-fed mice with nicotine led to a significant increase in CB1R levels in the arcuate, paraventricular and lateral nuclei. CONCLUSIONS: CB1R was widely distributed in multiple hypothalamic nuclei. The expression of CB1R was augmented only when mice were treated with HFD and nicotine in combination. These data suggest that the exposure to nicotine may provoke an enhanced endocannabinoid response in diet-induced obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Núcleo Hipotalâmico Dorsomedial/metabolismo , Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor CB1 de Canabinoide/biossíntese , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Camundongos , Microdissecção/métodos , Neuropeptídeo Y/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
15.
Folia Morphol (Warsz) ; 79(3): 429-437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31724150

RESUMO

BACKGROUND: Spinosin, a major component of Samen Ziziphi spinosae, has been shown to modulate sedation and hypnosis; however, the underlying neuronal mechanisms of its stimulatory effects remain unclear. MATERIALS AND METHODS: In the present study, we injected spinosin (15 mg/kg) or saline into mice, which were killed after 90 min. We isolated the brains, which were immunohistochemically stained for c-Fos as a biomarker for neuronal activation and assessed the expression profile of c-Fos in various sleep-arousal brain areas. RESULTS: Our findings revealed that there were no statistically significant differences in the expression of c-Fos in the nucleus accumbens and ventrolateral preoptic area, the vertical limb of the diagonal band nucleus, horizontal limb of the diagonal band nucleus, ventral tuberomammillary nucleus, ventral tegmental area, and dorsal raphe nucleus relative to saline between saline and spinosin-treated mice. Unlike saline, spinosin markedly decreased c-Fos expression in the lateral hypothalamic area (LHA) as well as the locus coeruleus (LC). Compared to the saline injection, the application of spinosin also resulted in a marked decrease in c-Fos expression in the LHA orexin neurons. CONCLUSIONS: These findings suggest that spinosin administration results in a restricted pattern of c-Fos expression within the LHA orexin neurons and the LC, suggesting that this particular neuronal inactivation contributes to sedation and hypnosis.


Assuntos
Flavonoides/administração & dosagem , Genes fos , Região Hipotalâmica Lateral , Locus Cerúleo , Neurônios/metabolismo , Animais , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Orexinas
16.
Neurosci Lett ; 714: 134603, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693931

RESUMO

The tree shrew is susceptible to stimuli. However, mapping of c-Fos expression in male tree shrew forebrain has not been explored. The present results provided the first detailed mapping of c-Fos expression in the forebrain of the tree shrew (Tupaia belangeri chinensis). Acute restraint stress rapidly increased the density of c-Fos-immunoreactive (-ir) neurons in the medial orbital cortex (MO), infralimbic cortex, intermediate part of the lateral septal nucleus (LSi), ventral part of the lateral septal nucleus (LSv), anterior part of the bed nucleus of the stria terminalis, posterior part of the bed nucleus of the stria terminalis (STP), paraventricular nucleus of the hypothalamus, supraoptic nucleus, lateral hypothalamic area, ventromedial hypothalamic nucleus (VMH), and medial amygdaloid nucleus (MeA). Furthermore, a significant increase in c-Fos expression was observed in the MO, LSi, LSv, STP, VMH, arcuate hypothalamic nucleus, anterior amygdaloid area, MeA, and cortical amygdaloid nucleus immediately after acute footshock stress. In addition, the distinct patterns of c-Fos expression in the forebrain were shown in context-, restraint-, or footshock-treated tree shrews. In general, the present study provides the first detailed maps of c-Fos expression in male tree shrew forebrain immediately after various stimuli.


Assuntos
Eletrochoque , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Restrição Física , Tupaiidae/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Região Hipotalâmica Lateral/metabolismo , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleos Septais/metabolismo , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
17.
Endocrine ; 65(3): 675-682, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31325084

RESUMO

PURPOSE: The aim of this study is to evaluate the effects of adrenalectomy (ADX) and glucocorticoid in the changes induced by intracerebroventricular (ICV) administration of vasoactive intestinal peptide (VIP) on food intake and plasma parameters, as well as VIP receptor subtype 2 (VPAC2) mRNA expression in different hypothalamic nuclei of male rats. METHODS: Male Wistar rats (260-280 g) were subjected to ADX or sham surgery, 7 days before the experiments. Half of ADX animals received corticosterone (ADX + CORT) in the drinking water. Animals with 16 h of fasting received ICV microinjection of VIP or saline (0.9% NaCl). After 15 min: (1) animals were fed, and the amount of food ingested was quantified for 120 min; or (2) animals were euthanized and blood was collected for biochemical measurements. Determination of VPAC2 mRNA levels in LHA, ARC, and PVN was performed from animals with microinjection of saline. RESULTS: VIP treatment promoted the anorexigenic effect, which was not observed in ADX animals. Microinjection of VIP also induced an increase in blood plasma glucose and corticosterone levels, and a reduction in free fatty acid plasma levels, but adrenalectomy abolished these effects. In addition, adrenalectomy reduced mRNA expression of VPAC2 in the lateral hypothalamic area and arcuate nucleus, but not in the paraventricular nucleus. CONCLUSIONS: These results suggest that adrenal glands are required for VIP-induced changes in food intake and plasma parameters, and these responses are associated with reduction in the expression of VPAC2 in the hypothalamus after adrenalectomy.


Assuntos
Adrenalectomia/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/análise , Corticosterona/sangue , Corticosterona/farmacologia , Ácidos Graxos não Esterificados/sangue , Região Hipotalâmica Lateral/metabolismo , Masculino , Microinjeções , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo
18.
Biomed Res Int ; 2019: 2389485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346513

RESUMO

Acute alcohol exposure induces unconscious condition such as coma whose main physical manifestation is the loss of righting reflex (LORR). Xingnaojing Injection (XNJI), which came from Chinese classic formula An Gong Niu Huang Pill, is widely used for consciousness disorders in China, such as coma. Although XNJI efficiently shortened the duration of LORR induced by acute ethanol, it remains unknown how XNJI acts on ethanol-induced coma (EIC). We performed experiments to examine the effects of XNJI on orexin and adenosine (AD) signaling in the lateral hypothalamic area (LHA) in EIC rats. Results showed that XNJI reduced the duration of LORR, which implied that XNJI promotes recovery form coma. Microdialysis data indicated that acute ethanol significantly increased AD release in the LHA but had no effect on orexin A levels. The qPCR results displayed a significant reduction in the Orexin-1 receptors (OX1R) expression with a concomitant increase in the A1 receptor (A1R) and equilibrative nucleoside transporter type 1 (ENT1) expression in EIC rats. In contrast, XNJI reduced the extracellular AD levels but orexin A levels remained unaffected. XNJI also counteracted the downregulation of the OX1R expression and upregulation of A1R and ENT1 expression caused by EIC. As for ADK expression, XNJI but not ethanol, displayed an upregulation in the LHA in EIC rats. Based on these results, we suggest that XNJI promotes arousal by inhibiting adenosine neurotransmission via reducing AD level and the expression of A1R and ENT1.


Assuntos
Proteínas de Transporte/genética , Coma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Receptor A1 de Adenosina/genética , Adenosina/genética , Adenosina/metabolismo , Animais , Coma/induzido quimicamente , Coma/genética , Coma/patologia , Transportador Equilibrativo 1 de Nucleosídeo , Etanol/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Orexinas/metabolismo , Ratos , Reflexo de Endireitamento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Vigília/efeitos dos fármacos
19.
Life Sci ; 232: 116575, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211999

RESUMO

AIMS: Maternal smoking is considered a risk factor for childhood obesity. In a rat model of tobacco exposure during breastfeeding, we previously reported hyperphagia, overweight, increased visceral fat and hyperleptinemia in adult female offspring. Obesity and eating disorders are associated with impairment in the endocannabinoid (EC) and dopaminergic (DA) systems. Considering that women are prone to eating disorders, we hypothesize that adult female Wistar rats that were exposed to cigarette smoke (CS) during the suckling period would develop EC and DA systems deregulation, possibly explaining the eating disorder in this model. MATERIAL AND METHODS: To mimic maternal smoking, from postnatal day 3 to 21, dams and offspring were exposed to a smoking machine, 4×/day/1 h (CS group). Control animals were exposed to ambient air. Offspring were evaluated at 26 weeks of age. KEY FINDINGS: Concerning the EC system, the CS group had increased expression of diacylglycerol lipase (DAGL) in the lateral hypothalamus (LH) and decreased in the liver. In the visceral adipose tissue, the EC receptor (CB1r) was decreased. Regarding the DA system, the CS group showed higher dopamine transporter (DAT) protein expression in the prefrontal cortex (PFC) and lower DA receptor (D2r) in the arcuate nucleus (ARC). We also assessed the hypothalamic leptin signaling, which was shown to be unchanged. CS offspring showed decreased plasma 17ß-estradiol. SIGNIFICANCE: Neonatal CS exposure induces changes in some biomarkers of the EC and DA systems, which can partially explain the hyperphagia observed in female rats.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Endocanabinoides/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Animais Recém-Nascidos , Fumar Cigarros , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/fisiologia , Feminino , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Lactação/efeitos dos fármacos , Leptina/metabolismo , Lipase Lipoproteica/efeitos dos fármacos , Exposição Materna/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Ratos , Ratos Wistar , Receptores de Canabinoides/efeitos dos fármacos , Fumar , Nicotiana
20.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R791-R801, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943041

RESUMO

Amylin acts in the area postrema (AP) and arcuate nucleus (ARC) to control food intake. Amylin also increases axonal fiber outgrowth from the AP→nucleus tractus solitarius and from ARC→hypothalamic paraventricular nucleus. More recently, exogenous amylin infusion for 4 wk was shown to increase neurogenesis in adult rats in the AP. Furthermore, amylin has been shown to enhance leptin signaling in the ARC and ventromedial nucleus of the hypothalamus (VMN). Thus, we hypothesized that endogenous amylin could be a critical factor in regulating cell birth in the ARC and AP and that amylin could also be involved in the birth of leptin-sensitive neurons. Amylin+/- dams were injected with BrdU at embryonic day 12 and at postnatalday 2; BrdU+ cells were quantified in wild-type (WT) and amylin knockout (KO) mice. The number of BrdU+HuC/D+ neurons was similar in ARC and AP, but the number of BrdU+Iba1+ microglia was significantly decreased in both nuclei. Five-week-old WT and KO littermates were injected with leptin to test whether amylin is involved in the birth of leptin-sensitive neurons. Although there was no difference in the number of BrdU+c-Fos+ neurons in the ARC and dorsomedial nucleus, an increase in BrdU+c-Fos+ neurons was seen in VMN and lateral hypothalamus (LH) in amylin KO mice. In conclusion, these data suggest that during fetal development, endogenous amylin favors the birth of microglial cells in the ARC and AP and that it decreases the birth of leptin-sensitive neurons in the VMN and LH.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Área Postrema/metabolismo , Linhagem da Célula , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/embriologia , Área Postrema/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Região Hipotalâmica Lateral/embriologia , Região Hipotalâmica Lateral/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Hipotalâmico Ventromedial/embriologia , Núcleo Hipotalâmico Ventromedial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA