Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
RNA Biol ; 19(1): 176-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35067193

RESUMO

RNA-based therapeutics have entered the mainstream with seemingly limitless possibilities to treat all categories of neurological disease. Here, common RNA-based drug modalities such as antisense oligonucleotides, small interfering RNAs, RNA aptamers, RNA-based vaccines and mRNA drugs are reviewed highlighting their current and potential applications. Rapid progress has been made across rare genetic diseases and neurodegenerative disorders, but safe and effective delivery to the brain remains a significant challenge for many applications. The advent of individualized RNA-based therapies for ultra-rare diseases is discussed against the backdrop of the emergence of this field into more common conditions such as Alzheimer's disease and ischaemic stroke. There remains significant untapped potential in the use of RNA-based therapeutics for behavioural disorders and tumours of the central nervous system; coupled with the accelerated development expected over the next decade, the true potential of RNA-based therapeutics to transform the therapeutic landscape in neurology remains to be uncovered.


Assuntos
Terapia Genética , Doenças do Sistema Nervoso/terapia , RNA/genética , RNA/uso terapêutico , Animais , Aptâmeros de Nucleotídeos , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Doenças do Sistema Nervoso/etiologia , RNA/química , Interferência de RNA , RNA Interferente Pequeno , Terapêutica com RNAi , Reparo Gênico Alvo-Dirigido
2.
Cancer Res Treat ; 54(1): 40-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34044476

RESUMO

PURPOSE: We investigated the feasibility of using an anatomically localized, target-enriched liquid biopsy (TLB) in mouse models of lung cancer. MATERIALS AND METHODS: After irradiating xenograft mouse with human lung cancer cell lines, H1299 (NRAS proto-oncogene, GTPase [NRAS] Q61K) and HCC827 (epidermal growth factor receptor [EGFR] E746-750del), circulating (cell-free) tumor DNA (ctDNA) levels were monitored with quantitative polymerase chain reaction on human long interspersed nuclear element-1 and cell line-specific mutations. We checked dose-dependency at 6, 12, or 18 Gy to each tumor-bearing mouse leg using 6-MV photon beams. We also analyzed ctDNA of lung cancer patients by LiquidSCAN, a targeted deep sequencing to validated the clinical performances of TLB method. RESULTS: Irradiation could enhance the detection sensitivity of NRAS Q61K in the plasma sample of H1299-xenograft mouse to 4.5- fold. While cell-free DNA (cfDNA) level was not changed at 6 Gy, ctDNA level was increased upon irradiation. Using double-xenograft mouse with H1299 and HCC827, ctDNA polymerase chain reaction analysis with local irradiation in each region could specify mutation type matched to transplanted cell types, proposing an anatomically localized, TLB. Furthermore, when we performed targeted deep sequencing of cfDNA to monitor ctDNA level in 11 patients with lung cancer who underwent radiotherapy, the average ctDNA level was increased within a week after the start of radiotherapy. CONCLUSION: TLB using irradiation could temporarily amplify ctDNA release in xenograft mouse and lung cancer patients, which enables us to develop theragnostic method for cancer patients with accurate ctDNA detection.


Assuntos
DNA Tumoral Circulante/sangue , Biópsia Líquida/métodos , Neoplasias Pulmonares/genética , Reparo Gênico Alvo-Dirigido/métodos , Animais , Biomarcadores Tumorais/genética , Estudos de Viabilidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Microambiente Tumoral
3.
Cancer Res Treat ; 54(1): 30-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34015890

RESUMO

PURPOSE: K-MASTER project is a Korean national precision medicine platform that screened actionable mutations by analyzing next-generation sequencing (NGS) of solid tumor patients. We compared gene analyses between NGS panel from the K-MASTER project and orthogonal methods. MATERIALS AND METHODS: Colorectal, breast, non-small cell lung, and gastric cancer patients were included. We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods (KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK] fusion, and reactive oxygen species 1 [ROS1] fusion in non-small cell lung cancer [NSCLC], and Erb-B2 receptor tyrosine kinase 2 (ERBB2) positivity in breast and gastric cancers). RESULTS: In the CRC cohort (n=225), the sensitivity and specificity of NGS were 87.4% and 79.3% (KRAS); 88.9% and 98.9% (NRAS); and 77.8% and 100.0% (BRAF), respectively. In the NSCLC cohort (n=109), the sensitivity and specificity of NGS for EGFR were 86.2% and 97.5%, respectively. The concordance rate for ALK fusion was 100%, but ROS1 fusion was positive in only one of three cases that were positive in orthogonal tests. In the breast cancer cohort (n=260), ERBB2 amplification was detected in 45 by NGS. Compared with orthogonal methods that integrated immunohistochemistry and in situ hybridization, sensitivity and specificity were 53.7% and 99.4%, respectively. In the gastric cancer cohort (n=64), ERBB2 amplification was detected in six by NGS. Compared with orthogonal methods, sensitivity and specificity were 62.5% and 98.2%, respectively. CONCLUSION: The results of the K-MASTER NGS panel and orthogonal methods showed a different degree of agreement for each genetic alteration, but generally showed a high agreement rate.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina de Precisão/normas , Reparo Gênico Alvo-Dirigido/normas , Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , República da Coreia , Sensibilidade e Especificidade , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Gástricas/genética
4.
Cancer Treat Rev ; 101: 102310, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34757307

RESUMO

PURPOSE: Current guidelines recommend somatic genomic sequencing for patients with advanced pancreatic cancer to identify targetable alterations amenable to targeted therapy. The benefit of somatic genomic sequencing in pancreatic cancer remains unclear. This study aims to assess the evidence supporting genomic sequencing to inform treatment selection for patients with advanced pancreatic cancer. METHODS: A systematic review identified prospective studies of exocrine pancreatic cancer patients published before August 2020 which conducted genomic sequencing to inform treatment selection. Outcomes of interest included the proportion of patients with targetable alterations, the proportion that received targeted treatments, and the impact of targeted treatments on overall survival. Meta-analysis for proportions and hazard ratios was performed using Dersimonian and Laird random effect models. RESULTS: 19 studies (representing 2048 pancreatic cancer patients) were included. Sequencing methodologies, definitions of targetable alterations, and approaches treatment selection varied across studies and were incompletely reported. 590 of 1382 sequenced patients harboured a targetable alteration (random effects meta-analysis estimate of the proportion 0.46, 95% confidence interval 0.32-0.61). The proportion of patients with targetable alterations was highly heterogenous between studies (I2 93%, P < 0.001). 91 of 1390 patients received a matched therapy based on their targetable alterations (random effects meta-analysis estimate of the proportion 0.12, 95% CI 0.06-0.23). One observational study reported an overall survival benefit of matched therapy. CONCLUSIONS: Genomic sequencing frequently identifies targetable alterations in pancreatic cancers. Further research is required to standardize the definitions of targetable alterations, the approach to treatment matching, and quantify the benefit of targeted therapy.


Assuntos
Terapia Genética/métodos , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas , Análise de Sequência de DNA/métodos , Reparo Gênico Alvo-Dirigido/métodos , Humanos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Seleção de Pacientes
5.
Stem Cell Res Ther ; 12(1): 485, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454631

RESUMO

BACKGROUND: Achondroplasia (ACH) is the most common genetic form of dwarfism and belongs to dominant monogenic disorder caused by a gain-of-function point mutation in the transmembrane region of FGFR3. There are no effective treatments for ACH. Stem cells and gene-editing technology provide us with effective methods and ideas for ACH research and treatment. METHODS: We generated non-integrated iPSCs from an ACH girl's skin and an ACH boy's urine by Sendai virus. The mutation of ACH iPSCs was precisely corrected by CRISPR-Cas9. RESULTS: Chondrogenic differentiation ability of ACH iPSCs was confined compared with that of healthy iPSCs. Chondrogenic differentiation ability of corrected ACH iPSCs could be restored. These corrected iPSCs displayed pluripotency, maintained normal karyotype, and demonstrated none of off-target indels. CONCLUSIONS: This study may provide an important theoretical and experimental basis for the ACH research and treatment.


Assuntos
Acondroplasia , Células-Tronco Pluripotentes Induzidas , Acondroplasia/genética , Acondroplasia/terapia , Diferenciação Celular , Feminino , Edição de Genes , Humanos , Masculino , Mutação , Reparo Gênico Alvo-Dirigido
6.
Cell Mol Gastroenterol Hepatol ; 12(4): 1433-1455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34217895

RESUMO

BACKGROUND & AIMS: Rapid gastric epithelial progenitor cell (EPC) proliferation and inflammatory response inhibition play key roles in promoting the repair of gastric mucosal damage. However, specific targets inducing these effects are unknown. In this study, we explored the effects of a potential target, Ankyrin repeat domain 22 (ANKRD22). METHODS: An acute gastric mucosal injury model was established with Ankrd22-/- and Ankrd22+/+ mice by intragastric administration of acidified ethanol. Organoid culture and flow cytometry were performed to evaluate the effects of ANKRD22 on leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) gastric EPC proliferation. The mechanisms by which ANKRD22 affects gastric EPC proliferation and inflammatory responses were explored by mitochondrial Ca2+ influx and immunoblotting. Candidate ANKRD22 inhibitors then were screened virtually and validated in vitro and in vivo. RESULTS: After acute gastric mucosal injury, the number of Lgr5+ gastric EPCs was increased significantly in Ankrd22-/- mice compared with that in Ankrd22+/+ mice. Moreover, Ankrd22 knockout attenuated inflammatory cell infiltration into damaged gastric tissues. ANKRD22 deletion also reduced mitochondrial Ca2+ influx and cytoplasmic nuclear factor of activated T cells in gastric epithelial cells and macrophages, which further induced Lgr5+ gastric EPC proliferation and decreased macrophage release of tumor necrosis factor-α and interleukin 1α. In addition, a small molecule, AV023, was found to show similar effects to those produced by ANKRD22 deletion in vitro. Intraperitoneal injection of AV023 into the mouse model promoted the repair of gastric mucosal damage, with increased proliferation of Lgr5+ gastric EPCs and visible relief of inflammation. CONCLUSIONS: ANKRD22 inhibition is a potential target-based therapeutic approach for promoting the repair of gastric mucosal damage.


Assuntos
Biomarcadores , Mucosa Gástrica/metabolismo , Proteínas de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Imunofenotipagem , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Gastropatias/tratamento farmacológico , Gastropatias/etiologia , Gastropatias/metabolismo , Gastropatias/patologia , Relação Estrutura-Atividade , Reparo Gênico Alvo-Dirigido , Via de Sinalização Wnt
7.
Int J Biol Sci ; 17(8): 1940-1952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131397

RESUMO

There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.


Assuntos
Antagomirs/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs , Neoplasias Gástricas , Reparo Gênico Alvo-Dirigido/métodos , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia
8.
Nat Commun ; 12(1): 472, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473139

RESUMO

Targeted DNA correction of disease-causing mutations in hematopoietic stem and progenitor cells (HSPCs) may enable the treatment of genetic diseases of the blood and immune system. It is now possible to correct mutations at high frequencies in HSPCs by combining CRISPR/Cas9 with homologous DNA donors. Because of the precision of gene correction, these approaches preclude clonal tracking of gene-targeted HSPCs. Here, we describe Tracking Recombination Alleles in Clonal Engraftment using sequencing (TRACE-Seq), a methodology that utilizes barcoded AAV6 donor template libraries, carrying in-frame silent mutations or semi-randomized nucleotides outside the coding region, to track the in vivo lineage contribution of gene-targeted HSPC clones. By targeting the HBB gene with an AAV6 donor template library consisting of ~20,000 possible unique exon 1 in-frame silent mutations, we track the hematopoietic reconstitution of HBB targeted myeloid-skewed, lymphoid-skewed, and balanced multi-lineage repopulating human HSPC clones in mice. We anticipate this methodology could potentially be used for HSPC clonal tracking of Cas9 RNP and AAV6-mediated gene targeting outcomes in translational and basic research settings.


Assuntos
Alelos , Células Clonais , Marcação de Genes/métodos , Células-Tronco Hematopoéticas , Recombinação Genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Mutação , Reparo Gênico Alvo-Dirigido/métodos
9.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266216

RESUMO

Using nanoparticles to carry and delivery anticancer drugs holds much promise in cancer therapy, but nanoparticles per se are lacking specificity. Active targeting, that is, using specific ligands to functionalize nanoparticles, is attracting much attention in recent years. Aptamers, with their several favorable features like high specificity and affinity, small size, very low immunogenicity, relatively low cost for production, and easiness to store, are one of the best candidates for the specific ligands of nanoparticle functionalization. This review discusses the benefits and challenges of using aptamers to functionalize nanoparticles for active targeting and especially presents nearly all of the published works that address the topic of using aptamers to functionalize nanoparticles for targeted drug delivery and cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Terapia de Alvo Molecular , Nanopartículas/química , Neoplasias/etiologia , Neoplasias/patologia , Neoplasias/terapia , Reparo Gênico Alvo-Dirigido , Nanomedicina Teranóstica
10.
Nat Commun ; 11(1): 5352, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097693

RESUMO

Prime editing is a recent genome editing technology using fusion proteins of Cas9-nickase and reverse transcriptase, that holds promise to correct the vast majority of genetic defects. Here, we develop prime editing for primary adult stem cells grown in organoid culture models. First, we generate precise in-frame deletions in the gene encoding ß-catenin (CTNNB1) that result in proliferation independent of Wnt-stimuli, mimicking a mechanism of the development of liver cancer. Moreover, prime editing functionally recovers disease-causing mutations in intestinal organoids from patients with DGAT1-deficiency and liver organoids from a patient with Wilson disease (ATP7B). Prime editing is as efficient in 3D grown organoids as in 2D grown cell lines and offers greater precision than Cas9-mediated homology directed repair (HDR). Base editing remains more reliable than prime editing but is restricted to a subgroup of pathogenic mutations. Whole-genome sequencing of four prime-edited clonal organoid lines reveals absence of genome-wide off-target effects underscoring therapeutic potential of this versatile and precise gene editing strategy.


Assuntos
Edição de Genes/métodos , Organoides/metabolismo , beta Catenina/genética , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células , ATPases Transportadoras de Cobre/genética , Desoxirribonuclease I/metabolismo , Diacilglicerol O-Aciltransferase/genética , Células HEK293 , Degeneração Hepatolenticular/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Reparo de DNA por Recombinação , Células-Tronco , Reparo Gênico Alvo-Dirigido/métodos
11.
Int J Gynecol Cancer ; 30(10): 1608-1618, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32928926

RESUMO

The clinical development of poly-(ADP)-ribose polymerase inhibitors (PARPi) began with the treatment of ovarian cancer patients harboring BRCA1/2 mutations and continues to be expanded to other gynecological cancers. Furthermore, The Cancer Genome Atlas (TCGA) analysis of endometrial and cervical cancers offered rationale that PARPi may be an option for treatment based on the molecular profiles of these cancer types. This review summarizes the current indications of PARPi, such as its role in the treatment and maintenance of recurrent ovarian cancer and for first-line maintenance therapy in advanced ovarian cancer. We also outline new concepts for PARPi therapy in other gynecological cancers such as endometrial and cervical cancers based on recent clinical data. Finally, we present potential future directions to continue exploring the world of PARPi resistance and combining PARPi with other therapies.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Intervalo Livre de Progressão , Reparo Gênico Alvo-Dirigido/métodos
12.
J Autoimmun ; 114: 102529, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782117

RESUMO

The identification of RNA interference (RNAi) has caused a growing interest in harnessing its potential in the treatment of different diseases. Modulation of dysregulated genes through targeting by RNAi represents a potential approach with which to alter the biological pathways at a post-transcriptional level, especially as it pertains to autoimmunity and malignancy. Short hairpin RNAs (shRNA), short interfering RNAs (siRNA), and microRNAs (miRNA) are mainly involved as effector mechanisms in the targeting of RNAi biological pathways. The manipulation and delivery of these molecules in an efficient way promotes the specificity and stability of RNAi-based systems, while minimizing the unwanted adverse reactions by the immune system and reducing cytotoxicity and off-target effects. Advances made to date in identifying the etiopathogenesis of autoimmune diseases has prompted the utilization of RNAi-based systems in vitro and in vivo. Future investigations aimed at deciphering the molecular basis of RNAi and optimizing the delivery of RNAi-based targeting systems will hopefully promote the applicability of such regulatory mechanisms and, ultimately, transfer the acquired knowledge from bench-to-bedside to ameliorate human diseases. In this review, we seek to clarify the potential of RNAi, with a focus on siRNAs, in designing therapeutics for potential treatment of human autoimmune disorders.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Animais , Regulação da Expressão Gênica , Terapia Genética/métodos , Humanos , MicroRNAs/genética , Reparo Gênico Alvo-Dirigido , Pesquisa Translacional Biomédica
13.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471232

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the death of motor neurons in the spinal cord and brainstem. ALS has a diverse genetic origin; at least 20 genes have been shown to be related to ALS. Most familial and sporadic cases of ALS are caused by variants of the SOD1, C9orf72, FUS, and TARDBP genes. Genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) can provide insights into the underlying genetics and pathophysiology of ALS. By correcting common mutations associated with ALS in animal models and patient-derived induced pluripotent stem cells (iPSCs), CRISPR/Cas9 has been used to verify the effects of ALS-associated mutations and observe phenotype differences between patient-derived and gene-corrected iPSCs. This technology has also been used to create mutations to investigate the pathophysiology of ALS. Here, we review recent studies that have used CRISPR/Cas9 to understand the genetic underpinnings of ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Sistemas CRISPR-Cas , Reparo Gênico Alvo-Dirigido/métodos , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
14.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340368

RESUMO

RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.


Assuntos
Descoberta de Drogas , Terapia Genética , Ensaios de Triagem em Larga Escala , Terapia de Alvo Molecular , RNA/genética , Animais , Biomarcadores , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Terapia de Alvo Molecular/métodos , RNA/química , RNA/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Reparo Gênico Alvo-Dirigido , Resultado do Tratamento
15.
Wiley Interdiscip Rev RNA ; 11(5): e1594, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32233021

RESUMO

Antisense oligonucleotides (ASOs) represent a new and highly promising class of drugs for personalized medicine. In the last decade, major chemical developments and improvements of the backbone structure of ASOs have transformed them into true approved and commercialized drugs. ASOs target both DNA and RNA, including pre-mRNA, mRNA, and ncRDA, based on sequence complementary. They are designed to be specific for each identified molecular and genetic alteration to restore a normal, physiological situation. Thus, the characterization of the underpinning mechanisms and alterations that sustain pathology is critical for accurate ASO-design. ASOs can be used to cure both rare and common diseases, such as orphan genetic alterations and cancer. Through pioneering examples, this review shows the versatility of the mechanisms of action that provide ASOs with the potential capacity to achieve custom treatment, revolutionizing personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.


Assuntos
Terapia Genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Medicina de Precisão , Animais , Desenvolvimento de Medicamentos , Regulação da Expressão Gênica , Inativação Gênica , Terapia Genética/métodos , Humanos , Oligonucleotídeos Antissenso/química , Medicina de Precisão/métodos , Biossíntese de Proteínas , Interferência de RNA , Estabilidade de RNA , Elementos de Resposta , Reparo Gênico Alvo-Dirigido , Pesquisa Translacional Biomédica
16.
Theranostics ; 10(8): 3546-3561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206107

RESUMO

Sonogenetics is a promising approach for in vivo neuromodulation using ultrasound (US) to non-invasively stimulate cells in deep tissue. However, sonogenetics requires accurate transduction of US-responsive proteins into target cells. Here, we introduce a non-invasive and non-viral approach for intracerebral gene delivery. This approach utilizes temporary ultrasonic disruption of the blood-brain barrier (BBB) to transfect neurons at specific sites in the brain via DNA that encodes engineered US-responsive protein (murine Prestin (N7T, N308S))-loaded microbubbles (pPrestin-MBs). Prestin is a transmembrane protein that exists in the mammalian auditory system and functions as an electromechanical transducer. We further improved the US sensitivity of Prestin by introducing specific amino acid substitutions that frequently occur in sonar species into the mouse Prestin protein. We demonstrated this concept in mice using US with pPrestin-MBs to non-invasively modify and activate neurons within the brain for spatiotemporal neuromodulation. Method: MBs composed of cationic phospholipid and C3F8 loaded with mouse Prestin plasmid (pPrestin) via electrostatic interactions. The mean concentration and size of the pPrestin-MBs were (16.0 ± 0.2) × 109 MBs/mL and 1.1 ± 0.2 µm, respectively. SH-SY5Y neuron-like cells and C57BL mice were used in this study. We evaluated the gene transfection efficiency and BBB-opening region resulting from pPrestin-MBs with 1-MHz US (pressure = 0.1-0.5 MPa, cycle = 50-10000, pulse repetition frequency (PRF): 0.5-5 Hz, sonication time = 60 s) using green fluorescence protein (Venus) and Evans blue staining. Results: The maximum pPrestin expression with the highest cell viability occurred at a pressure of 0.5 MPa, cycle number of 5000, and PRF of 1 Hz. The cellular transfection rate with pPrestin-MBs and US was 20.2 ± 2.5%, which was 1.5-fold higher than that of commercial transfection agents (LT-1). In vivo data suggested that the most profound expression of pPrestin occurred at 2 days after performing pPrestin-MBs with US (0.5 MPa, 240 s sonication time). In addition, no server erythrocyte extravasations and apoptosis cells were observed at US-sonicated region. We further found that with 0.5-MHz US stimulation, cells with Prestin expression were 6-fold more likely to exhibit c-Fos staining than cells without Prestin expression. Conclusion: Successful activation of Prestin-expressing neurons suggests that this technology provides non-invasive and spatially precise selective modulation of one or multiple specific brain regions.


Assuntos
Encéfalo/metabolismo , Terapia Genética/instrumentação , Engenharia de Proteínas/métodos , Ondas Ultrassônicas/efeitos adversos , Ultrassonografia/instrumentação , Animais , Vias Auditivas/metabolismo , Vias Auditivas/fisiopatologia , Barreira Hematoencefálica/metabolismo , Cátions/metabolismo , DNA/metabolismo , Técnicas de Transferência de Genes/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Microbolhas , Proteínas Motores Moleculares/metabolismo , Neurotransmissores/farmacologia , Plasmídeos/metabolismo , Sonicação , Reparo Gênico Alvo-Dirigido/métodos , Transfecção
17.
Nat Commun ; 11(1): 482, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980606

RESUMO

Supplementing wildtype copies of functionally defective genes with adeno-associated virus (AAV) is a strategy being explored clinically for various retinal dystrophies. However, the low cargo limit of this vector allows its use in only a fraction of patients with mutations in relatively small pathogenic genes. To overcome this issue, we developed a single AAV platform that allows local replacement of a mutated sequence with its wildtype counterpart, based on combined CRISPR-Cas9 and micro-homology-mediated end-joining (MMEJ). In blind mice, the mutation replacement rescued approximately 10% of photoreceptors, resulting in an improvement in light sensitivity and an increase in visual acuity. These effects were comparable to restoration mediated by gene supplementation, which targets a greater number of photoreceptors. This strategy may be applied for the treatment of inherited disorders caused by mutations in larger genes, for which conventional gene supplementation therapy is not currently feasible.


Assuntos
Dependovirus/genética , Edição de Genes/métodos , Células Fotorreceptoras de Vertebrados/fisiologia , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Animais , Sistemas CRISPR-Cas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Reparo do DNA por Junção de Extremidades , Proteínas do Olho/genética , Terapia Genética/métodos , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Distrofias Retinianas/fisiopatologia , Reparo Gênico Alvo-Dirigido/métodos , Transducina/deficiência , Transducina/genética , Acuidade Visual/genética , Acuidade Visual/fisiologia
18.
Protein Cell ; 11(1): 1-22, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31037510

RESUMO

Cockayne syndrome (CS) is a rare autosomal recessive inherited disorder characterized by a variety of clinical features, including increased sensitivity to sunlight, progressive neurological abnormalities, and the appearance of premature aging. However, the pathogenesis of CS remains unclear due to the limitations of current disease models. Here, we generate integration-free induced pluripotent stem cells (iPSCs) from fibroblasts from a CS patient bearing mutations in CSB/ERCC6 gene and further derive isogenic gene-corrected CS-iPSCs (GC-iPSCs) using the CRISPR/Cas9 system. CS-associated phenotypic defects are recapitulated in CS-iPSC-derived mesenchymal stem cells (MSCs) and neural stem cells (NSCs), both of which display increased susceptibility to DNA damage stress. Premature aging defects in CS-MSCs are rescued by the targeted correction of mutant ERCC6. We next map the transcriptomic landscapes in CS-iPSCs and GC-iPSCs and their somatic stem cell derivatives (MSCs and NSCs) in the absence or presence of ultraviolet (UV) and replicative stresses, revealing that defects in DNA repair account for CS pathologies. Moreover, we generate autologous GC-MSCs free of pathogenic mutation under a cGMP (Current Good Manufacturing Practice)-compliant condition, which hold potential for use as improved biomaterials for future stem cell replacement therapy for CS. Collectively, our models demonstrate novel disease features and molecular mechanisms and lay a foundation for the development of novel therapeutic strategies to treat CS.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Edição de Genes/métodos , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Reparo Gênico Alvo-Dirigido/métodos , Senilidade Prematura/patologia , Senilidade Prematura/terapia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Síndrome de Cockayne/patologia , Síndrome de Cockayne/terapia , Reparo do DNA , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Transcriptoma
19.
J Invest Dermatol ; 140(2): 338-347.e5, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31437443

RESUMO

Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an A•T→G•C adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermal-epidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.


Assuntos
Engenharia Celular/métodos , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Transplante de Células-Tronco Mesenquimais , Reparo Gênico Alvo-Dirigido , Teratoma/terapia , Animais , Diferenciação Celular , Células Cultivadas , Colágeno Tipo VII/metabolismo , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Fibroblastos/patologia , Genes Recessivos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Mutação , Cultura Primária de Células , Teratoma/genética , Teratoma/patologia , Transfecção , Transplante Autólogo/métodos
20.
Cell Stem Cell ; 25(4): 531-541.e6, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585094

RESUMO

Pelizaeus-Merzbacher disease (PMD) is an X-linked leukodystrophy caused by mutations in Proteolipid Protein 1 (PLP1), encoding a major myelin protein, resulting in profound developmental delay and early lethality. Previous work showed involvement of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways, but poor PLP1 genotype-phenotype associations suggest additional pathogenetic mechanisms. Using induced pluripotent stem cell (iPSC) and gene-correction, we show that patient-derived oligodendrocytes can develop to the pre-myelinating stage, but subsequently undergo cell death. Mutant oligodendrocytes demonstrated key hallmarks of ferroptosis including lipid peroxidation, abnormal iron metabolism, and hypersensitivity to free iron. Iron chelation rescued mutant oligodendrocyte apoptosis, survival, and differentiationin vitro, and post-transplantation in vivo. Finally, systemic treatment of Plp1 mutant Jimpy mice with deferiprone, a small molecule iron chelator, reduced oligodendrocyte apoptosis and enabled myelin formation. Thus, oligodendrocyte iron-induced cell death and myelination is rescued by iron chelation in PMD pre-clinical models.


Assuntos
Deferiprona/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Quelantes de Ferro/uso terapêutico , Ferro/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/fisiologia , Doença de Pelizaeus-Merzbacher/terapia , Animais , Diferenciação Celular , Células Cultivadas , Ferroptose , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/transplante , Peroxidação de Lipídeos , Camundongos , Camundongos Mutantes , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/transplante , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/patologia , Transplante de Células-Tronco , Reparo Gênico Alvo-Dirigido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA