Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.031
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Med Oncol ; 39(3): 32, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059896

RESUMO

To investigate the effects of isolated SARS-CoV-2 spike protein on prostate cancer cell survival. The effects of SARS-CoV-2 spike protein on LNCaP prostate cancer cell survival were assessed using clonogenic cell survival assay, quick cell proliferation assay, and caspase-3 activity kits. RT-PCR and immunohistochemistry were performed to investigate underlying molecular mechanisms. SARS-CoV-2 spike protein was found to inhibit prostate cancer cell proliferation as well as promote apoptosis. Further investigation revealed that anti-proliferative effects were associated with downregulation of the pro-proliferative molecule cyclin-dependent kinase 4 (CDK4). The increased rate of apoptosis was associated with the upregulation of pro-apoptotic molecule Fas ligand (FasL). SARS-CoV-2 spike protein inhibits the growth of LNCaP prostate cancer cells in vitro by a two-pronged approach of downregulating the expression of CDK4 and upregulating FasL. The introduction of SARS-CoV-2 spike protein into the body via COVID-19 vaccination may have the potential to inhibit prostate cancer in patients. This potential beneficial association between COVID-19 vaccines and prostate cancer inhibition will require more extensive studies before any conclusions can be drawn about any in vivo effects in a human model.


Assuntos
Vacinas contra COVID-19/imunologia , Proliferação de Células/fisiologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/imunologia , Apoptose/imunologia , COVID-19/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Regulação para Baixo/imunologia , Humanos , Masculino , Regulação para Cima/imunologia , Vacinação/métodos
2.
Exp Biol Med (Maywood) ; 247(2): 106-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644201

RESUMO

In this study, we aim to identify the clinical significance of basonuclin 1 (BNC1) expression in ovarian carcinoma (OV) and to explore its latent mechanisms. Via integrating in-house tissue microarrays, gene chips, and RNA-sequencing data, we explored the expression and clinical value of BNC1 in OV. Immunohistochemical staining was utilized to confirm the protein expression status of BNC1. A combined SMD of -2.339 (95% CI: -3.649 to -1.028, P < 0.001) identified that BNC1 was downregulated based on 1346 samples, and the sROC (AUC = 0.93) showed a favorable discriminatory ability of BNC1 in OV patients. We used univariate and multivariate Cox regulation to evaluate the prognostic role of BNC1 for OV patients, and a combined hazard ratio of 0.717 (95% CI: 0.445-0.989, P < 0.001) revealed that BNC1 was a protective factor for OV. Furthermore, the fraction of infiltrating naive B cells, memory B cells, and other immune cells showed statistical differences between the high- and low-BNC1 expression groups through cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Enrichment analysis showed that BNC1 may have a relationship with immune-related items in OV. By predicting the potential regulatory transcription factors (TFs) of BNC1, friend leukemia virus integration 1 (FLI1) may be a potential upstream TF of BNC1. Corporately, a decreasing trend of BNC1 may serve as a tumor suppressor and prognostic biomarker in OV patients. Moreover, BNC1 may take part in immune-related pathways and influence the fraction of tumor-infiltrating immune cells.


Assuntos
Proteínas de Ligação a DNA/imunologia , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células B de Memória/imunologia , Neoplasias Ovarianas/imunologia , Fatores de Transcrição/imunologia , Proteínas Supressoras de Tumor/imunologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Células B de Memória/patologia , Neoplasias Ovarianas/patologia
3.
Nat Commun ; 12(1): 6943, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836962

RESUMO

The pathological role of reactive gliosis in CNS repair remains controversial. In this study, using murine ischemic and hemorrhagic stroke models, we demonstrated that microglia/macrophages and astrocytes are differentially involved in engulfing synapses in the reactive gliosis region. By specifically deleting MEGF10 and MERTK phagocytic receptors, we determined that inhibiting phagocytosis of microglia/macrophages or astrocytes in ischemic stroke improved neurobehavioral outcomes and attenuated brain damage. In hemorrhagic stroke, inhibiting phagocytosis of microglia/macrophages but not astrocytes improved neurobehavioral outcomes. Single-cell RNA sequencing revealed that phagocytosis related biological processes and pathways were downregulated in astrocytes of the hemorrhagic brain compared to the ischemic brain. Together, these findings suggest that reactive microgliosis and astrogliosis play individual roles in mediating synapse engulfment in pathologically distinct murine stroke models and preventing this process could rescue synapse loss.


Assuntos
Encéfalo/patologia , Gliose/imunologia , Infarto da Artéria Cerebral Média/complicações , Sinapses/patologia , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/imunologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Feminino , Gliose/patologia , Humanos , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fagocitose/genética , Fagocitose/imunologia , RNA-Seq , Análise de Célula Única , Sinapses/imunologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
4.
Immunohorizons ; 5(10): 830-843, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702760

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects up to one in five children and millions of adults in developed countries. Clinically, AD skin lesions manifest as subacute and/or chronic lichenified eczematous plaques, which are often intensely pruritic and prone to secondary bacterial and viral infections. Despite the emergence of novel therapeutic agents, treatment options and outcomes for AD remain suboptimal. An improved understanding of AD pathogenesis may help improve patient outcomes. Dysregulated Th2-polarized skin inflammation and impaired skin barrier function interact to drive AD pathogenesis; however, much remains to be understood about the molecular mechanisms underlying this interplay. The current study used published clinical trial datasets to define a skin-related AD gene signature. This meta-analysis revealed significant reductions in IL1F7 transcripts (encodes IL-37) in AD patient samples. Reduced IL1F7 correlated with lower transcripts for key skin barrier function genes in the epidermal differentiation complex. Immunohistochemical analysis of normal (healthy) human skin specimens and an in vitro three-dimensional human skin model localized IL-37 protein to the epidermis. In comparison with normal human skin, IL-37 levels were decreased in AD patient skin. Addition of Th2 cytokines to the aforementioned in vitro three-dimensional skin model recapitulates key aspects of AD skin and was sufficient to reduce epidermal IL-37 levels. Image analysis also indicated close relationship between epidermal IL-37 and skin epidermal differentiation complex proteins. These findings suggest IL-37 is intimately linked to normal keratinocyte differentiation and barrier function and implicates IL-37 as a potential biomarker and therapeutic target for AD.


Assuntos
Dermatite Atópica/imunologia , Epiderme/patologia , Interleucina-1/metabolismo , Adulto , Azetidinas/uso terapêutico , Biópsia , Diferenciação Celular/imunologia , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Regulação para Baixo/imunologia , Epiderme/imunologia , Epiderme/metabolismo , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Índice de Gravidade de Doença , Sulfonamidas/uso terapêutico , Células Th2/imunologia , Células Th2/metabolismo
5.
EBioMedicine ; 72: 103614, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34628354

RESUMO

BACKGROUND: Metabolic reprogramming plays an essential role on lymphoma progression. Dysregulation of glutamine metabolism is implicated in natural-killer T-cell lymphoma (NKTCL) and tumor cell response to asparaginase-based anti-metabolic treatment. METHODS: To understand the metabolomic alterations and determine the potential therapeutic target of asparaginase, we assessed metabolomic profile using liquid chromatography-mass spectrometry in serum samples of 36 NKTCL patients, and integrated targeted metabolic analysis and RNA sequencing in tumor samples of 102 NKTCL patients. The biological function of solute carrier family 1 member 1 (SLC1A1) on metabolic flux, lymphoma cell growth, and drug sensitivity was further examined in vitro in NK-lymphoma cell line NK-92 and SNK-6, and in vivo in zebrafish xenograft models. FINDINGS: In NKTCL patients, serum metabolomic profile was characterized by aberrant glutamine metabolism and SLC1A1 was identified as a central regulator of altered glutaminolysis. Both in vitro and in vivo, ectopic expression of SLC1A1 increased cellular glutamine uptake, enhanced glutathione metabolic flux, and induced glutamine addiction, leading to acceleration of cell proliferation and tumor growth. Of note, SLC1A1 overexpression was significantly associated with PD-L1 downregulation and reduced cytotoxic CD3+/CD8+ T cell activity when co-cultured with peripheral blood mononuclear cells. Asparaginase treatment counteracted SLC1A1-mediated glutamine addiction, restored SLC1A1-induced impaired T-cell immunity. Clinically, high EAAT3 (SLC1A1-encoded protein) expression independently predicted superior progression-free and overall survival in 90 NKTCL patients treated with asparaginase-based regimens. INTERPRETATION: SLC1A1 functioned as an extracellular glutamine transporter, promoted tumor growth through reprogramming glutamine metabolism of NKTCL, while rendered tumor cells sensitive to asparaginase treatment. Moreover, SLC1A1-mediated modulation of PD-L1 expression might provide clinical rationale of co-targeting metabolic vulnerability and immunosuppressive microenvironment in NKTCL. FUNDING: This study was supported, in part, by research funding from the National Natural Science Foundation of China (82130004, 81830007 and 81900192), Chang Jiang Scholars Program, Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), Clinical Research Plan of SHDC (2020CR1032B), Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), Shanghai Chenguang Program (19CG15), Shanghai Sailing Program (19YF1430800), Medical-Engineering Cross Foundation of Shanghai Jiao Tong University (ZH2018QNA46), and Shanghai Yi Yuan Xin Xing Program.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Glutamina/imunologia , Linfoma Extranodal de Células T-NK/metabolismo , Células T Matadoras Naturais/metabolismo , Animais , Asparaginase/imunologia , Asparaginase/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Regulação para Baixo/imunologia , Transportador 3 de Aminoácido Excitatório/imunologia , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfoma Extranodal de Células T-NK/imunologia , Linfoma Extranodal de Células T-NK/terapia , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Peixe-Zebra
6.
Int Immunopharmacol ; 101(Pt A): 107585, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601333

RESUMO

OBJECTIVE: Accumulating evidence has suggested that microRNAs (miRNAs) derived from M2 macrophage-derived exosomes (M2 exosomes) can regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the effect of miR-27a-3p derived from M2 exosomes on HCC has not been reported. We aim to explore the role of M2 exosomal miR-27a-3p in the cancer stemness of HCC via regulating thioredoxin-interacting protein (TXNIP). METHODS: Exosomes were extracted from transfected M2 macrophages and were then co-cultured with HCC cells. Expression of miR-27a-3p and TXNIP, stemness, proliferation, drug resistance, migration, invasion and in vivo tumorigenicity of HCC cells were determined to assess the role of M2 exosomal miR-27a-3p in HCC. The binding relationship between miR-27a-3p and TXNIP was detected. RESULTS: MiR-27a-3p was upregulated and TXNIP was downregulated in HCC cells, and M2 exosomes further upregulated miR-27a-3p. The upregulated M2 exosomal miR-27a-3p promoted stemness, proliferation, drug resistance, migration, invasion and in vivo tumorigenicity of HCC cells. TXNIP was confirmed as a target gene of miR-27a-3p. CONCLUSION: M2 macrophages-derived exosomal miR-27a-3p promotes cancer stemness of HCC via downregulating TXNIP.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Transporte/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação para Baixo/imunologia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Regulação para Cima/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int Immunopharmacol ; 100: 107990, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34482266

RESUMO

Pancreatic cancer (PC)-derived EVs have been extensively investigated due to their promising potential as disease biomarkers for diagnosis, monitoring, and treatment decisionmaking. Herein, we explored the mechanism underlying PC-derived EVs in immune evasion of PC. Initially, microRNA (miR)-155-5p level was quantified by RT-qPCR in tumor tissue samples from PC patients, EVs isolated from PC cell lines and PC cell lines. Then, the interaction between miR-155-5p and EHF was identified using dual-luciferase reporter assay. Ectopic expression and knockdown experiments were conducted in PC cells, PC cells-derived EVs, or mouse xenograft model of PC. Afterwards, cell invasion, proportion of macrophage and immune cell subsets, and expression of NF-κB signaling-related genes were assessed using Transwell assay, flow cytometry, RT-qPCR and western blot analysis, respectively. Accordingly, miR-155-5p was upregulated in clinical tissue samples, Pan02-derived EVs and PC cell lines. miR-155-5p knockdown in PC cells enhanced anti-tumor immunity. PC cell-derived EVs facilitated immunosuppressive microenvironment by promoting T cell depletion. In addition, PC cell-derived EVs transferred miR-155-5p to macrophages and then promoted polarization of macrophages to M2 phenotype. EHF was downregulated in PC and could be targeted by miR-155-5p, which resulted in the activation of the Akt/NF-κB signaling. Our findings revealed a previously unrecognized tumor immune evasion-promoting function of PC-derived EV miR-155-5p in PC development by  suppressing EHF and activating NF-κB signaling. This study suggested that the miR-155-5p/EHF/Akt/NF-κB axis can be exploited to prevent cancer immune evasion triggered by therapies.


Assuntos
MicroRNAs/metabolismo , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Pancreáticas/genética , Fatores de Transcrição/genética , Evasão Tumoral/genética , Animais , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação para Baixo/imunologia , Vesículas Extracelulares/metabolismo , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Recidiva Local de Neoplasia/genética , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int Immunopharmacol ; 100: 108066, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34492536

RESUMO

Severe acute lung injury (ALI) cause significant morbidity and mortality worldwide. MicroRNAs (miRNAs) are possible biomarkers and therapeutic targets for ALI. We aimed to explore the role of miR-762, a known oncogenic factor, in the pathogenesis of ALI. Levels of miR-762 in lung tissues of LPS-treated ALI mice and blood cells of patients with lung injury were measured. Injury of human lung epithelial cell line A549 was induced by LPS stimulation. A downstream target of miR-762, NFIX, was predicted using online tools. Their interactions were validated by luciferase reporter assay. Effects of targeted regulation of the miR-762/NFIX axis on cell proliferation, apoptosis, and inflammatory responses were tested in vitro in A549 cells in vivo with an ALI mouse model. We found that upregulation of miR-762 expression and downregulation of NFIX expression were associated with lung injury. Either miR-762 inhibition or NFIX overexpression in A549 lung cells significantly attenuated LPS-mediated impairment of cell proliferation and viability. Notably, increasing expressions of miR-762 inhibitor or NFIX in vivo via airway lentivirus infection alleviated the LPS-induced ALI in mice. Further, targeted downregulation of miR-762 expression or upregulation of NFIX expression in A549 cells markedly down-regulates NF-κB/IRF3 activation, and substantially reduces the production of inflammatory factors, including TNF-α, IL-6, and IL-8. This study reveals a novel role for the miR-762/NFIX pathway in ALI pathogenesis and sheds new light on targeting this pathway for diagnosis, prevention, and therapy.


Assuntos
Lesão Pulmonar Aguda/imunologia , MicroRNAs/metabolismo , Fatores de Transcrição NFI/genética , Complicações Pós-Operatórias/imunologia , Transdução de Sinais/genética , Células A549 , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Ponte de Artéria Coronária/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Técnicas de Silenciamento de Genes , Células HEK293 , Voluntários Saudáveis , Humanos , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/patologia , Transdução de Sinais/imunologia
9.
Mol Med Rep ; 24(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476503

RESUMO

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M. tuberculosis) infection and has the highest mortality rate of any single infectious disease worldwide. The aim of the present study was to investigate the function of microRNA (miR)­502­3p in M. tuberculosis­infected macrophages. The Gene Expression Omnibus database was used to analyze miR­502­3p expression in patients with TB and healthy individuals. THP­1 and RAW 264.7 cells were transfected with miR­502­3p mimic, miR­502­3p inhibitor, pcDNA3.1­ROCK1 or their negative controls. The expression levels of miR­502­3p and inflammatory cytokines were evaluated using reverse transcription­quantitative PCR. The colony­forming unit assay was performed to assess the survival of M. tuberculosis in macrophages, and Toll­like receptor (TLR)4/NF­κB signaling pathway­associated protein expression levels were detected by western blotting. The nuclear translocation of NF­κB p65 was detected via immunocytochemistry. TargetScan was used to predict the binding sites between miR­502­3p and ROCK1. The interaction between miR­502­3p and Rho­associated coiled­coil­forming protein kinase 1 (ROCK1) was confirmed using a dual­luciferase reporter assay; ROCK1 was demonstrated to be a direct target gene of miR­502­3p. Results from the present study demonstrated that miR­502­3p expression was significantly increased during M. tuberculosis infection in macrophages. Upregulation of miR­502­3p expression levels significantly enhanced the survival of intracellular M. tuberculosis. IL­6, TNF­α, and IL­1ß mRNA expression levels were significantly upregulated during M. tuberculosis infection but were downregulated by miR­502­3p overexpression. Moreover, miR­502­3p mimics transfection significantly downregulated TLR4/NF­κB signaling pathway­associated protein expression and significantly reduced nuclear transcription of NF­κB in M. tuberculosis­infected macrophages. ROCK1 overexpression reversed the miR­502­3p inhibitory effect on cytokine production in M. tuberculosis­infected macrophages. In conclusion, miR­502­3p/ROCK1 may serve an anti­inflammatory role and may improve the survival of M. tuberculosis within macrophages, which may provide a promising therapeutic target for TB.


Assuntos
Macrófagos/imunologia , MicroRNAs/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Quinases Associadas a rho/genética , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Tuberculose/sangue , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto Jovem , Quinases Associadas a rho/metabolismo
10.
Int Immunopharmacol ; 100: 107991, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438336

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are involved in the regulation of osteoclast biology and several pathogenic progression. This study aimed to identify the role of miR-26a in osteoclastogenesis and orthodontically induced inflammatory root resorption(OIIRR). METHODS: Rat orthodontic tooth movement (OTM) model was established by ligating a closed coil spring between maxillary first molar and incisor, and 50 g orthodontic force was applied to move upper first molar to middle for 7 days. Human periodontal ligament (hPDL) cells were isolated from periodontium of healthy donors, and then subjected to compression force (CF) for 24 h to mimic an in vitro OTM model. The levels of associated factors in vivo and in vitro were measured subsequently. RESULT: The distance of tooth movement was increased and root resorption pits were occurred in rat OTM model. The expression of miR-26a was decreased in vivo and vitro experiments. CF treatment enhanced the secretion of inflammatory factors receptor activator of nuclear factor-kappa B ligand (RANKL) and IL-6, osteoclast marker levels, and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, while miR-26a overexpression reversed these results. Furthermore, miR-26a overexpression inhibited the osteoclastogenesis and rescued the root resorption in OTM rats through inhibition of Jagged1. Additionally, Runx1 could bind to miR-26a promoter and promote its expression, thereby suppressing the osteoclastogenesis. CONCLUSION: We concluded that Runx1/miR-26a/Jagged1 signaling axis restrained osteoclastogenesis and alleviated OIIRR.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Reabsorção da Raiz/imunologia , Técnicas de Movimentação Dentária/efeitos adversos , Adolescente , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Feminino , Humanos , Proteína Jagged-1/genética , Masculino , Osteoclastos , Osteogênese/imunologia , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Ratos , Reabsorção da Raiz/genética , Reabsorção da Raiz/patologia , Regulação para Cima/imunologia , Adulto Jovem
11.
Int Immunopharmacol ; 99: 108022, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339961

RESUMO

Cisplatin is a highly effective and broad-spectrum anticancer drug for the clinical treatment of solid tumors. However, it causes acute kidney injury (AKI) in patients with cancer. Consequently, its clinical application is limited. The occurrence, development, and prognosis of AKI are closely associated with microRNA (miRNA), which needs validation as a biomarker, especially for the early stages of cisplatin-induced AKI. An example of miRNA is miR-132-3p, which plays important roles in inflammatory responses, cell proliferation, and apoptosis in a variety of diseases. However, variations in its expression, potential mechanisms, and downstream targets in cisplatin-induced AKI remain unclear. This study aimed to investigate the functions of miR-132-3p in cisplatin-induced AKI. Sequencing and qRT-PCR revealed that miR-132-3p was significantly upregulated in cisplatin-induced AKI models of mouse and human proximal renal tubular epithelial (HK-2) cells. Apoptosis and inflammatory responses were significantly suppressed by the inhibition of the miR-132-3p expression in cisplatin-stimulated HK-2 cells, and this suppression was blocked by miR-132-3p mimics. Bioinformatics and dual luciferase reporter gene assay identified the 3'- UTR of SIRT1 mRNA as a direct target of miR-132-3p. RNA-FISH and immunofluorescence co-localization demonstrated that miR-132-3p and SIRT1 directly combined and interacted in the cytoplasm of HK-2 cells. Mechanistically, the SIRT1 expression was suppressed and the NF-κB signaling pathway was activated by the upregulation of miR-132-3p in cisplatin-induced AKI. By contrast, the SIRT1 expression was upregulated after the inhibition of miR-132-3p. The ratios of p-p65/p65 and p-IκBα/IκBα were significantly reduced, and the expression levels of inflammatory biomarkers and apoptotic proteins induced by cisplatin were obviously attenuated. Our results suggested that miR-132-3p exacerbated cisplatin-induced AKI by negatively regulating SIRT1 and activating the NF-κB signaling pathway. Therefore, targeting miR-132-3p might be a potential adjuvant therapy for ameliorating AKI in cisplatin-treated patients.


Assuntos
Injúria Renal Aguda/genética , Cisplatino/efeitos adversos , Epigênese Genética/efeitos dos fármacos , MicroRNAs/metabolismo , Sirtuína 1/genética , Acetilação , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Epigênese Genética/imunologia , Células Epiteliais , Humanos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/imunologia , Túbulos Renais/patologia , Masculino , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , NF-kappa B/metabolismo
12.
Mol Immunol ; 137: 145-154, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34247100

RESUMO

Previous studies have found that the expression level of Megalobrama amblycephala intelectin (MaINTL) increased significantly post Aeromonas hydrophila infection, and recombinant MaINTL (rMaINTL) protein could activate macrophages and enhance the phagocytosis and killing activity of macrophages. In order to reveal the immune regulatory mechanisms of MaINTL, primary M. amblycephala macrophages were treated with endotoxin-removed rMaINTL and GST-tag proteins, then total RNA were extracted and used for comparative Digital Gene Expression Profiling (DGE). 1247 differentially expressed genes were identified by comparing rMaINTL and GST-tag treated macrophage groups, including 482 up-regulated unigenes and 765 down-regulated unigenes. In addition, eleven randomly selected differentially expressed genes were verified by qRT-PCR, and most of them shared the similar expression patterns as that of DGE results. GO enrichment revealed that the differentially expressed genes were mainly concentrated in the membrane part and cytoskeleton of cellular component, the binding and signal transducer activity of molecular function, the cellular process, regulation of biological process, signaling and localization of biological process, most of which might related with the phagocytosis and killing activity of macrophages. KEGG analysis revealed the activation and involvement of differentially expressed genes in immune related pathways, such as Tumor necrosis factor (TNF) signaling pathway, Interleukin 17 (IL-17) signaling pathway, Toll-like receptor signaling pathway, and NOD like receptor signaling pathway, etc. In these pathways, TNF-ɑ, Activator protein-1 (AP-1), Myeloid differentiation primary response protein MyD88 (MyD88), NF-kappa-B inhibitor alpha (ikBɑ) and other key signaling factors were significantly up-regulated. These results will be helpful to clarify the immune regulatory mechanisms of fish intelectin on macrophages, thus providing a theoretical basis for the prevention and control of fish bacterial diseases.


Assuntos
Aeromonas hydrophila/imunologia , Cyprinidae/imunologia , Cyprinidae/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Animais , Regulação para Baixo/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/métodos , Infecções por Bactérias Gram-Negativas/microbiologia , Fatores Imunológicos/imunologia , Macrófagos/microbiologia , Transdução de Sinais/imunologia , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/imunologia
13.
Int J Med Sci ; 18(13): 2835-2841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220311

RESUMO

Tumor metastasis is the main reason for the death of most cancer patients. C-X-C chemokine receptor type 4 (CXCR4) has been demonstrated to be overexpressed in numerous types of cancer. CXCR4 selectively binds with stromal cell-derived factor 1 (SDF1), also known as C-X-C family chemokine ligand 12 (CXCL12) (CXCL12/SDF-1), which induced tumor proliferation and metastasis. Recently, the use of conventional cancer treatments had some limitation; bacteria treatment for cancer becomes a trend that overcomes these limitations. Plenty of studies show that Salmonella has anti-tumor and anti-metastatic activity. The current study aimed to investigate Salmonella suppresses CXCR4 protein expression and tumor cell migration ability in B16F10 melanoma and LL2 lung carcinoma cells. Salmonella reduced CXCR4 protein expression through downregulating Protein Kinase-B (Akt)/Mammalian Target of Rapamycin (mTOR) signaling pathway. In cells transfected with constitutively active Akt plasmids, a reverse effect of Salmonella-induced inhibition of CXCR4 was observed. Tumor cells have chemotactic response to CXCL12 in migration assay, and we found that Salmonella reduced tumor chemotactic response after CXCL12 treatment. The C57BL/6 mice were intravenously injected with B16F10 and LL2 cells pre-incubated with or without Salmonella, the tumor size and lung weight of Salmonella group had obviously decreased, indicating anti-metastatic effect that confirmed the findings from the in vitro experiments.


Assuntos
Quimiocina CXCL12/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias/terapia , Receptores CXCR4/metabolismo , Vacinas contra Salmonella/imunologia , Animais , Linhagem Celular Tumoral , Quimiotaxia/imunologia , Regulação para Baixo/imunologia , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem
14.
Int J Med Sci ; 18(13): 2981-2989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220326

RESUMO

Salmonella causes salmonellosis, is a facultative anaerobe and is one of the common Gram-negative bacteria. Salmonella has anti-tumor potential and tumor-targeting activity. The heparin sulfate on cell surfaces can be cleaved by heparanase that is an endo-ß-D-glucuronidase. Heparanase can destroy the extracellular matrix and is involved in tumor metastasis and angiogenic activity. Previously, Salmonella was demonstrated to inhibit tumor metastasis. It remains unclear whether Salmonella inhibits metastasis by regulating heparanase. The expression of heparanase in Salmonella-treated tumor cells was found to be decreased. Transwell and wound-healing assays demonstrated the inhibition of cell migration after Salmonella treatment. Salmonella was found to influence the levels of phosphate-protein kinase B (P-AKT) and phosphate-extracellular regulated protein kinases (P-ERK), which are involved in heparanase expression. Salmonella reduced the heparanase expression induced upregulating PERK and PAKT signaling pathways. The mice bearing an experimental metastasis tumor model was used to evaluate the anti-tumor metastatic effects of Salmonella. Compared with the control group, Salmonella significantly reduced the number of metastatic nodules and enhanced survival. The results of our study indicate that Salmonella plays a vital role in the inhibition of tumor metastasis through the downregulation of heparanase.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Glucuronidase/metabolismo , Neoplasias/terapia , Vacinas contra Salmonella/imunologia , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem
15.
Nat Commun ; 12(1): 3392, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099666

RESUMO

Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells' susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection.


Assuntos
Efeito Espectador/genética , Fator de Transcrição E2F1/metabolismo , MicroRNAs/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Efeito Espectador/imunologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Fator de Transcrição E2F1/genética , Estresse do Retículo Endoplasmático/imunologia , Endorribonucleases/metabolismo , Proteína HMGB1/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Listeria monocytogenes/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Shigella flexneri/imunologia , Suínos
16.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073318

RESUMO

Non-small cell lung cancer (NSCLC) patients harboring a KRAS mutation have unfavorable therapeutic outcomes with chemotherapies, and the mutation also renders tolerance to immunotherapies. There is an unmet need for a new strategy for overcoming immunosuppression in KRAS-mutant NSCLC. The recently discovered role of melatonin demonstrates a wide spectrum of anticancer impacts; however, the effect of melatonin on modulating tumor immunity is largely unknown. In the present study, melatonin treatment significantly reduced cell viability accompanied by inducing cell apoptosis in KRAS-mutant NSCLC cell lines including A549, H460, and LLC1 cells. Mechanistically, we found that lung cancer cells harboring the KRAS mutation exhibited a higher level of programmed death ligand 1 (PD-L1). However, treatment with melatonin substantially downregulated PD-L1 expressions in both the presence and absence of interferon (IFN)-γ stimulation. Moreover, KRAS-mutant lung cancer cells exhibited higher Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) levels, and PD-L1 expression was positively correlated with YAP and TAZ in lung cancer cells. Treatment with melatonin effectively suppressed YAP and TAZ, which was accompanied by downregulation of YAP/TAZ downstream gene expressions. The combination of melatonin and an inhibitor of YAP/TAZ robustly decreased YAP and PD-L1 expressions. Clinical analysis using public databases revealed that PD-L1 expression was positively correlated with YAP and TAZ in patients with lung cancer, and PD-L1 overexpression suggested poor survival probability. An animal study further revealed that administration of melatonin significantly inhibited tumor growth and modulated tumor immunity in a syngeneic mouse model. Together, our data revealed a novel antitumor mechanism of melatonin in modulating the immunosuppressive tumor microenvironment by suppressing the YAP/PD-L1 axis and suggest the therapeutic potential of melatonin for treating NSCLC.


Assuntos
Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Pulmonares/imunologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Células A549 , Animais , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética
17.
Front Immunol ; 12: 650269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093538

RESUMO

Inflammation is a hallmark of several neurodegenerative disorders including hereditary amyloidogenic transthyretin amyloidosis (ATTRv). ATTRv is an autosomal dominant neurodegenerative disorder with extracellular deposition of mutant transthyretin (TTR) aggregates and fibrils, particularly in nerves and ganglia of the peripheral nervous system. Nerve biopsies from ATTRv patients show increased cytokine production, but interestingly no immune inflammatory cellular infiltrate is observed around TTR aggregates. Here we show that as compared to Wild Type (WT) animals, the expression of several chemokines is highly downregulated in the peripheral nervous system of a mouse model of the disease. Interestingly, we found that stimulation of mouse Schwann cells (SCs) with WT TTR results in the secretion of several chemokines, a process that is mediated by toll-like receptor 4 (TLR4). In contrast, the secretion of all tested chemokines is compromised upon stimulation of SCs with mutant TTR (V30M), suggesting that V30M TTR fails to activate TLR4 signaling. Altogether, our data shed light into a previously unappreciated mechanism linking TTR activation of SCs and possibly underlying the lack of inflammatory response observed in the peripheral nervous system of ATTRv patients.


Assuntos
Neuropatias Amiloides Familiares/imunologia , Quimiocinas/metabolismo , Regulação para Baixo/imunologia , Pré-Albumina/genética , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Mutação , Pré-Albumina/isolamento & purificação , Pré-Albumina/metabolismo , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células de Schwann/imunologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/imunologia , Nervo Isquiático/patologia , Receptor 4 Toll-Like/metabolismo
18.
Int Immunopharmacol ; 97: 107822, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34098485

RESUMO

Pancreatic cancer is a highly malignant cancer of the digestive tract. Studies have shown that in some types of cancer, a high level of microRNA-194-5p (miR-194-5p) is beneficial for controlling tumor progression, while in other cancers it plays a completely opposite role. However, how miR-194-5p affects anti-tumor immunity of pancreatic cancer remains unclear. In this study, we found that high expression of miR-194-5p in human pancreatic cancer patients is associated with a better survival rate, while increased expression of programmed cell death ligand 1 (PD-L1) in human pancreatic cancer patients is associated with a worse survival rate. In pancreatic cancer, the expression level of PD-L1 is negatively correlated with the expression level of miR-194-5p, and we identified that PD-L1 was target gene of miR-194-5p. In addition, we found that overexpression of miR-194-5p inhibited the migration, invasion and proliferation of pancreatic cancer cells in vitro. The orthotopic mouse model of pancreatic cancer shown that miR-194-5p suppressed the progression of pancreatic cancer, promoted the infiltration of CD8+ T cells in tumor immune microenvironments, and enhanced the IFN-γ production of CD8+ T cells. Consistently, the co-culture experiments showed that overexpression of miR-194-5p in tumor cell enhanced IFN-γ production by CD8+ T cells. In conclusion, miR-194-5p may serve as a novel immunotherapeutic target for pancreatic ductal adenocarcinoma (PDAC) by inhibiting the expression of PD-L1, and play important roles in inhibiting the progression of pancreatic cancer and boosting the anti-tumor effect of CD8+ T cells.


Assuntos
Antígeno B7-H1/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Microambiente Tumoral/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Células HEK293 , Humanos , Camundongos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Evasão Tumoral/genética , Microambiente Tumoral/genética
19.
Immunology ; 164(3): 507-523, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115389

RESUMO

Loss of the B2M gene is associated with tumour immune escape and resistance to immunotherapy. However, genetic alterations of the B2M gene are rare. We performed an integrative analysis of the mutational and transcriptional profiles of large cohorts of non-small-cell lung cancer (NSCLC) patients and found that epigenetic downregulation of B2M is common. B2M-low tumours exhibit a suppressive immune microenvironment characterized by reduced infiltration of immune cells of various lineages; in B2M-high tumours, more T and natural killer cells are present, but their activities are constrained by immune checkpoint molecules, indicating the diverse mechanisms of immune evasion. High levels of B2M mRNA, but not PD-L1, are correlated with an enhanced response to PD-1-based immunotherapy, suggesting its value for immunotherapy response prediction in solid tumours. Notably, a high tumour mutation burden (TMB) is associated with low B2M expression, which may explain the poor predictive value of the TMB in some situations. In syngeneic mouse models, genetic ablation of B2M in tumour cells causes resistance to PD-1-based immunotherapy, and B2M knockdown also diminishes the therapeutic efficacy. Moreover, forced expression of B2M in tumour models improves the response to immunotherapy, suggesting that B2M levels have significant impacts on treatment outcomes. Finally, we provide insight into the roles of transcription factors and KRAS mutations in B2M expression and the anticancer immune response. In conclusion, genetic and epigenetic regulation of B2M fundamentally shapes the NSCLC immune microenvironment and may determine the response to checkpoint blockade-based immunotherapy.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Microglobulina beta-2/genética , Animais , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Evasão Tumoral/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
20.
J Med Chem ; 64(9): 6021-6036, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33949196

RESUMO

In recent years, PD-1 immune checkpoint inhibitors based on monoclonal antibodies have revolutionized cancer therapy, but there still exist unresolved issues, such as the high cost, the relatively low response rates, and so on, compared with small-molecule drugs. Herein a type of pyrrole-imidazole (Py-Im) polyamide as a small-molecule DNA binder was designed and synthesized, which could competitively bind to the same double-stranded DNA stretch in the PD-L1 promoter region as the STAT3 binding site and thus downregulate PD-L1 expression. It was demonstrated that the Py-Im polyamides directly caused apoptosis in tumor cells and retarded cell migration in the absence of T cells through inhibiting the Akt/caspase-3 pathway. Also, in a coculture system, they enhanced the T-cell-mediated killing of tumor cells by the reversal of immune escape. Because such polyamides induced antitumor effects via both immune and nonimmune pathways, they could be further developed as promising PD-L1 gene-targeting antitumor drugs.


Assuntos
Antígeno B7-H1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Desenho de Fármacos , Imidazóis/química , Nylons/química , Nylons/farmacologia , Pirróis/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/imunologia , Humanos , Imunidade/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA