Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.404
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722278

RESUMO

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana , Ubiquitina-Proteína Ligases , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Ligação a DNA , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células HeLa , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
BMJ Open Respir Res ; 11(1)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702073

RESUMO

The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.


Assuntos
Antibacterianos , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Fibrose Cística/tratamento farmacológico , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/genética
4.
Gen Physiol Biophys ; 43(3): 197-207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774920

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel uses positively charged amino-acid side-chains to form binding sites for permeating anions. These binding sites have been investigated experimentally using a number of anionic probes. Mutations that alter the distribution of positive and negative charges within the pore have differential effects on the binding of monovalent versus divalent anions. This study uses patch clamp recording from wild-type and pore-mutant forms of CFTR to investigate small trivalent anions (Co(NO2)63-, Co(CN)3- and IrCl63-) as potential probes of anion binding sites. These anions caused weak block of Cl- permeation in wild-type CFTR (Kd ≥ 700 µM) when applied to the intracellular side of the membrane. Mutations that increase the density of positive charge within the pore (E92Q, I344K, S1141K) increased the binding affinity of these anions 80-280-fold, and also greatly increased the voltage-dependence of block, consistent with fixed charges in the pore affecting monovalent : multivalent anion selectivity. However, high-affinity pore block by Co(NO2)63-apparently did not alter channel gating, a hallmark of high-affinity binding of divalent Pt(NO2)42- ions within the pore. This work increases the arsenal of probes available to investigate anion binding sites within Cl- channel pores.


Assuntos
Ânions , Regulador de Condutância Transmembrana em Fibrose Cística , Ativação do Canal Iônico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/química , Ânions/metabolismo , Humanos , Animais , Sítios de Ligação , Mutação
5.
Sci Data ; 11(1): 495, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744964

RESUMO

Single amino acid substitutions can profoundly affect protein folding, dynamics, and function. The ability to discern between benign and pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the limitations in experimental examination of these variants, AlphaMissense has emerged as a promising predictor of the pathogenicity of missense variants. Since heterogenous performance on different types of proteins can be expected, we assessed the efficacy of AlphaMissense across several protein groups (e.g. soluble, transmembrane, and mitochondrial proteins) and regions (e.g. intramembrane, membrane interacting, and high confidence AlphaFold segments) using ClinVar data for validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding performance, with MCC scores predominantly between 0.6 and 0.74. We observed low performance on disordered datasets and ClinVar data related to the CFTR ABC protein. However, a superior performance was shown when benchmarked against the high quality CFTR2 database. Our results with CFTR emphasizes AlphaMissense's potential in pinpointing functional hot spots, with its performance likely surpassing benchmarks calculated from ClinVar and ProteinGym datasets.


Assuntos
Bases de Dados de Proteínas , Proteínas , Humanos , Substituição de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/química , Mutação de Sentido Incorreto , Dobramento de Proteína , Proteínas/química , Proteínas/genética
6.
Sci Rep ; 14(1): 10160, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698045

RESUMO

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte , Regulador de Condutância Transmembrana em Fibrose Cística , Transporte Proteico , Proteínas de Transporte Vesicular , Humanos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitinação , Proteólise
7.
Mol Genet Genomics ; 299(1): 52, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744777

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a rare multi-systemic recessive disorder. The spectrum and the frequencies of CFTR mutations causing CF vary amongst different populations in Europe and the Middle East. In this study, we characterised the distribution of CF-causing mutations (i.e. pathogenic variants in the  CFTR gene) in a representative CF cohort from the Kingdom of Bahrain based on a three-decade-long analysis at a single tertiary centre. We aim to improve CF genetic diagnostics, introduce of CF neonatal screening and provide CFTR modulator therapy (CFTRm). METHODS: CFTR genotyping  and associated clinical information were drawn from a longitudinal cohort. We sequenced 56 people with CF (pwCF) that had one or both CFTR mutations unidentified and carried out comprehensive bioinformatic- and family-based segregation analyses of detected variants, including genotype-phenotype correlations and disease incidence estimates. The study methodology could serve as a basis for other non-European CF populations with a high degree of consanguinity. RESULTS: Altogether 18 CF-causing mutations  were identified, 15 of which were not previously detected in Bahrain, accounting for close to 100% of all population-specific alleles. The most common alleles comprise c.1911delG [2043delG; 22.8%], c.2988+1G > A [3120+1G>A; 16.3%], c.2989-1G>A [3121-1G>A; 14.1%], c.3909C>G [N1303K; 13.0%], and c.1521_1523delCTT [p.PheF508del; 7.6%]. Although the proportion of 1st cousin marriages has decreased to 50%, the frequency of homozygosity in our pwCF is 67.4%, thereby indicating that CF still occurs in large, often related, families. pwCF in Bahrain present with faltering growth, pancreatic insufficiency and classical sino-pulmonary manifestations. Interestingly, two pwCF also suffer from sickle cell disease. The estimated incidence of CF in Bahrain based on data from the last three decades is 1 in 9,880 live births. CONCLUSION: The most commonCF-causing  mutations in Bahraini pwCF were identified, enabling more precise diagnosis, introduction of two-tier neonatal screening and fostering administration of CFTRm.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Mutação , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Barein , Masculino , Feminino , Recém-Nascido , Criança , Triagem Neonatal , Pré-Escolar , Lactente , Genótipo , Estudos de Associação Genética/métodos , Adolescente , Alelos , Estudos de Coortes , Adulto
8.
Urolithiasis ; 52(1): 55, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564006

RESUMO

The formation of calcium oxalate (CaOx) crystals in the kidneys leads to renal epithelial damage and the progression of crystalline nephropathy. This study investigated the role of STIP1 homology and U-box protein 1 (STUB1), an E3 ubiquitin ligase, and cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel, in CaOx-related renal damage and autophagy regulation. HK-2 cells were treated with various doses of CaOx monohydrate (COM) to simulate kidney injury in vitro. Cell viability, reactive oxygen species (ROS) production, and apoptosis were assessed. The regulation of CFTR ubiquitination by STUB1 was confirmed by immunoprecipitation. An in vivo model was established by injecting mice with glyoxylate. COM treatment dose-dependently decreased cell viability, increased TNF-α and ROS production, and induced apoptotic cell death in HK-2 cells. COM-treated cells also showed decreased CFTR protein expression. CFTR overexpression improved cell viability and reduced ROS production in COM-stimulated HK-2 cells. Bioinformatics analysis predicted CFTR's ubiquitination binding site for STUB1. Further analysis confirmed the role of STUB1 as a ubiquitin ligase in CFTR degradation. Knockdown of STUB1 upregulated CFTR expression, while STUB1 overexpression had the opposite effect. Knockdown of CFTR reversed the impact of STUB1 deficiency on autophagy. The in vivo experiments showed that CFTR overexpression attenuated kidney tissue damage and CaOx deposition in mice. STUB1-mediated CFTR ubiquitination plays a crucial role in mitigating calcium oxalate-related renal damage by regulating autophagy. Targeting the STUB1/CFTR axis may hold therapeutic potential for treating kidney injury associated with calcium oxalate deposition.


Assuntos
Oxalato de Cálcio , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Camundongos , Espécies Reativas de Oxigênio , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Rim , Autofagia , Ubiquitinação , Oxalatos
9.
Nutrition ; 123: 112425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621324

RESUMO

OBJECTIVE: Treatment with cystic fibrosis transmembrane conductance regulator (CFTR) modulators in individuals with cystic fibrosis (CF) has brought a significant change in forced expiratory volume in 1 second (FEV1) and clinical parameters. However, it also results in weight gain. The aim of our study is to evaluate the effect of CFTR modulator treatment on body composition, measured by computed tomography (CT). METHODS: Adult subjects with CF under follow-up at La Princesa University Hospital were recruited. All of them were on elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA) treatment. Body composition analysis was conducted using CT scans and an open-source software. The results were then compared with bioimpedance estimations, as well as other clinical and spirometry data. RESULTS: Our sample consisted of 26 adult subjects. The fat mass compartments on CT scans correlated with similar compartments on bioimpedance, and normal-density muscle mass exhibited a strong correlation with phase angle. Higher levels of very low-density muscle prior to treatment were associated with lower final FEV1 and less improvement in FEV1 after therapy. We observed an increase in total body area (P < 0.001), driven by increases in total fat mass (P < 0.001), subcutaneous fat (P < 0.001), visceral fat (P = 0.002), and intermuscular fat (P = 0.022). The only muscle compartment that showed an increase after treatment was very low-density muscle (P = 0.032). CONCLUSIONS: CT scans represent an opportunity to assess body composition on CF. Combination treatment with CFTR modulators, leads to an improvement in FEV1 and to an increase in body mass in all compartments primarily at the expense of fat mass.


Assuntos
Aminofenóis , Composição Corporal , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Combinação de Medicamentos , Quinolonas , Tomografia Computadorizada por Raios X , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Fibrose Cística/diagnóstico por imagem , Adulto , Composição Corporal/efeitos dos fármacos , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Quinolonas/farmacologia , Seguimentos , Adulto Jovem , Indóis/farmacologia , Indóis/uso terapêutico , Volume Expiratório Forçado/efeitos dos fármacos , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Impedância Elétrica
10.
mBio ; 15(5): e0051924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564694

RESUMO

Today, more than 90% of people with cystic fibrosis (pwCF) are eligible for the highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy called elexacaftor/tezacaftor/ivacaftor (ETI) and its use is widespread. Given the drastic respiratory symptom improvement experienced by many post-ETI, clinical studies are already underway to reduce the number of respiratory therapies, including antibiotic regimens, that pwCF historically relied on to combat lung disease progression. Early studies suggest that bacterial burden in the lungs is reduced post-ETI, yet it is unknown how chronic Pseudomonas aeruginosa populations are impacted by ETI. We found that pwCF remain infected throughout their upper and lower respiratory tract with their same strain of P. aeruginosa post-ETI, and these strains continue to evolve in response to the newly CFTR-corrected airway. Our work underscores the continued importance of CF airway microbiology in the new era of highly effective CFTR modulator therapy. IMPORTANCE: The highly effective cystic fibrosis transmembrane conductance regulator modulator therapy Elexakaftor/Tezacaftor/Ivacaftor (ETI) has changed cystic fibrosis (CF) disease for many people with cystic fibrosis. While respiratory symptoms are improved by ETI, we found that people with CF remain infected with Pseudomonas aeruginosa. How these persistent and evolving bacterial populations will impact the clinical manifestations of CF in the coming years remains to be seen, but the role and potentially changing face of infection in CF should not be discounted in the era of highly effective modulator therapy.


Assuntos
Aminofenóis , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Combinação de Medicamentos , Indóis , Infecções por Pseudomonas , Pseudomonas aeruginosa , Quinolonas , Fibrose Cística/microbiologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/complicações , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Benzodioxóis/uso terapêutico , Indóis/uso terapêutico , Pirazóis/uso terapêutico , Pirróis/uso terapêutico , Piridinas/uso terapêutico , Tiofenos/uso terapêutico , Tiofenos/farmacologia , Feminino , Quinolinas
11.
Adv Drug Deliv Rev ; 209: 115305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626860

RESUMO

Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.


Assuntos
Fibrose Cística , Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Humanos , Terapia Genética/métodos , Nanopartículas/química , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética
12.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646935

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.


Assuntos
Aminofenóis , Aminopiridinas , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Furões , Quinolonas , Animais , Feminino , Gravidez , Aminofenóis/uso terapêutico , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/uso terapêutico , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Combinação de Medicamentos , Mutação , Quinolonas/farmacologia , Quinolonas/uso terapêutico
13.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679287

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective cis-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5' to the CFTR gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on CFTR gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the CFTR gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated CFTR expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the CFTR promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb CFTR transcription.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais , Regiões Promotoras Genéticas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Masculino , Animais , Regulação da Expressão Gênica , Epididimo/metabolismo , Cromatina/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Camundongos
14.
Sci Rep ; 14(1): 9465, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658613

RESUMO

A poor nutritional status is associated with worse pulmonary function and survival in people with cystic fibrosis (pwCF). CF transmembrane conductance regulator modulators can improve pulmonary function and body weight, but more data is needed to evaluate its effects on body composition. In this retrospective study, a pre-trained deep-learning network was used to perform a fully automated body composition analysis on chest CTs from 66 adult pwCF before and after receiving elexacaftor/tezacaftor/ivacaftor (ETI) therapy. Muscle and adipose tissues were quantified and divided by bone volume to obtain body size-adjusted ratios. After receiving ETI therapy, marked increases were observed in all adipose tissue ratios among pwCF, including the total adipose tissue ratio (+ 46.21%, p < 0.001). In contrast, only small, but statistically significant increases of the muscle ratio were measured in the overall study population (+ 1.63%, p = 0.008). Study participants who were initially categorized as underweight experienced more pronounced effects on total adipose tissue ratio (p = 0.002), while gains in muscle ratio were equally distributed across BMI categories (p = 0.832). Our findings suggest that ETI therapy primarily affects adipose tissues, not muscle tissue, in adults with CF. These effects are primarily observed among pwCF who were initially underweight. Our findings may have implications for the future nutritional management of pwCF.


Assuntos
Aminofenóis , Benzodioxóis , Composição Corporal , Fibrose Cística , Combinação de Medicamentos , Indóis , Quinolinas , Quinolonas , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Masculino , Adulto , Feminino , Composição Corporal/efeitos dos fármacos , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Benzodioxóis/uso terapêutico , Estudos Retrospectivos , Indóis/uso terapêutico , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Tomografia Computadorizada por Raios X , Adulto Jovem , Pirrolidinas/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Estado Nutricional
15.
Mol Biol Rep ; 51(1): 573, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662334

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a rare and debilitating autosomal recessive disorder. It hampers the normal function of various organs and causes severe damage to the lungs, and digestive system leading to recurring pneumonia. Cf also affects reproductive health eventually may cause infertility. The disease manifests due to genetic aberrations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This study aimed to screen for CFTR gene variants in Pakistani CF patients representing variable phenotypes. METHODS: Clinical exome and Sanger sequencing were performed after clinical characterization of 25 suspected cases of CF (CF1-CF25). ACMG guidelines were followed to interpret the clinical significance of the identified variants. RESULTS: Clinical investigations revealed common phenotypes such as pancreatic insufficiency, chest infections, chronic liver and lung diseases. Some patients also displayed symptoms like gastroesophageal reflux disease (GERD), neonatal cholestasis, acrodermatitis, diabetes mellitus, and abnormal malabsorptive stools. Genetic analysis of the 25 CF patients identified deleterious variants in the CFTR gene. Notably, 12% of patients showed compound heterozygous variants, while 88% had homozygous variants. The most prevalent variant was p. (Met1Thr or Met1?) at 24%, previously not reported in the Pakistani population. The second most common variant was p. (Phe508del) at 16%. Other variants, including p. (Leu218*), p. (Tyr569Asp), p. (Glu585Ter), and p. (Arg1162*) were also identified in the present study. Genetic analysis of one of the present patients showed a pathogenic variant in G6PD in addition to CFTR. CONCLUSION: The study reports novel and reported variants in the CFTR gene in CF patients in Pakistani population having distinct phenotypes. It also emphasizes screening suspected Pakistani CF patients for the p. (Met1Thr) variant because of its increased observance and prevalence in the study. Moreover, the findings also signify searching for additional pathogenic variants in the genome of CF patients, which may modify the phenotypes. The findings contribute valuable information for the diagnosis, genetic counseling, and potential therapeutic strategies for CF patients in Pakistan.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Mutação , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Sequenciamento do Exoma/métodos , Gastroenteropatias/genética , Hepatopatias/genética , Mutação/genética , Paquistão , Fenótipo
16.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
17.
Respir Res ; 25(1): 187, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678203

RESUMO

BACKGROUND: Modulator therapies that seek to correct the underlying defect in cystic fibrosis (CF) have revolutionized the clinical landscape. Given the heterogeneous nature of lung disease progression in the post-modulator era, there is a need to develop prediction models that are robust to modulator uptake. METHODS: We conducted a retrospective longitudinal cohort study of the CF Foundation Patient Registry (N = 867 patients carrying the G551D mutation who were treated with ivacaftor from 2003 to 2018). The primary outcome was lung function (percent predicted forced expiratory volume in 1 s or FEV1pp). To characterize the association between ivacaftor initiation and lung function, we developed a dynamic prediction model through covariate selection of demographic and clinical characteristics. The ability of the selected model to predict a decline in lung function, clinically known as an FEV1-indicated exacerbation signal (FIES), was evaluated both at the population level and individual level. RESULTS: Based on the final model, the estimated improvement in FEV1pp after ivacaftor initiation was 4.89% predicted (95% confidence interval [CI]: 3.90 to 5.89). The rate of decline was reduced with ivacaftor initiation by 0.14% predicted/year (95% CI: 0.01 to 0.27). More frequent outpatient visits prior to study entry and being male corresponded to a higher overall FEV1pp. Pancreatic insufficiency, older age at study entry, a history of more frequent pulmonary exacerbations, lung infections, CF-related diabetes, and use of Medicaid insurance corresponded to lower FEV1pp. The model had excellent predictive accuracy for FIES events with an area under the receiver operating characteristic curve of 0.83 (95% CI: 0.83 to 0.84) for the independent testing cohort and 0.90 (95% CI: 0.89 to 0.90) for 6-month forecasting with the masked cohort. The root-mean-square errors of the FEV1pp predictions for these cohorts were 7.31% and 6.78% predicted, respectively, with standard deviations of 0.29 and 0.20. The predictive accuracy was robust across different covariate specifications. CONCLUSIONS: The methods and applications of dynamic prediction models developed using data prior to modulator uptake have the potential to inform post-modulator projections of lung function and enhance clinical surveillance in the new era of CF care.


Assuntos
Aminofenóis , Fibrose Cística , Pulmão , Quinolonas , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Aminofenóis/uso terapêutico , Feminino , Masculino , Estudos Retrospectivos , Estudos Longitudinais , Quinolonas/uso terapêutico , Adulto , Adolescente , Adulto Jovem , Volume Expiratório Forçado/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Criança , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Agonistas dos Canais de Cloreto/uso terapêutico , Valor Preditivo dos Testes , Sistema de Registros , Testes de Função Respiratória/métodos , Progressão da Doença , Estudos de Coortes , Resultado do Tratamento
18.
Pediatrics ; 153(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38577740

RESUMO

A multidisciplinary committee developed evidence-based guidelines for the management of cystic fibrosis transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen-positive, inconclusive diagnosis (CRMS/CFSPID). A total of 24 patient, intervention, comparison, and outcome questions were generated based on surveys sent to people with CRMS/CFSPID and clinicians caring for these individuals, previous recommendations, and expert committee input. Four a priori working groups (genetic testing, monitoring, treatment, and psychosocial/communication issues) were used to provide structure to the committee. A systematic review of the evidence was conducted, and found numerous case series and cohort studies, but no randomized clinical trials. A total of 30 recommendations were graded using the US Preventive Services Task Force methodology. Recommendations that received ≥80% consensus among the entire committee were approved. The resulting recommendations were of moderate to low certainty for the majority of the statements because of the low quality of the evidence. Highlights of the recommendations include thorough evaluation with genetic sequencing, deletion/duplication analysis if <2 disease-causing variants were noted in newborn screening; repeat sweat testing until at least age 8 but limiting further laboratory testing, including microbiology, radiology, and pulmonary function testing; minimal use of medications, which when suggested, should lead to shared decision-making with families; and providing communication with emphasis on social determinants of health and shared decision-making to minimize barriers which may affect processing and understanding of this complex designation. Future research will be needed regarding medication use, antibiotic therapy, and the use of chest imaging for monitoring the development of lung disease.


Assuntos
Fibrose Cística , Medicina Baseada em Evidências , Humanos , Fibrose Cística/terapia , Fibrose Cística/genética , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Recém-Nascido , Triagem Neonatal/métodos , Testes Genéticos , Criança
19.
Clin Chim Acta ; 558: 118317, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580140

RESUMO

Cystic fibrosis (CF) is a life-limiting genetic disorder characterized by defective chloride ion transport due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Early detection through newborn screening programs significantly improves outcomes for individuals with CF by enabling timely intervention. Here, we report the identification of an Alu element insertion within the exon 15 of CFTR gene, initially overlooked in standard next-generation sequencing analyses. However, using traditional molecular techniques, based on polymerase chain reaction and Sanger sequencing, allowed the identification of the Alu element and the reporting of a correct diagnosis. Our analysis, based on bioinformatics tools and molecular techniques, revealed that the Alu element insertion severely affects the gene expression, splicing patterns, and structure of CFTR protein. In conclusion, this study emphasizes the importance of how the integration of human expertise and modern technologies represents a pivotal step forward in genomic medicine, ensuring the delivery of precision healthcare to individuals affected by genetic diseases.


Assuntos
Elementos Alu , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Testes Genéticos , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Elementos Alu/genética , Fibrose Cística/genética , Fibrose Cística/diagnóstico , Testes Genéticos/métodos , Recém-Nascido , Masculino , Feminino
20.
Front Immunol ; 15: 1360716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469306

RESUMO

Introduction: Cystic Fibrosis (CF) is the commonest genetically inherited disease (1 in 4,500 newborns) and 70% of people with CF (pwCF) harbour the F508Del mutation, resulting in misfolding and incorrect addressing of the channel CFTR to the epithelial membrane and subsequent dysregulation of fluid homeostasis. Although studies have underscored the importance and over-activation of myeloid cells, and in particular neutrophils in the lungs of people with CF (pwCF), relatively less emphasis has been put on the potential immunological bias in CF blood cells, at homeostasis or following stimulation/infection. Methods: Here, we revisited, in an exhaustive fashion, in pwCF with mild disease (median age of 15, median % FEV1 predicted = 87), whether their PBMCs, unprimed or primed with a 'non specific' stimulus (PMA+ionomycin mix) and a 'specific' one (live P.a =PAO1 strain), were differentially activated, compared to healthy controls (HC) PBMCs. Results: 1) we analysed the lymphocytic and myeloid populations present in CF and Control PBMCs (T cells, NKT, Tgd, ILCs) and their production of the signature cytokines IFN-g, IL-13, IL-17, IL-22. 2) By q-PCR, ELISA and Luminex analysis we showed that CF PBMCs have increased background cytokines and mediators production and a partial functional tolerance phenotype, when restimulated. 3) we showed that CF PBMCs low-density neutrophils release higher levels of granule components (S100A8/A9, lactoferrin, MMP-3, MMP-7, MMP-8, MMP-9, NE), demonstrating enhanced exocytosis of potentially harmful mediators. Discussion: In conclusion, we demonstrated that functional lymphoid tolerance and enhanced myeloid protease activity are key features of cystic fibrosis PBMCs.


Assuntos
Fibrose Cística , Recém-Nascido , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas , Linfócitos , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA