Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.776
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Med ; 53(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695243

RESUMO

Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low­dose radiation­sensitive markers. The HuT 78 and IM­9 cell lines were irradiated in a concentration­dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration­dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub­lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub­lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML­277, pifithrin­α, and nutlin­3a were evaluated for their ability to modulate radiation­induced cell death. The use of BML­277 led to a decrease in radiation­induced p­CHK2 and γH2AX levels and mitigated radiation­induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation­sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Dano ao DNA , Radiação Ionizante , Transdução de Sinais , Dano ao DNA/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Camundongos , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Masculino , Imidazóis/farmacologia , Protetores contra Radiação/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação
2.
Sci Rep ; 14(1): 11502, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769353

RESUMO

Astronauts travelling in space will be exposed to mixed beams of particle radiation and photons. Exposure limits that correspond to defined cancer risk are calculated by multiplying absorbed doses by a radiation-type specific quality factor that reflects the biological effectiveness of the particle without considering possible interaction with photons. We have shown previously that alpha radiation and X-rays may interact resulting in synergistic DNA damage responses in human peripheral blood lymphocytes but the level of intra-individual variability was high. In order to assess the variability and validate the synergism, blood from two male donors was drawn at 9 time points during 3 seasons of the year and exposed to 0-2 Gy of X-rays, alpha particles or 1:1 mixture of both (half the dose each). DNA damage response was quantified by chromosomal aberrations and by mRNA levels of 3 radiation-responsive genes FDXR, CDKN1A and MDM2 measured 24 h post exposure. The quality of response in terms of differential expression of alternative transcripts was assessed by using two primer pairs per gene. A consistently higher than expected effect of mixed beams was found in both donors for chromosomal aberrations and gene expression with some seasonal variability for the latter. No synergy was detected for alternative transcription.


Assuntos
Aberrações Cromossômicas , Linfócitos , Radiação Ionizante , Humanos , Linfócitos/efeitos da radiação , Linfócitos/metabolismo , Masculino , Aberrações Cromossômicas/efeitos da radiação , Raios X/efeitos adversos , Dano ao DNA , Voo Espacial , Partículas alfa/efeitos adversos , Transcrição Gênica/efeitos da radiação , Adulto , Regulação da Expressão Gênica/efeitos da radiação , Relação Dose-Resposta à Radiação
3.
Sci Rep ; 14(1): 11524, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773212

RESUMO

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.


Assuntos
Relação Dose-Resposta à Radiação , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Método de Monte Carlo , Radiometria/métodos , Linhagem Celular , Raios gama/efeitos adversos
4.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727954

RESUMO

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Assuntos
Drosophila melanogaster , Raios gama , Animais , Drosophila melanogaster/efeitos da radiação , Drosophila melanogaster/genética , Raios gama/efeitos adversos , Radiação Eletromagnética , Relação Dose-Resposta à Radiação , Campos Eletromagnéticos/efeitos adversos , Embrião não Mamífero/efeitos da radiação , Radiação Ionizante , Mutação/efeitos da radiação , Mutagênese/efeitos da radiação
5.
Int J Radiat Oncol Biol Phys ; 119(2): 338-353, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38760115

RESUMO

At its very core, radiation oncology involves a trade-off between the benefits and risks of exposing tumors and normal tissue to relatively high doses of ionizing radiation. This trade-off is particularly critical in childhood cancer survivors (CCS), in whom both benefits and risks can be hugely consequential due to the long life expectancy if the primary cancer is controlled. Estimating the normal tissue-related risks of a specific radiation therapy plan in an individual patient relies on predictive mathematical modeling of empirical data on adverse events. The Pediatric Normal-Tissue Effects in the Clinic (PENTEC) collaborative network was formed to summarize and, when possible, to synthesize dose-volume-response relationships for a range of adverse events incident in CCS based on the literature. Normal-tissue clinical radiation biology in children is particularly challenging for many reasons: (1) Childhood malignancies are relatively uncommon-constituting approximately 1% of new incident cancers in the United States-and biologically heterogeneous, leading to many small series in the literature and large variability within and between series. This creates challenges in synthesizing data across series. (2) CCS are at an elevated risk for a range of adverse health events that are not specific to radiation therapy. Thus, excess relative or absolute risk compared with a reference population becomes the appropriate metric. (3) Various study designs and quantities to express risk are found in the literature, and these are summarized. (4) Adverse effects in CCS often occur 30, 50, or more years after therapy. This limits the information content of series with even very extended follow-up, and lifetime risk estimates are typically extrapolations that become dependent on the mathematical model used. (5) The long latent period means that retrospective dosimetry is required, as individual computed tomography-based radiation therapy plans gradually became available after 1980. (6) Many individual patient-level factors affect outcomes, including age at exposure, attained age, lifestyle exposures, health behaviors, other treatment modalities, dose, fractionation, and dose distribution. (7) Prospective databases with individual patient-level data and radiation dosimetry are being built and will facilitate advances in dose-volume-response modeling. We discuss these challenges and attempts to overcome them in the setting of PENTEC.


Assuntos
Sobreviventes de Câncer , Relação Dose-Resposta à Radiação , Humanos , Sobreviventes de Câncer/estatística & dados numéricos , Criança , Lesões por Radiação , Órgãos em Risco/efeitos da radiação , Neoplasias/radioterapia , Medição de Risco , Neoplasias Induzidas por Radiação/etiologia , Dosagem Radioterapêutica
6.
Health Phys ; 126(6): 386-396, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568156

RESUMO

ABSTRACT: The linear no-threshold (LNT) model has been the regulatory "law of the land" for decades. Despite the long-standing use of LNT, there is significant ongoing scientific disagreement on the applicability of LNT to low-dose radiation risk. A review of the low-dose risk literature of the last 10 y does not provide a clear answer, but rather the body of literature seems to be split between LNT, non-linear risk functions (e.g., supra- or sub-linear), and hormetic models. Furthermore, recent studies have started to explore whether radiation can play a role in the development of several non-cancer effects, such as heart disease, Parkinson's disease, and diabetes, the mechanisms of which are still being explored. Based on this review, there is insufficient evidence to replace LNT as the regulatory model despite the fact that it contributes to public radiophobia, unpreparedness in radiation emergency response, and extreme cleanup costs both following radiological or nuclear incidents and for routine decommissioning of nuclear power plants. Rather, additional research is needed to further understand the implications of low doses of radiation. The authors present an approach to meaningfully contribute to the science of low-dose research that incorporates machine learning and Edisonian approaches to data analysis.


Assuntos
Doses de Radiação , Humanos , Medição de Risco , Proteção Radiológica/normas , Relação Dose-Resposta à Radiação , Lesões por Radiação/prevenção & controle
7.
Acta Oncol ; 63: 240-247, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682458

RESUMO

BACKGROUND AND PURPOSE: Doses to the coronary arteries in breast cancer (BC) radiotherapy (RT) have been suggested to be a risk predictor of long-term cardiac toxicity after BC treatment. We investigated the dose-risk relationships between near maximum doses (Dmax) to the right coronary artery (RCA) and left anterior descending coronary artery (LAD) and ischemic heart disease (IHD) mortality after BC RT. PATIENTS AND METHODS: In a cohort of 2,813 women diagnosed with BC between 1958 and 1992 with a follow-up of at least 10 years, we identified 134 cases of death due to IHD 10-19 years after BC diagnosis. For each case, one control was selected within the cohort matched for age at diagnosis. 3D-volume and 3D-dose reconstructions were obtained from individual RT charts. We estimated the Dmax to the RCA and the LAD and the mean heart dose (MHD). We performed conditional logistic regression analysis comparing piecewise spline transformation and simple linear modeling for best fit. RESULTS: There was a linear dose-risk relationship for both the Dmax to the RCA (odds ratio [OR]/Gray [Gy] 1.03 [1.01-1.05]) and the LAD (OR/Gy 1.04 [1.02-1.06]) in a multivariable model. For MHD there was a linear dose-risk relationship (1,14 OR/Gy [1.08-1.19]. For all relationships, simple linear modelling was superior to spline transformations. INTERPRETATION: Doses to both the RCA and LAD are independent risk predictors of long-term cardiotoxicity after RT for BC In addition to the LAD, the RCA should be regarded as an organ at risk in RT planning.


Assuntos
Neoplasias da Mama , Vasos Coronários , Isquemia Miocárdica , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/mortalidade , Estudos de Casos e Controles , Pessoa de Meia-Idade , Vasos Coronários/efeitos da radiação , Vasos Coronários/patologia , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/mortalidade , Idoso , Adulto , Lesões por Radiação/etiologia , Lesões por Radiação/epidemiologia , Lesões por Radiação/mortalidade , Dosagem Radioterapêutica , Relação Dose-Resposta à Radiação , Órgãos em Risco/efeitos da radiação , Seguimentos , Estudos de Coortes
8.
Health Phys ; 126(6): 424-425, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568175

RESUMO

This note deals with epidemiological data interpretation supporting the linear no-threshold model, as opposed to emerging evidence of adaptive response and hormesis from molecular biology in vitro and animal models. Particularly, the US-Japan Radiation Effects Research Foundation's lifespan study of atomic bomb survivors is scrutinized. We stress the years-long lag of the data processing after data gathering and evolving statistical models and methodologies across publications. The necessity of cautious interpretation of radiation epidemiology results is emphasized.


Assuntos
Modelos Estatísticos , Humanos , Sobreviventes de Bombas Atômicas/estatística & dados numéricos , Relação Dose-Resposta à Radiação , Animais , Estados Unidos/epidemiologia , Exposição à Radiação/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia
9.
Health Phys ; 126(6): 426-433, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568160

RESUMO

ABSTRACT: As the basis of radiation safety practice and regulations worldwide, the linear no-threshold (LNT) hypothesis exerts enormous influence throughout society. This includes our judicial system, where frivolous lawsuits are filed alleging radiation-induced health effects caused by negligent companies who subject unwitting victims to enormous financial and physical harm. Typically, despite the lack of any supporting scientific basis, these cases result in enormous costs to organizations, insurance companies, and consumers.


Assuntos
Proteção Radiológica , Humanos , Proteção Radiológica/legislação & jurisprudência , Proteção Radiológica/normas , Lesões por Radiação/prevenção & controle , Imperícia/legislação & jurisprudência , Relação Dose-Resposta à Radiação
10.
Health Phys ; 126(6): 419-423, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568174

RESUMO

ABSTRACT: The system of radiological protection has been based on linear no-threshold theory and related dose-response models for health detriment (in part related to cancer induction) by ionizing radiation exposure for almost 70 y. The indicated system unintentionally promotes radiation phobia, which has harmed many in relationship to the Fukushima nuclear accident evacuations and led to some abortions following the Chernobyl nuclear accident. Linear no-threshold model users (mainly epidemiologists) imply that they can reliably assess the cancer excess relative risk (likely none) associated with tens or hundreds of nanogray (nGy) radiation doses to an organ (e.g., bone marrow); for 1,000 nGy, the excess relative risk is 1,000 times larger than that for 1 nGy. They are currently permitted this unscientific view (ignoring evolution-related natural defenses) because of the misinforming procedures used in data analyses of which many radiation experts are not aware. One such procedure is the intentional and unscientific vanishing of the excess relative risk uncertainty as radiation dose decreases toward assigned dose zero (for natural background radiation exposure). The main focus of this forum article is on correcting the serious error of discarding risk uncertainty and the impact of the correction. The result is that the last defense of the current system of radiological protection relying on linear no-threshold theory (i.e., epidemiologic studies implied findings of harm from very low doses) goes away. A revised system is therefore needed.


Assuntos
Proteção Radiológica , Humanos , Proteção Radiológica/normas , Medição de Risco , Doses de Radiação , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Induzidas por Radiação/etiologia , Exposição à Radiação/prevenção & controle , Exposição à Radiação/efeitos adversos , Relação Dose-Resposta à Radiação
11.
Clin Oncol (R Coll Radiol) ; 36(6): 390-398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570205

RESUMO

AIMS: Recently, dose delivery technology has rapidly evolved with flattening filter-free beams (FFF), and the biological effects of high dose rates are a matter of interest. We hypothesized that FFF beams at different dose rates obtained with modern linear accelerators have different effects on the TME. MATERIALS AND METHODS: The B16-F10 melanoma syngeneic tumor model was established, and mice were randomized to 2 different doses (2 Gy and 10 Gy) and 3 different dose rates (1 Gy/min, 6 Gy/min, and 14 Gy/min) along with the control group. Euthanasia was performed on the seventh day after RT, and intracardiac blood was collected for a comet assay. Tumors were harvested and examined histomorphologically and immunohistochemically. Statistical analyses were performed using SPSS software version 23 (SPSS Inc., Chicago, IL, USA). RESULTS: The daily growth rate was uniform, and no difference was observed between tumor volumes across all three dose rates for each dose. Deoxyribonucleic acid (DNA) damage in blood mononuclear cells was not affected by dose or dose rate. In the TME histomorphological examination, the number of mitosis is less in the 10 Gy arm, whereas the pleomorphism score was greater. Nevertheless, varying dose rates had no effect on the number of mitosis or the pleomorphism score. The severity of the inflammation, cell densities in the TME, and expression of immunohistochemical markers were comparable across all doses and dose rates. CONCLUSION: In our study involving the B16-F10 syngeneic tumor model, varying dose rates obtained with FFF beams had no effect on tumor volume, blood mononuclear cell DNA damage, or TME parameters. However, in order to fully understand the biological impacts of novel techniques, our study should be validated with alternative preclinical setups.


Assuntos
Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos da radiação , Camundongos , Dosagem Radioterapêutica , Melanoma Experimental/radioterapia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Aceleradores de Partículas/instrumentação
12.
J Radiol Prot ; 44(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530293

RESUMO

Statistically significant increases in ischemic heart disease (IHD) mortality with cumulative occupational external radiation dose were observed in the National Registry for Radiation Workers (NRRW) cohort. There were 174 541 subjects in the NRRW cohort. The start of follow up was 1955, and the end of the follow-up for each worker was chosen as the earliest date of death or emigration, their 85th birthday or 31 December 2011. The dose-response relationship showed a downward curvature at a higher dose level >0.4 Sv with the overall shape of the dose-response relationship best described by a linear-quadratic model. The smaller risk at dose >0.4 Sv appears to be primarily associated with workers who started employment at a younger age (<30 years old) and those who were employed for more than 30 years. We modelled the dose response by age-at-first exposure. For the age-at-first exposure of 30+ years old, a linear dose-response was the best fit. For age-at-first exposure <30 years old, there was no evidence of excess risk of IHD mortality for radiation doses below 0.1 Sv or above 0.4 Sv, excess risk was only observed for doses between 0.1-0.4 Sv. For this age-at-first exposure group, it was also found that the doses they received when they were less than 35 years old or greater than 50 years old did not contribute to any increased IHD risk.


Assuntos
Isquemia Miocárdica , Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Humanos , Adulto , Pessoa de Meia-Idade , Relação Dose-Resposta à Radiação , Sistema de Registros , Exposição Ocupacional/efeitos adversos
13.
Int J Radiat Biol ; 100(5): 744-755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466699

RESUMO

PURPOSES: Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS: Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS: Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS: Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.


Assuntos
Encéfalo , Leucócitos , Animais , Camundongos , Encéfalo/efeitos da radiação , Leucócitos/efeitos da radiação , Linfopenia/etiologia , Relação Dose-Resposta à Radiação , Masculino , Raios X , Terapia com Prótons/efeitos adversos , Camundongos Endogâmicos C57BL
14.
Int J Radiat Biol ; 100(5): 777-790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471034

RESUMO

PURPOSE: To identify sensitive genes for space radiation, we integrated the transcriptomic samples of spaceflight mice from GeneLab and predicted the radiation doses absorbed by individuals in space. METHODS AND MATERIALS: A single-sample network (SSN) for each individual sample was constructed. Then, using machine learning and genetic algorithms, we built the regression models to predict the absorbed dose equivalent based on the topological structure of SSNs. Moreover, we analyzed the SSNs from each tissue and compared the similarities and differences among them. RESULTS: Our model exhibited excellent performance with the following metrics: R2=0.980, MSE=6.74e-04, and the Pearson correlation coefficient of 0.990 (p value <.0001) between predicted and actual values. We identified 20 key genes, the majority of which had been proven to be associated with radiation. However, we uniquely established them as space radiation sensitive genes for the first time. Through further analysis of the SSNs, we discovered that the different tissues exhibited distinct mechanisms in response to space stressors. CONCLUSIONS: The topology structures of SSNs effectively predicted radiation doses under spaceflight conditions, and the SSNs revealed the gene regulatory patterns within the organisms under space stressors.


Assuntos
Radiação Cósmica , Voo Espacial , Animais , Camundongos , Radiação Cósmica/efeitos adversos , Doses de Radiação , Relação Dose-Resposta à Radiação , Aprendizado de Máquina , Redes Reguladoras de Genes/efeitos da radiação , Transcriptoma/efeitos da radiação
15.
Int J Radiat Biol ; 100(5): 756-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489594

RESUMO

PURPOSE: People are exposed to low-dose radiation in medical diagnosis, occupational, or life circumstances, but the effect of low-dose radiation on human health is still controversial. The biological effects of radiation below 100 mGy are still unproven. In this study, we observed the effects of low-dose radiation (100 mGy) on gene expression in human coronary artery endothelial cells (HCAECs) and its effect on molecular signaling. MATERIALS AND METHODS: HCAECs were exposed to 100 mGy ionizing radiation at 6 mGy/h (low-dose-rate) or 288 mGy/h (high-dose-rate). After 72 h, total RNA was extracted from sham or irradiated cells for Quant-Seq 3'mRNA-Seq, and bioinformatic analyses were performed using Metascape. Gene profiling was validated using qPCR. RESULTS: Compared to the non-irradiated control group, 100 mGy of ionizing radiation at 6 mGy/h altered the expression of 194 genes involved in signaling pathways related to heart contraction, blood circulation, and cardiac myofibril assembly differentially. However, 100 mGy at 288 mGy/h altered expression of 450 genes involved in cell cycle-related signaling pathways, including cell division, nuclear division, and mitosis differentially. Additionally, gene signatures responding to low-dose radiation, including radiation dose-specific gene profiles (HIST1H2AI, RAVER1, and POTEI) and dose-rate-specific gene profiles (MYL2 for the low-dose-rate and DHRS9 and CA14 for the high-dose-rate) were also identified. CONCLUSIONS: We demonstrated that 100 mGy low-dose radiation could alter gene expression and molecular signaling pathways at the low-dose-rate and the high-dose-rate differently. Our findings provide evidence for further research on the potential impact of low-dose radiation on cardiovascular function.


Assuntos
Biologia Computacional , Vasos Coronários , Relação Dose-Resposta à Radiação , Células Endoteliais , Transcriptoma , Humanos , Vasos Coronários/efeitos da radiação , Vasos Coronários/citologia , Células Endoteliais/efeitos da radiação , Células Endoteliais/metabolismo , Transcriptoma/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Doses de Radiação , Transdução de Sinais/efeitos da radiação
16.
Int J Biol Macromol ; 266(Pt 1): 131038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518931

RESUMO

Aqueous solutions of alginate (4 %) with or without hydrogen peroxide (0-2 % H2O2) were irradiated under a gamma Co-60 source. The effect of dose rate on the radiation scission yield (Gs) of resulting irradiated alginate was determined. At the dose of 20 kGy, the G(s) value of irradiated alginate decreased with the increase dose rate, suggesting that the irradiation at a suitable dose rate could further improve the radiation chemical yield of degradation. For the alginate irradiated at the same dose rate, G(s) value increased with the increase of H2O2 concentration. Average molecular weight (Mw) and polydispersity index (PI) of irradiated alginate rapidly decreased with the increase in dose and further decreased by addition of H2O2. The oligoalginate with Mw ~ 9800 g/mol was obtained by radiation degradation of 4 % alginate solution containing 2 % H2O2 at dose of 20 kGy. Radiation scission of glycoside bonds and formation of carbonyl groups (C=O) were indicated in UV and FTIR spectra of irradiated alginate. Peanut seedlings were fertilized with alginate and oligoalginate solutions, and the results showed that all growth parameters of the treated plants were better than those of the control. Furthermore, the oligoalginate prepared by gamma irradiation can be applied as a plant growth promoter for agriculture production.


Assuntos
Alginatos , Arachis , Raios gama , Peróxido de Hidrogênio , Peso Molecular , Alginatos/química , Arachis/química , Arachis/efeitos da radiação , Peróxido de Hidrogênio/química , Relação Dose-Resposta à Radiação
17.
Radiother Oncol ; 194: 110216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462092

RESUMO

BACKGROUND: Stereotactic ablative radiation therapy (SBRT) is an emerging treatment option for primary renal cell carcinoma (RCC), particularly in patients who are unsuitable for surgery. The aim of this review is to assess the effect of increasing the biologically equivalent dose (BED) via various radiation fractionation regimens on clinical outcomes. METHODS: A literature search was conducted in PubMed (Medline), EMBASE, and the Cochrane Library for studies published up to October 2023. Studies reporting on patients with localized RCC receiving SBRT were included to determine its effectiveness on local control, progression-free survival, and overall survival. A random effects model was used to meta-regress clinical outcomes relative to the BED for each study and heterogeneity was assessed by I2. RESULTS: A total of 724 patients with RCC from 22 studies were included, with a mean age of 72.7 years (range: 44.0-81.0). Local control was excellent with an estimate of 99 % (95 %CI: 97-100 %, I2 = 19 %), 98 % (95 %CI: 96-99 %, I2 = 8 %), and 94 % (95 %CI: 90-97 %, I2 = 11 %) at one year, two years, and five years respectively. No definitive association between increasing BED and local control, progression-free survival and overall survival was observed. No publication bias was observed. CONCLUSIONS: A significant dose response relationship between oncological outcomes and was not identified, and excellent local control outcomes were observed at the full range of doses. Until new evidence points otherwise, we support current recommendations against routine dose escalation beyond 25-26 Gy in one fraction or 42-48 Gy in three fractions, and to consider de-escalation or compromising target coverage if required to achieve safe organ at risk doses.


Assuntos
Carcinoma de Células Renais , Relação Dose-Resposta à Radiação , Neoplasias Renais , Humanos , Carcinoma de Células Renais/radioterapia , Fracionamento da Dose de Radiação , Neoplasias Renais/radioterapia , Resultado do Tratamento
18.
Radiat Res ; 201(5): 487-498, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471523

RESUMO

In gene expression (GE) studies, housekeeping genes (HKGs) are required for normalization purposes. In large-scale inter-laboratory comparison studies, significant differences in dose estimates are reported and divergent HKGs are employed by the teams. Among them, the 18S rRNA HKG is known for its robustness. However, the high abundance of 18S rRNA copy numbers requires dilution, which is time-consuming and a possible source of errors. This study was conducted to identify the most promising HKGs showing the least radiation-induced GE variance after radiation exposure. In the screening stage of this study, 35 HKGs were analyzed. This included selected HKGs (ITFG1, MRPS5, and DPM1) used in large-scale biodosimetry studies which were not covered on an additionally employed pre-designed 96-well platform comprising another 32 HKGs used for different exposures. Altogether 41 samples were examined, including 27 ex vivo X-ray irradiated blood samples (0, 0.5, 4 Gy), six X-irradiated samples (0, 0.5, 5 Gy) from two cell lines (U118, A549), as well as eight non-irradiated tissue samples to encompass multiple biological entities. In the independent validation stage, the most suitable candidate genes were examined from another 257 blood samples, taking advantage of already stored material originating from three studies. These comprise 100 blood samples from ex vivo X-ray irradiated (0-4 Gy) healthy donors, 68 blood samples from 5.8 Gy irradiated (cobalt-60) Rhesus macaques (RM) (LD29/60) collected 0-60 days postirradiation, and 89 blood samples from chemotherapy-(CTx) treated breast tumor patients. CTx and radiation-induced GE changes in previous studies appeared comparable. RNA was isolated, converted into cDNA, and GE was quantified employing TaqMan assays and quantitative RT-PCR. We calculated the standard deviation (SD) and the interquartile range (IQR) as measures of GE variance using raw cycle threshold (Ct) values and ranked the HKGs accordingly. Dose, time, age, and sex-dependent GE changes were examined employing the parametrical t-test and non-parametrical Kruskal Wallis test, as well as linear regression analysis. Generally, similar ranking results evolved using either SD or IQR GE measures of variance, indicating a tight distribution of GE values. PUM1 and PGK1 showed the lowest variance among the first ten most suitable genes in the screening phase. MRPL19 revealed low variance among the first ten most suitable genes in the screening phase only for blood and cells, but certain comparisons indicated a weak association of MRPL19 with dose (P = 0.02-0.09). In the validation phase, these results could be confirmed. Here, IQR Ct values from, e.g., X-irradiated blood samples were 0.6 raw Ct values for PUM1 and PGK1, which is considered to represent GE differences as expected due to methodological variance. Overall, when compared, the GE variance of both genes was either comparable or lower compared to 18S rRNA. Compared with the IQR GE values of PUM1 and PGKI, twofold-fivefold increased values were calculated for the biodosimetry HKG HPRT1, and comparable values were calculated for biodosimetry HKGs ITFG1, MRPS5, and DPM1. Significant dose-dependent associations were found for ITFG1 and MRPS5 (P = 0.001-0.07) and widely absent or weak (P = 0.02-0.07) for HPRT1 and DPM1. In summary, PUM1 and PGK1 appeared most promising for radiation exposure studies among the 35 HKGs examined, considering GE variance and adverse associations of GE with dose.


Assuntos
Genes Essenciais , RNA Ribossômico 18S , Exposição à Radiação , Radiometria , RNA Ribossômico 18S/genética , Humanos , Exposição à Radiação/efeitos adversos , Masculino , Proteínas de Ligação a RNA/genética , Feminino , Adulto , Relação Dose-Resposta à Radiação , Pessoa de Meia-Idade , Animais
19.
Radiat Res ; 201(5): 523-534, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499035

RESUMO

As the great majority of gene expression (GE) biodosimetry studies have been performed using blood as the preferred source of tissue, searching for simple and less-invasive sampling methods is important when considering biodosimetry approaches. Knowing that whole saliva contains an ultrafiltrate of blood and white blood cells, it is expected that the findings in blood can also be found in saliva. This human in vivo study aims to examine radiation-induced GE changes in saliva for biodosimetry purposes and to predict radiation-induced disease, which is yet poorly characterized. Furthermore, we examined whether transcriptional biomarkers in blood can also be found equivalently in saliva. Saliva and blood samples were collected in parallel from radiotherapy (RT) treated patients who suffered from head and neck cancer (n = 8) undergoing fractioned partial-body irradiations (1.8 Gy/fraction and 50-70 Gy total dose). Samples were taken 12-24 h before first irradiation and ideally 24 and 48 h, as well as 5 weeks after radiotherapy onset. Due to the low quality and quantity of isolated RNA samples from one patient, they had to be excluded from further analysis, leaving a total of 24 saliva and 24 blood samples from 7 patients eligible for analysis. Using qRT-PCR, 18S rRNA and 16S rRNA (the ratio being a surrogate for the relative human RNA/bacterial burden), four housekeeping genes and nine mRNAs previously identified as radiation responsive in blood-based studies were detected. Significant GE associations with absorbed dose were found for five genes and after the 2nd radiotherapy fraction, shown by, e.g., the increase of CDKN1A (2.0 fold, P = 0.017) and FDXR (1.9 fold increased, P = 0.002). After the 25th radiotherapy fraction, however, all four genes (FDXR, DDB2, POU2AF1, WNT3) predicting ARS (acute radiation syndrome) severity, as well as further genes (including CCNG1 [median-fold change (FC) = 0.3, P = 0.013], and GADD45A (median-FC = 0.3, P = 0.031)) appeared significantly downregulated (FC = 0.3, P = 0.01-0.03). A significant association of CCNG1, POU2AF1, HPRT1, and WNT3 (P = 0.006-0.04) with acute or late radiotoxicity could be shown before the onset of these clinical outcomes. In an established set of four genes predicting acute health effects in blood, the response in saliva samples was similar to the expected up- (FDXR, DDB2) or downregulation (POU2AF1, WNT3) in blood for up to 71% of the measurements. Comparing GE responses (PHPT1, CCNG1, CDKN1A, GADD45A, SESN1) in saliva and blood samples, there was a significant linear association between saliva and blood response of CDKN1A (R2 = 0.60, P = 0.0004). However, the GE pattern of other genes differed between saliva and blood. In summary, the current human in vivo study, (I) reveals significant radiation-induced GE associations of five transcriptional biomarkers in salivary samples, (II) suggests genes predicting diverse clinical outcomes such as acute and late radiotoxicity as well as ARS severity, and (III) supports the view that blood-based GE response can be reflected in saliva samples, indicating that saliva is a "mirror of the body" for certain but not all genes and, thus, studies for each gene of interest in blood are required for saliva.


Assuntos
Saliva , Humanos , Saliva/efeitos da radiação , Saliva/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Radiometria , Neoplasias de Cabeça e Pescoço/radioterapia , Adulto , Relação Dose-Resposta à Radiação
20.
Int J Radiat Oncol Biol Phys ; 119(2): 681-696, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430101

RESUMO

PURPOSE: In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS: The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS: Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS: Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.


Assuntos
Sobreviventes de Câncer , Neoplasias Induzidas por Radiação , Órgãos em Risco , Humanos , Criança , Sobreviventes de Câncer/estatística & dados numéricos , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Induzidas por Radiação/etiologia , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/efeitos adversos , Segunda Neoplasia Primária/etiologia , Segunda Neoplasia Primária/prevenção & controle , Relação Dose-Resposta à Radiação , Fracionamento da Dose de Radiação , Fatores Etários , Adolescente , Radioterapia/efeitos adversos , Predisposição Genética para Doença , Neoplasias/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA