Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Transl Med ; 22(1): 486, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773508

RESUMO

BACKGROUND: Immunotherapy has brought about a paradigm shift in the treatment of cancer. However, the majority of patients exhibit resistance or become refractory to immunotherapy, and the underlying mechanisms remain to be explored. METHODS: Sing-cell RNA sequencing (scRNA­seq) datasets derived from 1 pretreatment and 1 posttreatment achieving pathological complete response (pCR) patient with lung adenocarcinoma (LUAD) who received neoadjuvant immunotherapy were collected, and pySCENIC was used to find the gene regulatory network (GRN) between cell types and immune checkpoint inhibitor (ICI) response. A regulon predicting ICI response was identified and validated using large­scale pan-cancer data, including a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 5 ICI transcriptomic cohorts. Symphony reference mapping was performed to construct the myeloid cell map. RESULTS: Thirteen major cluster cell types were identified by comparing pretreatment and posttreatment patients, and the fraction of myeloid cells was higher in the posttreatment group (19.0% vs. 11.8%). A PPARG regulon (containing 23 target genes) was associated with ICI response, and its function was validated by a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, TCGA pan-cancer cohort, and 5 ICI transcriptomic cohorts. Additionally, a myeloid cell map was developed, and cluster I, II, and III myeloid cells with high expression of PPARG were identified. Moreover, we constructed a website called PPARG ( https://pparg.online/PPARG/ or http://43.134.20.130:3838/PPARG/ ), which provides a powerful discovery tool and resource value for researchers. CONCLUSIONS: The PPARG regulon is a predictor of ICI response. The myeloid cell map enables the identification of PPARG subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Assuntos
Imunoterapia , Células Mieloides , Terapia Neoadjuvante , Neoplasias , Regulon , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Regulon/genética , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/imunologia , Resultado do Tratamento , Redes Reguladoras de Genes , Feminino , Regulação Neoplásica da Expressão Gênica
2.
PLoS One ; 18(11): e0286440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967103

RESUMO

In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.


Assuntos
Azotobacter vinelandii , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Regulon/genética , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteômica , Proteínas de Choque Térmico/metabolismo , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética
3.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240425

RESUMO

Iron is an essential element because it functions as a cofactor of many enzymes, but excess iron causes cell damage. Iron hemostasis in Escherichia coli was transcriptionally maintained by the ferric uptake regulator (Fur). Despite having been studied extensively, the comprehensive physiological roles and mechanisms of Fur-coordinated iron metabolism still remain obscure. In this work, by integrating a high-resolution transcriptomic study of the Fur wild-type and knockout Escherichia coli K-12 strains in the presence or absence of iron with high-throughput ChIP-seq assay and physiological studies, we revisited the regulatory roles of iron and Fur systematically and discovered several intriguing features of Fur regulation. The size of the Fur regulon was expanded greatly, and significant discrepancies were observed to exist between the regulations of Fur on the genes under its direct repression and activation. Fur showed stronger binding strength to the genes under its repression, and genes that were repressed by Fur were more sensitive to Fur and iron regulation as compared to the genes that were activated by Fur. Finally, we found that Fur linked iron metabolism to many essential processes, and the systemic regulations of Fur on carbon metabolism, respiration, and motility were further validated or discussed. These results highlight how Fur and Fur-controlled iron metabolism affect many cellular processes in a systematic way.


Assuntos
Escherichia coli K12 , Regulon , Regulon/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Escherichia coli K12/genética , Ferro/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Braz. j. biol ; 83: e245379, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339405

RESUMO

Abstract Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.


Resumo O crescimento populacional está aumentando rapidamente em todo o mundo, e para combater suas consequências precisamos produzir mais alimentos para suprir a demanda do aumento populacional. O mundo está enfrentando o aquecimento global devido à urbanização e industrialização e, nesse caso, plantas expostas continuamente a estresses abióticos, que é uma das principais causas do martelamento das safras todos os anos. Estresses abióticos consistem em seca, sal, calor, frio, oxidação e toxicidade de metais que prejudicam o rendimento da colheita continuamente. A seca e o estresse salino são afetados de maneira diversa pela planta e são a principal causa de redução da produtividade das culturas. As plantas respondem a vários estímulos sob condições de estresse abiótico ou biótico e expressam certos genes estruturais ou regulatórios que mantêm a integridade da planta. Os genes reguladores são principalmente os fatores de transcrição que exercem sua atividade ligando-se a certos elementos cis do DNA e, consequentemente, são regulados para cima ou para baixo para a expressão alvo. Esses fatores de transcrição são conhecidos como reguladores mestres porque sua única transcrição regula mais de um gene; nesse contexto, a palavra regulon é mais fascinante no âmbito dos fatores de transcrição. Progresso foi feito para entender melhor sobre o efeito dos regulons (AREB / ABF, DREB, MYB e NAC) sob estresses abióticos e uma série de regulons relatados como responsivos ao estresse e usados ​​como uma melhor ferramenta transgênica de Arabidopsis e Rice.


Assuntos
Regulon/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Secas
5.
mSystems ; 7(5): e0035422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190124

RESUMO

Pseudomonas aeruginosa populations evolving in cystic fibrosis lungs, animal hosts, natural environments and in vitro undergo extensive genetic adaption and diversification. A common mutational target is the quorum sensing (QS) system, a three-unit regulatory system that controls the expression of virulence factors and secreted public goods. Three evolutionary scenarios have been advocated to explain selection for QS mutants: (i) disuse of the regulon, (ii) cheating through the exploitation of public goods, or (ii) modulation of the QS regulon. Here, we examine these scenarios by studying a set of 61 QS mutants from an experimental evolution study. We observed nonsynonymous mutations in all three QS systems: Las, Rhl, and Pseudomonas Quinolone Signal (PQS). The majority of the Las mutants had large deletions of the Las regulon, resulting in loss of QS function and the inability to produce QS-regulated traits, thus supporting the first or second scenarios. Conversely, phenotypic and gene expression analyses of Rhl mutants support network modulation (third scenario), as these mutants overexpressed the Las and Rhl receptors and showed an altered QS-regulated trait production profile. PQS mutants also showed patterns of regulon modulation leading to strain diversification and phenotypic tradeoffs, where the upregulation of certain QS traits is associated with the downregulation of others. Overall, our results indicate that mutations in the different QS systems lead to diverging effects on the QS trait profile in P. aeruginosa populations. These mutations might not only affect the plasticity and diversity of evolved populations but could also impact bacterial fitness and virulence in infections. IMPORTANCE Pseudomonas aeruginosa uses quorum sensing (QS), a three-unit multilayered network, to coordinate expression of traits required for growth and virulence in the context of infections. Despite its importance for bacterial fitness, the QS regulon appears to be a common mutational target during long-term adaptation of P. aeruginosa in the host, natural environments, and experimental evolutions. This raises questions of why such an important regulatory system is under selection and how mutations change the profile of QS-regulated traits. Here, we examine a set of 61 experimentally evolved QS mutants to address these questions. We found that mutations involving the master regulator, LasR, resulted in an almost complete breakdown of QS, while mutations in RhlR and PqsR resulted in modulations of the regulon, where both the regulon structure and the QS-regulated trait profile changed. Our work reveals that natural selection drives diversification in QS activity patterns in evolving populations.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/genética , Pseudomonas aeruginosa/genética , Regulon/genética , Proteínas de Bactérias/genética , Mutação/genética
6.
PLoS Genet ; 18(5): e1010198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613247

RESUMO

Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci.


Assuntos
Proteínas de Bactérias , Regulon , Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peptídeos/genética , Feromônios/genética , Feromônios/metabolismo , Regulon/genética , Transdução de Sinais/genética
7.
Mol Microbiol ; 117(1): 121-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486768

RESUMO

Ribonuclease P (RNase P), which is required for the 5'-end maturation of tRNAs in every organism, has been shown to play a limited role in other aspects of RNA metabolism in Escherichia coli. Using RNA-sequencing (RNA-seq), we demonstrate that RNase P inactivation affects the abundances of ~46% of the expressed transcripts in E. coli and provide evidence that its essential function is its ability to generate pre-tRNAs from polycistronic tRNA transcripts. The RNA-seq results agreed with the published data and northern blot analyses of 75/83 transcripts (mRNAs, sRNAs, and tRNAs). Changes in transcript abundances in the RNase P mutant also correlated with changes in their half-lives. Inactivating the stringent response did not alter the rnpA49 phenotype. Most notably, increases in the transcript abundances were observed for all genes in the cysteine regulons, multiple toxin-antitoxin modules, and sigma S-controlled genes. Surprisingly, poly(A) polymerase (PAP I) modulated the abundances of ~10% of the transcripts affected by RNase P. A comparison of the transcriptomes of RNase P, RNase E, and RNase III mutants suggests that they affect distinct substrates. Together, our work strongly indicates that RNase P is a major player in all aspects of post-transcriptional RNA metabolism in E. coli.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Regulon/genética , Ribonuclease P/metabolismo , Transcriptoma , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease P/genética , Análise de Sequência de RNA
8.
Cells ; 10(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34685516

RESUMO

Numerous genes are overexpressed in the radioresistant bacterium Deinococcus radiodurans after exposure to radiation or prolonged desiccation. It was shown that the DdrO and IrrE proteins play a major role in regulating the expression of approximately twenty genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions. After exposure to genotoxic agents, the IrrE metalloprotease cleaves DdrO and relieves gene repression. At present, many questions remain, such as the number of genes regulated by DdrO. Here, we present the first ChIP-seq analysis performed at the genome level in Deinococcus species coupled with RNA-seq, which was achieved in the presence or not of DdrO. We also resequenced our laboratory stock strain of D. radiodurans R1 ATCC 13939 to obtain an accurate reference for read alignments and gene expression quantifications. We highlighted genes that are directly under the control of this transcriptional repressor and showed that the DdrO regulon in D. radiodurans includes numerous other genes than those previously described, including DNA and RNA metabolism proteins. These results thus pave the way to better understand the radioresistance pathways encoded by this bacterium and to compare the stress-induced responses mediated by this pair of proteins in diverse bacteria.


Assuntos
Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulon/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA/genética , Deinococcus/genética , Genômica , Regulon/fisiologia
9.
Biol Rev Camb Philos Soc ; 96(5): 2192-2208, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34018319

RESUMO

In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Regulon , Ciclo Celular/genética , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/genética , Regulon/genética
11.
FEBS Lett ; 594(24): 4189-4200, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33270910

RESUMO

Pathway analysis methods are frequently applied to cancer gene expression data to identify dysregulated pathways. These methods often infer pathway activity based on the expression of genes belonging to a given pathway, even though the proteins ultimately determine the activity of a given pathway. Furthermore, the association between gene expression levels and protein activities is not well-characterized. Here, we posit that pathway-based methods are effective not because of the correlation between expression and activity of members of a given pathway, but because pathway gene sets overlap with the genes regulated by transcription factors (TFs). Thus, pathway-based methods do not inform about the activity of the pathway of interest but rather reflect changes in TF activities.


Assuntos
Redes Reguladoras de Genes/genética , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Humanos , Regulon/genética
12.
Nat Commun ; 11(1): 2936, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522993

RESUMO

Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR-mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one-carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR-driven changes to gene expression and resistance to pharmacological treatment.


Assuntos
Antimetabólitos/farmacologia , Ácido Fólico/farmacologia , Regulon/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Metotrexato/farmacologia , Pemetrexede/farmacologia , Proteoma/efeitos dos fármacos , Proteoma/genética , Regulon/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
13.
Sci Rep ; 10(1): 8593, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451429

RESUMO

Muscular atrophy or muscle loss is a multifactorial clinical condition during many critical illnesses like cancer, cardiovascular diseases, diabetes, pulmonary diseases etc. leading to fatigue and weakness and contributes towards a decreased quality of life. The proportion of older adults (>65 y) in the overall population is also growing and aging is another important factor causing muscle loss. Some muscle miRNAs (myomiRs) and their target genes have even been proposed as potential diagnostic, therapeutic and predictive markers for muscular atrophy. MyomirDB (http://www.myomirdb.in/) is a unique resource that provides a comprehensive, curated, user- friendly and detailed compilation of various miRNA bio-molecular interactions; miRNA-Transcription Factor-Target Gene co-regulatory networks and ~8000 tripartite regulons associated with 247 myomiRs which have been experimentally validated to be associated with various muscular atrophy conditions. For each database entry, MyomirDB compiles source organism, muscle atrophic condition, experiment duration, its level of expression, fold change, tissue of expression, experimental validation, disease and drug association, tissue-specific expression level, Gene Ontology and KEGG pathway associations. The web resource is a unique server platform which uses in-house scripts to construct miRNA-Transcription Factor-Target Gene co-regulatory networks and extract tri-partite regulons also called Feed Forward Loops. These unique features helps to offer mechanistic insights in disease pathology. Hence, MyomirDB is a unique platform for researchers working in this area to explore, fetch, compare and analyse atrophy associated miRNAs, their co-regulatory networks and FFL regulons.


Assuntos
Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Regulon/genética , Interface Usuário-Computador , Bases de Dados Genéticas , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fatores de Transcrição/metabolismo
14.
Sci Rep ; 9(1): 15069, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636299

RESUMO

The first complete genome of the biotechnologically important species Sulfobacillus thermotolerans has been sequenced. Its 3 317 203-bp chromosome contains an 83 269-bp plasmid-like region, which carries heavy metal resistance determinants and the rusticyanin gene. Plasmid-mediated metal resistance is unusual for acidophilic chemolithotrophs. Moreover, most of their plasmids are cryptic and do not contribute to the phenotype of the host cells. A polyphosphate-based mechanism of metal resistance, which has been previously unknown in the genus Sulfobacillus or other Gram-positive chemolithotrophs, potentially operates in two Sulfobacillus species. The methylcitrate cycle typical for pathogens and identified in the genus Sulfobacillus for the first time can fulfill the energy and/or protective function in S. thermotolerans Kr1 and two other Sulfobacillus species, which have incomplete glyoxylate cycles. It is notable that the TCA cycle, disrupted in all Sulfobacillus isolates under optimal growth conditions, proved to be complete in the cells enduring temperature stress. An efficient antioxidant defense system gives S. thermotolerans another competitive advantage in the microbial communities inhabiting acidic metal-rich environments. The genomic comparisons revealed 80 unique genes in the strain Kr1, including those involved in lactose/galactose catabolism. The results provide new insights into metabolism and resistance mechanisms in the Sulfobacillus genus and other acidophiles.


Assuntos
Crescimento Quimioautotrófico , Clostridiales/metabolismo , Carbono/metabolismo , Clostridiales/genética , DNA Circular/genética , Metabolismo Energético , Genoma Bacteriano , Filogenia , Plasmídeos/genética , Regulon/genética , Estresse Fisiológico
15.
Sci Transl Med ; 11(503)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366581

RESUMO

The androgen receptor (AR) is a driver of cellular differentiation and prostate cancer development. An extensive body of work has linked these normal and aberrant cellular processes to mRNA transcription; however, the extent to which AR regulates posttranscriptional gene regulation remains unknown. Here, we demonstrate that AR uses the translation machinery to shape the cellular proteome. We show that AR is a negative regulator of protein synthesis and identify an unexpected relationship between AR and the process of translation initiation in vivo. This is mediated through direct transcriptional control of the translation inhibitor 4EBP1. We demonstrate that lowering AR abundance increases the assembly of the eIF4F translation initiation complex, which drives enhanced tumor cell proliferation. Furthermore, we uncover a network of pro-proliferation mRNAs characterized by a guanine-rich cis-regulatory element that is particularly sensitive to eIF4F hyperactivity. Using both genetic and pharmacologic methods, we demonstrate that dissociation of the eIF4F complex reverses the proliferation program, resulting in decreased tumor growth and improved survival in preclinical models. Our findings reveal a druggable nexus that functionally links the processes of mRNA transcription and translation initiation in an emerging class of lethal AR-deficient prostate cancer.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Regulon/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Técnicas In Vitro , Íntrons/genética , Masculino , Camundongos , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Regulon/genética
16.
World J Microbiol Biotechnol ; 34(11): 172, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413888

RESUMO

Pho regulon is a highly evolved and conserved mechanism across the microbes to fulfil their phosphate need. In this study, 52 proteobacteria genomes were analyzed for the presence of phosphorus acquisition genes, their pattern of arrangement and copy numbers. The diverse genetic architecture of the Pho regulon genes indicates the evolutionary challenge of nutrient limitation, particularly phosphorus, faced by bacteria in their environment. The incongruence between the Pho regulon proteins phylogeny and species phylogeny along with the presence of additional copies of pstS and pstB genes, having cross similarity with other genera, suggest the possibility of horizontal gene transfer event. The substitution rate analysis and multiple sequence alignment of the Pho regulon proteins were analyzed to gain additional insight into the evolution of the Pho regulon system. This comprehensive study confirms that genes perform the regulatory function (phoBR) were vertically inherited, whereas interestingly, genes whose product involved in direct interaction with the environment (pstS) acquired by horizontal gene transfer. The substantial amino acid substitutions in PstS most likely contribute to the successful adaptation of bacteria in different ecological condition dealing with different phosphorus availability. The findings decipher the intelligence of the bacteria which enable them to carry out the targeted alteration of genes to cope up with the environmental condition.


Assuntos
Proteobactérias/genética , Proteobactérias/fisiologia , Regulon/genética , Regulon/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte , Duplicação Gênica , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Genoma Bacteriano/genética , Família Multigênica , Tipagem de Sequências Multilocus , Proteínas Periplásmicas de Ligação/genética , Proteínas de Ligação a Fosfato/genética , Fosfatos/metabolismo , Filogenia , Proteobactérias/classificação , RNA Ribossômico 16S/genética
17.
Mol Cell Proteomics ; 17(10): 1937-1947, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30038032

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most used models for bacterial pathogenesis and successful infection requires its adaptation to the low oxygen environment in host gastrointestinal tracts. Central to this process is the Arc (aerobic respiratory control) two-component regulatory system that contains a sensor kinase ArcB and a response regulator ArcA. Nevertheless, a comprehensive profile of the ArcA regulon on the proteome level is still lacking in S. Typhimurium. Here we quantitatively profiled Salmonella proteome during anaerobiosis in an arcA-deleting mutant compared with its parental strain. In addition to known processes under its control, notably we found that ArcA represses ethanolamine utilization by directly binding to the promoter region of the eut operon. Furthermore, we found opposing changes of several bacterial genes on the protein and transcript levels in the arcA-deleting mutant including the virulence genes of Salmonella pathogenicity island 1 (SPI-1), thereby indicating potentially prevalent post-transcriptional regulatory mechanisms. Altogether, our study provides important new insights into ArcA-dependent bacterial physiology and virulence during Salmonella anaerobiosis.


Assuntos
Proteínas de Bactérias/genética , Proteômica , Regulon/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose/genética , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Caenorhabditis elegans/microbiologia , Ciclo do Ácido Cítrico/genética , Etanolamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Lisogenia/genética , Mutação/genética , Óperon/genética , Regiões Promotoras Genéticas/genética , Mapas de Interação de Proteínas , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo
18.
Sci Signal ; 11(528)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717063

RESUMO

Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.


Assuntos
MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/genética , PTEN Fosfo-Hidrolase/genética , Regulon/genética , Sepse/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Peptídeos/farmacologia , Interferência de RNA , Sepse/metabolismo , Sepse/prevenção & controle
19.
J Bacteriol ; 200(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109188

RESUMO

Zinc is an essential nutrient for bacterial growth. Because host cells can restrict pathogen access to zinc as an antimicrobial defense mechanism, intracellular pathogens such as Francisella must sense their environment and acquire zinc in response. In many bacteria, the conserved transcription factor Zur is a key regulator of zinc acquisition. To identify mechanisms of zinc uptake in Francisella novicida U112, transcriptome sequencing of wild-type and putative zur mutant bacteria was performed. Only three genes were confirmed as directly regulated by Zur and zinc limitation by quantitative reverse transcription-PCR. One of these genes, FTN_0879, is predicted to encode a protein with similarity to the zupT family of zinc transporters, which are not typically regulated by Zur. While a putative znuACB operon encoding a high-affinity zinc transporter was identified in U112, expression of this operon was not controlled by Zur or zinc concentration. Disruption of zupT but not znuA in U112 impaired growth under zinc limitation, suggesting that ZupT is the primary mechanism of zinc acquisition under these conditions. In the virulent Francisella tularensis subsp. tularensis Schu S4 strain, zupT is a pseudogene, and attempts to delete znuA were unsuccessful, suggesting that it is essential in this strain. A reverse TetR repression system was used to knock down the expression of znuA in Schu S4, revealing that znuA is required for growth under zinc limitation and contributes to intracellular growth within macrophages. Overall, this work identifies genes necessary for adaptation to zinc limitation and highlights nutritional differences between environmental and virulent Francisella strains.IMPORTANCEFrancisella tularensis is a tier 1 select agent with a high potential for lethality and no approved vaccine. A better understanding of Francisella virulence factors is required for the development of therapeutics. While acquisition of zinc has been shown to be required for the virulence of numerous intracellular pathogens, zinc uptake has not been characterized in Francisella This work characterizes the Zur regulon in F. novicida and identifies two transporters that contribute to bacterial growth under zinc limitation. In addition, these data identify differences in mechanisms of zinc uptake and tolerance to zinc limitation between F. tularensis and F. novicida, highlighting the role of znuA in the growth of Schu S4 under zinc limitation.


Assuntos
Microbiologia Ambiental , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Zinco/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Mutação , Óperon , Regulon/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tularemia/microbiologia , Virulência/genética , Zinco/farmacologia
20.
Dev Cell ; 42(6): 667-680.e4, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28950103

RESUMO

Hyperactivating mutations in Ras signaling are hallmarks of carcinomas. Ras signaling mediates cell fate decisions as well as proliferation during development. It is not known what dictates whether Ras signaling drives differentiation versus proliferation. Here we show that the Hippo pathway is critical for this decision. Loss of Hippo switches Ras activation from promoting cellular differentiation to aggressive cellular proliferation. Transcriptome analysis combined with genetic tests show that this excessive proliferation depends on the synergistic induction of Ras target genes. Using ChIP-nexus, we find that Hippo signaling keeps Ras targets in check by directly regulating the expression of two key downstream transcription factors of Ras signaling: the ETS-domain transcription factor Pointed and the repressor Capicua. Our results highlight how independent signaling pathways can impinge on each other at the level of transcription factors, thereby providing a safety mechanism to keep proliferation in check under normal developmental conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Transdução de Sinais , Transcrição Gênica , Proteínas ras/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Modelos Biológicos , Mutação/genética , Pupa/metabolismo , Regulon/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA