Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Mol Genet Genomics ; 298(4): 845-855, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069340

RESUMO

Gibberellin, as one of the pivotal plant growth regulators, can improve fruit quality by altering fruit size and secondary metabolite content. Flavonoids are the most abundant secondary metabolites in grapes, which influence the color and quality of the fruit. However, the molecular mechanism of whether and how GA3 affects flavonoid metabolism has not been reported, especially for the 'Red globe' grape with delayed cultivation in Hexi corridor. In the present study, the 'Red globe' grape grown in delayed facilities was sprayed with 20, 40, 60, 80 and 100 mg/L GA3 at berries pea size (BPS), veraison (V) and berries ripe (BR), respectively. The results showed that the berry weight, soluble sugar content and secondary metabolite content (the flavonoid content, anthocyanin content and polyphenol content) at BR under 80 mg/L GA3 treatment were remarkably increased compared with other concentration treatments. Therefore, RNA sequencing (RNA-seq) was used to analyze the differentially expressed genes (DEGS) and pathways under 80 mg/L GA3 treatment at three periods. GO analysis showed that DEGs were closely related to transporter activity, cofactor binding, photosynthetic membrane, thylakoid, ribosome biogenesis and other items. The KEGG enrichment analysis found that the DEGs were mainly involved in flavonoid biosynthesis and phenylpropanoid biosynthesis, indicating GA3 exerted an impact on the color and quality of berries through these pathways. In conclusion, GA3 significantly increased the expression of genes related to flavonoid synthesis, enhanced the production of secondary metabolites, and improved fruit quality. In addition, these findings can provide a theoretical basis for GA3 to modulate the accumulation and metabolism of flavonoids in grape fruit.


Assuntos
Vitis , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Reguladores de Crescimento de Plantas/genética , Flavonoides/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 74(12): 3667-3683, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912616

RESUMO

Pepper (Capsicum annuum) employs distinct defence responses against Ralstonia solanacearum infection (RSI); however, the mechanisms by which pepper activates these defence responses in a context-dependent manner is unclear. Here we study pepper plants defence response to RSI under room temperature-high humidity (RSRT, 28 °C / 90%) and high temperature-high humidity (RSHT, 37 °C / 90%) conditions, and non-infected plants under high temperature-high humidity (HTHH, 42 °C / 90%) stress. Herein, we found that the MADS-box transcription factor CaAGL8 was up-regulated by HTHH stress and RSRT or RSHT, and its silencing significantly reduced pepper thermotolerance and susceptibility to infection under both room and high temperature-high humidity (RSRT and RSHT). This was coupled with down-regulation of CaSTH2 and CaDEF1 upon RSRT, down-regulation of CaMgst3 and CaPRP1 upon RSHT, and down-regulation of CaHSP24 upon HTHH. In contrast, the ectopic overexpression of CaAGL8 significantly increased the resistance of Nicotiana benthamiana plants to RSRT, RSHT, and HTHH. In addition, CaAGL8 was found to interact with CaSWC4, which acted as a positive regulator of the pepper response to RSRT, RSHT, and HTHH. Silencing of either CaAGL8 or CaSWC4 blocked the hypersensitive response (HR) cell death and context-dependent up-regulation of defence-related genes triggered by the other. Importantly, enrichment of H4K5Ac, H3K9Ac, H3K4me3, and H3K9me2 on the tested defence-related genes was context- and gene-specifically regulated through synergistic interaction between CaSWC4 and CaAGL8. Our results indicate that pepper employs CaAGL8 to modulate chromatin remodelling by interacting with CaSWC4, thereby activating defence responses to RSRT, RSHT, and HTHH.


Assuntos
Capsicum , Ralstonia solanacearum , Termotolerância , Reguladores de Crescimento de Plantas/genética , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina , Capsicum/metabolismo , Doenças das Plantas , Regulação da Expressão Gênica de Plantas , Ralstonia solanacearum/fisiologia
3.
Genes Genomics ; 45(4): 437-450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36694039

RESUMO

BACKGROUND: Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. OBJECTIVE: To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. METHODS: Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. RESULTS: Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. CONCLUSIONS: This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.


Assuntos
Lonicera , Lonicera/genética , Lonicera/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Etilenos/metabolismo
4.
Gene ; 835: 146652, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714802

RESUMO

Sugars are both nutrients and important signal molecules in higher plants. Sugar transporters (STs) are involved in sugar loading and unloading and facilitate sugar transport across membranes. Tobacco (Nicotiana tabacum) is a model plant and one of the most significant plants economically. In our research, 92 N. tabacum ST (NtST) genes were identified and classified into eight distinct subfamilies in the tobacco genome based on phylogenetic analysis. Exon-intron analysis revealed that each subfamily manifested closely associated gene architectural features based on a comparable number or length of exons. Tandem repetition and purifying selection were the main factors of NtST gene evolution. A search for cis-regulatory elements in the promoter sequences of the NtST gene families suggested that they are probably regulated by light, plant hormones, and abiotic stress factors. We performed a comprehensive expression study in different tissues, viarious abiotic and phytohormone stresses. The results revealed different expression patterns and the functional diversification of NtST genes. The resulting data showed that NtSFP1 was highly expressed all measured five tobacco tissues, and also regulated by the MeJA, and temperature stress. In addition, the virus-induced NibenSFP1 silencing in tobacco and detected dramatically enhanced glucose content, indicating the NtSFP1 might regulate the glucose content and involved in MeJA signaling way to response the temperature stress. In general, our findings provide useful information on understanding the roles of STs in phytohormone signaling way and abiotic stresses in N. tabacum.


Assuntos
Nicotiana , Reguladores de Crescimento de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Açúcares/metabolismo , Nicotiana/metabolismo
5.
Genes (Basel) ; 13(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35627204

RESUMO

The internode length affects the status of fruiting branches and shapes the vine architecture. MYB TFs (transcription factors) have been widely studied and reported to control many biological processes including secondary metabolism, abiotic stresses, growth and development, etc. However, the roles of MYB TFs in regulating internode length remain poorly understood. Here, we demonstrated that a secondary metabolism-related R2R3-MYB TF AaMYBC1 from Actinidia arguta was involved in the regulation of internode length by combined analysis of transcriptome and metabolome of transgenic tobacco plants. The metabolome analysis of OE (over-expressed tobacco) and WT (wild-typed tobacco) showed that there were a total of 1000 metabolites, 176 of which had significant differences. A key metabolite pme1651 annotated as indole 3-acetic acid belonged to phytohormone that was involved in internode length regulation. The RNA-seq analysis presented 446 differentially expressed genes (DEGs) between OE and WT, 14 of which were common DEGs in KEGG and GO enrichment. Through the combined analysis of metabolome and transcriptome in transgenic and wild-type tobacco, three key genes including two SAUR and a GH3 gene were possibly involved in internode elongation. Finally, a regulatory module was deduced to show the role of AaMYBC1 in internode elongation. Our results proposed a molecular mechanism of AaMYBC1 regulating internode length by mediated auxin signaling, implying the potential role in regulating the vine architecture.


Assuntos
Actinidia , Nicotiana , Actinidia/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma/genética
6.
Plant Physiol ; 188(1): 151-166, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34601578

RESUMO

MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter. Yeast one-hybrid analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed that NtMYB305a binds to the GAG region in vitro and in vivo. Binding specifically occurs at the ∼30-bp AT-rich motif in a G/C-base-independent manner, thus defining the AT-rich motif as previously unknown MYB-binding element. NtMYB305a localized in the nucleus of tobacco cells where it is capable of activating the expression of a 4×GAG-driven GUS reporter in an AT-rich motif-dependent manner. NtMYB305a positively regulates nicotine biosynthesis and the expression of NtPMT and other nicotine pathway genes. NtMYB305a acts synergistically with NtMYC2a to regulate nicotine biosynthesis, but no interaction between these two proteins was detected. This identification of NtMYB305a provides insights into the regulation of nicotine biosynthesis and extends the roles played by MYB transcription factors in plant secondary metabolism.


Assuntos
Metiltransferases/genética , Metiltransferases/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotina/biossíntese , Nicotina/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
7.
J Zhejiang Univ Sci B ; 22(12): 1002-1021, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34904413

RESUMO

Mesocotyl elongation is a key trait influencing seedling emergence and establishment in direct-seeding rice cultivation. The phytohormone gibberellin (GA) has positive effects on mesocotyl elongation in rice. However, the physiological and molecular basis underlying the regulation of mesocotyl elongation mediated by GA priming under deep-sowing conditions remains largely unclear. In the present study, we performed a physiological and comprehensive transcriptomic analysis of the function of GA priming in mesocotyl elongation and seedling emergence using a direct-seeding japonica rice cultivar ZH10 at a 5-cm sowing depth. Physiological experiments indicated that GA priming significantly improved rice seedling emergence by increasing the activity of starch-metabolizing enzymes and compatible solute content to supply the energy essential for subsequent development. Transcriptomic analysis revealed 7074 differentially expressed genes (false discovery rate of <0.05, |log2(fold change)| of ≥1) after GA priming. Furthermore, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses revealed that genes associated with transcriptional regulation, plant hormone biosynthesis or signaling, and starch and sucrose metabolism were critical for GA-mediated promotion of rice mesocotyl elongation. Further analyses showed that the expression of the transcription factor (TF) genes (v-myb avian myeloblastosis viral oncogene homolog (MYB) alternative splicing 1 (MYBAS1), phytochrome-interacting factors 1 (PIF1), Oryza sativa teosinte branched 1/cycloidea/proliferating cell factor 5 (OsTCP5), slender 1 (SLN1), and mini zinc finger 1 (MIF1)), plant hormone biosynthesis or signaling genes (brassinazole-resistant 1 (BZR1), ent-kaurenoic acid oxidase-like (KAO), GRETCHEN HAGEN 3.2 (GH3.2), and small auxin up RNA 36 (SAUR36)), and starch and sucrose metabolism genes (α-amylases (AMY2A and AMY1.4)) was highly correlated with the mesocotyl elongation and deep-sowing tolerance response. These results enhance our understanding of how nutrient metabolism-related substances and genes regulate rice mesocotyl elongation. This may facilitate future studies on related genes and the development of novel rice varieties tolerant to deep sowing.


Assuntos
Perfilação da Expressão Gênica , Giberelinas/farmacologia , Oryza/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Oryza/genética , Reguladores de Crescimento de Plantas/genética , Amido/metabolismo , Sacarose/metabolismo
8.
Plant Commun ; 2(6): 100245, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34778751

RESUMO

Improvements in plant architecture, such as reduced plant height under high-density planting, are important for agricultural production. Light and gibberellin (GA) are essential external and internal cues that affect plant architecture. In this study, we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum L.). We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis. Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins. Interestingly, we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction. We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction. Based on these findings, we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction, thereby stabilizing DELLA proteins and enhancing their repression of plant growth.


Assuntos
Adaptação Ocular/genética , Arabidopsis/crescimento & desenvolvimento , Giberelinas/metabolismo , Nicotiana/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos da radiação , Triticum/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Variação Genética , Genótipo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Nicotiana/genética , Nicotiana/metabolismo , Triticum/genética , Triticum/metabolismo
9.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830372

RESUMO

The GATA gene family is one of the most important transcription factors (TFs). It extensively exists in plants, contributes to diverse biological processes such as the development process, and responds to environmental stress. Although the GATA gene family has been comprehensively and systematically studied in many species, less is known about GATA genes in Chinese pears (Pyrus bretschneideri). In the current study, the GATA gene family in the four Rosaceae genomes was identified, its structural characteristics identified, and a comparative analysis of its properties was carried out. Ninety-two encoded GATA proteins were authenticated in the four Rosaceae genomes (Pyrus bretschneideri, Prunus avium, Prunus mume, and Prunus persica) and categorized into four subfamilies (Ⅰ-Ⅳ) according to phylogeny. The majority of GATA genes contained one to two introns and conserved motif composition analysis revealed their functional divergence. Whole-genome duplications (WGDs) and dispersed duplication (DSD) played a key role in the expansion of the GATA gene family. The microarray indicated that, among P. bretschneideri, P. avium, P. mume and P. persica, GATA duplicated regions were more conserved between Pyrus bretschneideri and Prunus persica with 32 orthologous genes pairs. The physicochemical parameters, duplication patterns, non-synonymous (ka), and synonymous mutation rate (ks) and GO annotation ontology were performed using different bioinformatics tools. cis-elements respond to various phytohormones, abiotic/biotic stress, and light-responsive were found in the promoter regions of GATA genes which were induced via stimuli. Furthermore, subcellular localization of the PbGATA22 gene product was investigated, showing that it was present in the nucleus of tobacco (Nicotiana tabacum) epidermal cells. Finally, in silico analysis was performed on various organs (bud, leaf, stem, ovary, petal, and sepal) and different developmental stages of fruit. Subsequently, the expression profiles of PbGATA genes were extensively expressed under exogenous hormonal treatments of SA (salicylic acid), MeJA (methyl jasmonate), and ABA (abscisic acid) indicating that play important role in hormone signaling pathways. A comprehensive analysis of GATA transcription factors was performed through systematic biological approaches and comparative genomics to establish a theoretical base for further structural and functional investigations in Rosaceae species.


Assuntos
Evolução Molecular , Fatores de Transcrição GATA/genética , Reguladores de Crescimento de Plantas/genética , Pyrus/genética , China , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica , Filogenia , Pyrus/crescimento & desenvolvimento , Rosaceae/genética , Rosaceae/crescimento & desenvolvimento , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
10.
Plant Sci ; 313: 111084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763869

RESUMO

The signaling pathways of both auxin and ethylene regulate peach fruit ripening via the Aux/IAA and ERF transcription factors, respectively. However, the molecular mechanisms that coordinate both auxin and ethylene signals during peach fruit ripening remain unclear. In this study, we show that PpIAA1 and PpERF4 act as key players in a positive feedback loop, and promote peach fruit ripening by directly binding to and enhancing the activity of target gene promoters. PpIAA1 increased the expression of the ethylene biosynthesis gene PpACS1. Furthermore, PpERF4 enhanced the transcription of PpACO1 and PpIAA1 genes by binding to their promoters. Additionally, PpIAA1 and PpERF4 bound to each other to form a complex, which then enhanced the transcription of abscisic acid biosynthesis genes (PpNCED2 and PpNCED3) and the fruit softening gene (PpPG1) to levels higher than those achieved by each transcription factor individually. Moreover, overexpression of PpIAA1 in tomato accelerated fruit ripening and shortened the fruit shelf-life by increasing the production of ethylene and the expression levels of ripening regulator genes. Collectively, these results advance our understanding of the molecular mechanisms underlying peach fruit ripening and softening via auxin and ethylene signaling pathways.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
11.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680040

RESUMO

Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.


Assuntos
Ácidos Indolacéticos/metabolismo , Microscopia Eletrônica de Varredura , Nicotiana/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/ultraestrutura , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ouro/química , Processamento de Imagem Assistida por Computador , Nanopartículas Metálicas/química , Microscopia Confocal , Reguladores de Crescimento de Plantas/genética , Protoplastos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
12.
Biomolecules ; 11(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680145

RESUMO

Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2-13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.


Assuntos
Citocininas/farmacologia , Plantas Medicinais/crescimento & desenvolvimento , Salvia/química , Técnicas de Cultura de Tecidos , Compostos de Benzil/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Medicina Tradicional Chinesa , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química , Purinas/farmacologia , Regeneração/efeitos dos fármacos , Salvia/crescimento & desenvolvimento
13.
J Nanobiotechnology ; 19(1): 316, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641908

RESUMO

Selenium (Se) can promote the growth and resistance of agricultural crops as fertilizers, while the role of nano-selenium (nano-Se) against Cd remains unclear in pepper plants (Capsicum annuum L.). Biofortification with nano-Se observably restored Cd stress by decreasing the level of Cd in plant tissues and boosting the accumulation in biomass. The Se compounds transformed by nano-Se were primarily in the form of SeMet and MeSeCys in pepper tissues. Differential metabolites and the genes of plant signal transduction and lignin biosynthesis were measured by employing transcriptomics and determining target metabolites. The number of lignin-related genes (PAL, CAD, 4CL, and COMT) and contents of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, caffeyl alcohol, and coniferaldehyde) were remarkably enhanced by treatment with Cd1Se0.2, thus, maintaining the integrity of cell walls in the roots. It also enhanced signal transduction by plant hormones and responsive resistance by inducing the biosynthesis of genes (BZR1, LOX3, and NCDE1) and metabolites (brassinolide, abscisic acid, and jasmonic acid) in the roots and leaves. In general, this study can enable a better understanding of the protective mechanism of nano-Se in improving the capacity of plants to resist environmental stress.


Assuntos
Cádmio/toxicidade , Capsicum , Lignina/biossíntese , Nanopartículas Metálicas/química , Selênio/farmacologia , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Capsicum/química , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
14.
Protein Expr Purif ; 188: 105970, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34500070

RESUMO

HarpinEa protein can stimulate plants to produce defense responses to resist the attack of pathogens, improve plant immune resistance, and promote plant growth. This has extremely high application value in agriculture. To efficiently express soluble HarpinEa protein, in this study, we expressed HarpinEa protein with a 6× His-tag in Escherichia coli BL21 (DE3). Because of the low level of expression of HarpinEa protein in E. coli, three rounds of synonymous codon optimization were performed on the +53 bp of the translation initiation region (TIR) of HarpinEa. Soluble HarpinEa protein after optimization accounted for 50.3% of the total soluble cellular protein expressed. After purification using a Ni Bestarose Fast Flow column, the purity of HarpinEa protein exceeded 95%, and the yield reached 227.5 mg/L of culture medium. The purified HarpinEa protein was sensitive to proteases and exhibited thermal stability. It triggered visible hypersensitive responses after being injected into tobacco leaves for 48 h. Plants treated with HarpinEa showed obvious growth-promoting and resistance-improving performance. Thus, the use of TIR synonymous codon optimization successfully achieved the economical, efficient, and soluble production of HarpinEa protein.


Assuntos
Códon , Nicotiana/genética , Iniciação Traducional da Cadeia Peptídica , Proteínas de Plantas/genética , Mutação Silenciosa , Triticum/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Conformação de Ácido Nucleico , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/farmacologia , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Solubilidade , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
15.
BMC Plant Biol ; 21(1): 370, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384392

RESUMO

BACKGROUND: To adapt seasonal climate changes under natural environments, Polygonatum sibiricum seeds have a long period of epicotyl morphophysiological dormancy, which limits their wide-utilization in the large-scale plant progeny propagation. It has been proven that the controlled consecutive warm and cold temperature treatments can effectively break and shorten this seed dormancy status to promote its successful underdeveloped embryo growth, radicle emergence and shoot emergence. To uncover the molecular basis of seed dormancy release and seedling establishment, a SMRT full-length sequencing analysis and an Illumina sequencing-based comparison of P. sibiricum seed transcriptomes were combined to investigate transcriptional changes during warm and cold stratifications. RESULTS: A total of 87,251 unigenes, including 46,255 complete sequences, were obtained and 77,148 unigenes (88.42%) were annotated. Gene expression analyses at four stratification stages identified a total of 27,059 DEGs in six pairwise comparisons and revealed that more differentially expressed genes were altered at the Corm stage than at the other stages, especially Str_S and Eme. The expression of 475 hormone metabolism genes and 510 hormone signaling genes was modulated during P. sibiricum seed dormancy release and seedling emergence. One thousand eighteen transcription factors and five hundred nineteen transcription regulators were detected differentially expressed during stratification and germination especially at Corm and Str_S stages. Of 1246 seed dormancy/germination known DEGs, 378, 790, and 199 DEGs were associated with P. sibiricum MD release (Corm vs Seed), epicotyl dormancy release (Str_S vs Corm), and the seedling establishment after the MPD release (Eme vs Str_S). CONCLUSIONS: A comparison with dormancy- and germination-related genes in Arabidopsis thaliana seeds revealed that genes related to multiple plant hormones, chromatin modifiers and remodelers, DNA methylation, mRNA degradation, endosperm weakening, and cell wall structures coordinately mediate P. sibiricum seed germination, epicotyl dormancy release, and seedling establishment. These results provided the first insights into molecular regulation of P. sibiricum seed epicotyl morphophysiological dormancy release and seedling emergence. They may form the foundation of future studies regarding gene interaction and the specific roles of individual tissues (endosperm, newly-formed corm) in P. sibiricum bulk seed dormancy.


Assuntos
Dormência de Plantas/genética , Polygonatum/crescimento & desenvolvimento , Polygonatum/genética , Temperatura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcriptoma
16.
J Plant Physiol ; 263: 153460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217838

RESUMO

Ethylene is a gaseous hormone with a well-established role in the regulation of plant growth and development. However, its role in the modulation of carbon assimilation and central metabolism remains unclear. Here, we investigated the morphophysiological and biochemical responses of tomato plants (Solanum lycopersicum) following the application of ethylene in the form of ethephon (CEPA - 2-chloroethylphosphonic acid), forcing the classical triple response phenotype. CEPA-treated plants were characterized by growth inhibition, as revealed by significant reductions in both shoot and root dry weights, coupled with a reduced number of leaves and lower specific leaf area. Growth inhibition was associated with a reduction in carbon assimilation due to both lower photosynthesis rates and stomatal conductance, coupled with impairments in carbohydrate turnover. Furthermore, exogenous ethylene led to the accumulation of cell wall compounds (i.e., cellulose and lignin) and phenolics, indicating that exposure to exogenous ethylene also led to changes in specialized metabolism. Collectively, our findings demonstrate that exogenous ethylene disrupts plant growth and leaf structure by affecting both central and specialized metabolism, especially that involved in carbohydrate turnover and cell wall biosynthesis, ultimately leading to metabolic responses that mimic stress situations.


Assuntos
Etilenos/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
17.
J Plant Physiol ; 263: 153452, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34098414

RESUMO

In plants, jasmonate ZIM-domain proteins (JAZs) act as critical regulators, interacting physically with transcription factors (TFs) and other transcriptional regulators to modulate jasmonate (JA)-responsive gene expression and participate in crosstalk with other hormone signalling pathways. Identifying novel JAZ-interacting proteins will provide new insights into JA signalling cascades in plants. Here, we performed yeast two-hybrid screening to identify 70 NtJAZ1-interacting proteins, including an A/T-rich interaction domain containing protein 1 (NtAIDP1) from JA-treated tobacco Bright Yellow-2 (BY-2) cells. NtAIDP1 is localised in the nucleus and interacts with NtJAZ1 via its C-terminal heat shock protein 20 (HSP) domain. Aside from NtJAZ1, NtAIDP1 also interacts with other JA-inducible NtJAZs, including NtJAZ2b, NtJAZ2b.2, NtJAZ5, NtJAZ7, NtJAZ11 and NtJAZ12, but not with NtJAZ3, NtJAZ3b or NtJAZ10, and interacts with NtNINJA, NtDELLA1 and NtDELLA2 in the yeast two-hybrid assay. Furthermore, NtAIDP1 binds to the AT-rich region of the GAG fragment of the putrescine N-methyltransferase 1a (NtPMT1a) promoter and activates the transcriptional activity of the GAG fragment, whereas NtMYC2a interacts with and competitively inhibits the transactivational activity of NtAIDP1 in Arabidopsis mesophyll protoplasts. Overexpression of NtAIDP1 promotes the transcription of NtPDF1.2 and NtJAZ1, but has little effect on the expression of NtPMT1a, quinolinate phosphoribosyltransferase 2 (NtQPT2), and NtMYC2a in tobacco. These results indicate that NtAIDP1 is a new component of the JA signalling pathway and is involved in JA-regulated gene expression.


Assuntos
Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
J Adv Res ; 29: 191-205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33842016

RESUMO

Introduction: Environmental stress is both a major force of natural selection and a prime factor affecting crop qualities and yields. The impact of the GRAS [gibberellic acid-insensitive (GAI), repressor of GA1-3 mutant (RGA), and scarecrow (SCR)] family on plant development and the potential to resist environmental stress needs much emphasis. Objectives: This study aims to investigate the evolution, expansion, and adaptive mechanisms of GRASs of important representative plants during polyploidization. Methods: We explored the evolutionary characteristics of GRASs in 15 representative plant species by systematic biological analysis of the genome, transcriptome, metabolite, protein complex map and phenotype. Results: The GRAS family was systematically identified from 15 representative plant species of scientific and agricultural importance. The detection of gene duplication types of GRASs in all species showed that the widespread expansion of GRASs in these species was mainly contributed by polyploidization events. Evolutionary analysis reveals that most species experience independent genome-wide duplication (WGD) events and that interspecies GRAS functions may be broadly conserved. Polyploidy-related Chenopodium quinoa GRASs (CqGRASs) and Arabidopsis thaliana GRASs (AtGRASs) formed robust networks with flavonoid pathways by crosstalk with auxin and photosynthetic pathways. Furthermore, Arabidopsis thaliana population transcriptomes and the 1000 Plants (OneKP) project confirmed that GRASs are components of flavonoid biosynthesis, which enables plants to adapt to the environment by promoting flavonoid accumulation. More importantly, the GRASs of important species that may potentially improve important agronomic traits were mapped through TAIR and RARGE-II publicly available phenotypic data. Determining protein interactions and target genes contributes to determining GRAS functions. Conclusion: The results of this study suggest that polyploidy-related GRASs in multiple species may be a target for improving plant growth, development, and environmental adaptation.


Assuntos
Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Adaptação Biológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Meio Ambiente , Evolução Molecular , Flavonoides/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fotossíntese/genética , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Poliploidia , Seleção Genética/genética , Fatores de Transcrição/metabolismo , Transcriptoma
19.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808132

RESUMO

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


Assuntos
Parede Celular/fisiologia , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Xilema/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Madeira/crescimento & desenvolvimento , Xilema/metabolismo
20.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806336

RESUMO

1',4'-trans-diol-ABA is a key precursor of the biosynthesis of abscisic acid (ABA) biosynthesis in fungi. We successfully obtained the pure compound from a mutant of Botrytis cinerea and explored its function and possible mechanism on plants by spraying 2 mg/L 1',4'-trans-diol-ABA on tobacco leaves. Our results showed that this compound enhanced the drought tolerance of tobacco seedlings. A comparative transcriptome analysis showed that a large number of genes responded to the compound, exhibiting 1523 genes that were differentially expressed at 12 h, which increased to 1993 at 24 h and 3074 at 48 h, respectively. The enrichment analysis demonstrated that the differentially expressed genes (DEGs) were primarily enriched in pathways related to hormones and resistance. The DEGs of transcription factors were generally up-regulated and included the bHLH, bZIP, ERF, MYB, NAC, WRKY and HSF families. Moreover, the levels of expression of PYL/PYR, PP2C, SnRK2, and ABF at the ABA signaling pathway responded positively to exogenous 1',4'-trans-diol-ABA. Among them, seven ABF transcripts that were detected were significantly up-regulated. In addition, the genes involved in salicylic acid, ethylene and jasmonic acid pathways, reactive oxygen species scavenging system, and other resistance related genes were primarily induced by 1',4'-trans-diol-ABA. These findings indicated that treatment with 1',4'-trans-diol-ABA could improve tolerance to plant abiotic stress and potential biotic resistance by regulating gene expression, similar to the effects of exogenous ABA.


Assuntos
Ácido Abscísico/análogos & derivados , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Botrytis/química , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Modelos Biológicos , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA